• This record comes from PubMed

Identifying the generalizable controls on insect associations of native and non-native trees

. 2024 May ; 14 (5) : e11265. [epub] 20240512

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Trees growing outside their native geographic ranges often exhibit exceptional growth and survival due in part to the lack of co-evolved natural enemies that may limit their spread and suppress population growth. While most non-native trees tend to accumulate natural enemies over time, it remains uncertain which host and insect characteristics affect these novel associations and whether novel associations follow patterns of assembly similar to those of native hosts. Here, we used a dataset of insect-host tree associations in Europe to model which native insect species are paired with which native tree species, and then tested the model on its ability to predict which native insects are paired with which non-native trees. We show that native and non-native tree species closely related to known hosts are more likely to be hosts themselves, but that native host geographic range size, insect feeding guild, and sampling effort similarly affect insect associations. Our model had a strong ability to predict which insect species utilize non-native trees as hosts, but evolutionarily isolated tree species posed the greatest challenge to the model. These results demonstrate that insect-host associations can be reliably predicted, regardless of whether insect and host trees have co-evolved, and provide a framework for predicting future pest threats using a select number of easily attainable tree and insect characteristics.

See more in PubMed

Agosta, S. J. (2006). On ecological fitting, plant–insect associations, herbivore host shifts, and host plant selection. Oikos, 114(3), 556–565. 10.1111/j.2006.0030-1299.15025.x DOI

Bates, D. , Mächler, M. , Bolker, B. , & Walker, S. (2015). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67, 1–48. 10.18637/jss.v067.i01 DOI

Branco, M. , Brockerhoff, E. G. , Castagneyrol, B. , Orazio, C. , & Jactel, H. (2015). Host range expansion of native insects to exotic trees increases with area of introduction and the presence of congeneric native trees. Journal of Applied Ecology, 52(1), 69–77. 10.1111/1365-2664.12362 DOI

Brändle, M. , & Brandl, R. (2001). Species richness of insects and mites on trees: Expanding Southwood. Journal of Animal Ecology, 70(3), 491–504. 10.1046/j.1365-2656.2001.00506.x DOI

Brändle, M. , Kühn, I. , Klotz, S. , Belle, C. , & Brandl, R. (2008). Species richness of herbivores on exotic host plants increases with time since introduction of the host. Diversity and Distributions, 14(6), 905–912. 10.1111/j.1472-4642.2008.00511.x DOI

Castro‐Díez, P. , Alonso, Á. , Saldaña‐López, A. , & Granda, E. (2021). Effects of widespread non‐native trees on regulating ecosystem services. Science of the Total Environment, 778, 146141. 10.1016/j.scitotenv.2021.146141 PubMed DOI

Chamberlain, S. A. , & Boettiger, C. (2017). R Python, and Ruby clients for GBIF species occurrence data. PeerJ Preprints, 5, e3304v1. 10.7287/peerj.preprints.3304v1 DOI

Clay, K. (1995). Correlates of pathogen species richness in the grass family. Canadian Journal of Botany, 73(S1), 42–49. 10.1139/b95-223 DOI

Crous, C. J. , Burgess, T. I. , Le Roux, J. J. , Richardson, D. M. , Slippers, B. , & Wingfield, M. J. (2017). Ecological disequilibrium drives insect pest and pathogen accumulation in non‐native trees. AoB Plants, 9(1), plw081. 10.1093/aobpla/plw081 PubMed DOI PMC

Dang, Y. , Wei, K. , Wang, X. , Duan, J. J. , Jennings, D. E. , & Poland, T. M. (2022). Introduced plants induce outbreaks of a native pest and facilitate invasion in the plants' native range: Evidence from the emerald ash borer. Journal of Ecology, 110(3), 593–604. 10.1111/1365-2745.13822 DOI

De Jong, Y. , Verbeek, M. , Michelsen, V. , de Place Bjørn, P. , Los, W. , Steeman, F. , Bailly, N. , Basire, C. , Chylarecki, P. , & Stloukal, E. (2014). Fauna Europaea – All European animal species on the web. Biodiversity Data Journal, 2, e4034. PubMed PMC

Eschen, R. , O'Hanlon, R. , Santini, A. , Vannini, A. , Roques, A. , Kirichenko, N. , & Kenis, M. (2019). Safeguarding global plant health: The rise of sentinels. Journal of Pest Science, 92(1), 29–36. 10.1007/s10340-018-1041-6 DOI

European Environment Agency . (2023). [Publication]. CORINE Land Cover . https://www.eea.europa.eu/publications/COR0‐landcover

Forister, M. L. , Novotny, V. , Panorska, A. K. , Baje, L. , Basset, Y. , Butterill, P. T. , Cizek, L. , Coley, P. D. , Dem, F. , Diniz, I. R. , Drozd, P. , Fox, M. , Glassmire, A. E. , Hazen, R. , Hrcek, J. , Jahner, J. P. , Kaman, O. , Kozubowski, T. J. , Kursar, T. A. , … Dyer, L. A. (2015). The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 442–447. 10.1073/pnas.1423042112 PubMed DOI PMC

Gilbert, G. S. , Briggs, H. M. , & Magarey, R. (2015). The impact of plant enemies shows a phylogenetic signal. PLoS One, 10(4), e0123758. 10.1371/journal.pone.0123758 PubMed DOI PMC

Gilbert, G. S. , Magarey, R. , Suiter, K. , & Webb, C. O. (2012). Evolutionary tools for phytosanitary risk analysis: Phylogenetic signal as a predictor of host range of plant pests and pathogens. Evolutionary Applications, 5(8), 869–878. 10.1111/j.1752-4571.2012.00265.x PubMed DOI PMC

Gougherty, A. V. , & Davies, T. J. (2022). Host phylogenetic diversity predicts the global extent and composition of tree pests. Ecology Letters, 25(1), 101–112. 10.1111/ele.13908 PubMed DOI

Hardy, N. B. , & Cook, L. G. (2010). Gall‐induction in insects: Evolutionary dead‐end or speciation driver? BMC Evolutionary Biology, 10(1), 257. 10.1186/1471-2148-10-257 PubMed DOI PMC

Hawkes, C. V. (2007). Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. The American Naturalist, 170(6), 832–843. 10.1086/522842 PubMed DOI

Hurley, B. P. , Garnas, J. , Wingfield, M. J. , Branco, M. , Richardson, D. M. , & Slippers, B. (2016). Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biological Invasions, 18(4), 921–933. 10.1007/s10530-016-1081-x DOI

Janzen, D. H. (1968). Host plants as islands in evolutionary and contemporary time. The American Naturalist, 102(928), 592–595. 10.1086/282574 DOI

Jin, Y. , & Qian, H. (2019). V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42(8), 1353–1359. 10.1111/ecog.04434 PubMed DOI PMC

Joy, J. B. , & Crespi, B. J. (2012). Island phytophagy: Explaining the remarkable diversity of plant‐feeding insects. Proceedings of the Royal Society B: Biological Sciences, 279(1741), 3250–3255. 10.1098/rspb.2012.0397 PubMed DOI PMC

Keane, R. M. , & Crawley, M. J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17(4), 164–170. 10.1016/S0169-5347(02)02499-0 DOI

Lombardero, M. J. , Vázquez‐Mejuto, P. , & Ayres, M. P. (2008). Role of plant enemies in the forestry of indigenous vs. nonindigenous pines. Ecological Applications, 18(5), 1171–1181. 10.1890/07-1048.1 PubMed DOI

Lüdecke, D. (2023). sjPlot: Data visualization for statistics in social science. R package version 2.8.14. https://CRAN.R‐project.org/package=sjPlot

Mauri, A. , Strona, G. , & San‐Miguel‐Ayanz, J. (2017). EU‐Forest, a high‐resolution tree occurrence dataset for Europe. Scientific Data, 4(1), 1–8. PubMed PMC

Mech, A. M. , Thomas, K. A. , Marsico, T. D. , Herms, D. A. , Allen, C. R. , Ayres, M. P. , Gandhi, K. J. K. , Gurevitch, J. , Havill, N. P. , Hufbauer, R. A. , Liebhold, A. M. , Raffa, K. F. , Schulz, A. N. , Uden, D. R. , & Tobin, P. C. (2019). Evolutionary history predicts high‐impact invasions by herbivorous insects. Ecology and Evolution, 9(21), 12216–12230. 10.1002/ece3.5709 PubMed DOI PMC

Medzihorský, V. , Trombik, J. , Mally, R. , Turčáni, M. , & Liebhold, A. M. (2023). Insect invasions track a tree invasion: Global distribution of black locust herbivores. Journal of Biogeography, 50(7), 1285–1298. 10.1111/jbi.14625 DOI

Miller, Z. J. (2012). Fungal pathogen species richness: Why do some plant species have more pathogens than others? The American Naturalist, 179(2), 282–292. 10.1086/663676 PubMed DOI

Ness, J. H. , Rollinson, E. J. , & Whitney, K. D. (2011). Phylogenetic distance can predict susceptibility to attack by natural enemies. Oikos, 120(9), 1327–1334. 10.1111/j.1600-0706.2011.19119.x DOI

Novotny, V. , Miller, S. E. , Baje, L. , Balagawi, S. , Basset, Y. , Cizek, L. , Craft, K. J. , Dem, F. , Drew, R. A. I. , Hulcr, J. , Leps, J. , Lewis, O. T. , Pokon, R. , Stewart, A. J. A. , Allan Samuelson, G. , & Weiblen, G. D. (2010). Guild‐specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. Journal of Animal Ecology, 79(6), 1193–1203. 10.1111/j.1365-2656.2010.01728.x PubMed DOI

Parker, J. D. , & Hay, M. E. (2005). Biotic resistance to plant invasions? Native herbivores prefer non‐native plants. Ecology Letters, 8(9), 959–967. 10.1111/j.1461-0248.2005.00799.x PubMed DOI

Pearse, I. S. , & Altermatt, F. (2013). Predicting novel trophic interactions in a non‐native world. Ecology Letters, 16(8), 1088–1094. 10.1111/ele.12143 PubMed DOI

Pearse, I. S. , & Rosenheim, J. A. (2020). Phylogenetic escape from pests reduces pesticides on some crop plants. Proceedings of the National Academy of Sciences of the United States of America, 117(43), 26849–26853. 10.1073/pnas.2013751117 PubMed DOI PMC

Raffa, K. F. , Brockerhoff, E. G. , Grégoire, J.‐C. , Hamelin, R. C. , Liebhold, A. M. , Santini, A. , Venette, R. C. , & Wingfield, M. J. (2023). Approaches to forecasting damage by invasive forest insects and pathogens: A cross‐assessment. Bioscience, 73(2), 85–111.

Robin, X. , Turck, N. , Hainard, A. , Tiberti, N. , Lisacek, F. , Sanchez, J.‐C. , & Müller, M. (2011). pROC: An open‐source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12(1), 77. 10.1186/1471-2105-12-77 PubMed DOI PMC

San‐Miguel‐Ayanz, J. , de Rigo, D. , Caudullo, G. , Durrant, T. H. , Mauri, A. , Tinner, W. , Ballian, D. , Beck, P. , Birks, H. J. B. , Eaton, E. , Enescu, C. M. , Pasta, S. , Popescu, I. , Ravazzi, C. , Welk, E. , Abad Viñas, R. , Azevedo, J. C. , Barbati, A. , Barredo, J. I. , … Zecchin, B. (2016). European atlas of forest tree species . 10.2760/776635 DOI

Schulz, A. N. , Mech, A. M. , Ayres, M. P. , Gandhi, K. J. K. , Havill, N. P. , Herms, D. A. , Hoover, A. M. , Hufbauer, R. A. , Liebhold, A. M. , Marsico, T. D. , Raffa, K. F. , Tobin, P. C. , Uden, D. R. , & Thomas, K. A. (2021). Predicting non‐native insect impact: Focusing on the trees to see the forest. Biological Invasions, 23(12), 3921–3936. 10.1007/s10530-021-02621-5 DOI

Siemann, E. , Rogers, W. E. , & Dewalt, S. J. (2006). Rapid adaptation of insect herbivores to an invasive plant. Proceedings of the Royal Society B: Biological Sciences, 273(1602), 2763–2769. 10.1098/rspb.2006.3644 PubMed DOI PMC

Southwood, T. R. E. , & Kennedy, C. E. J. (1983). Trees as islands. Oikos, 41(3), 359–371. 10.2307/3544094 DOI

Sporbert, M. , Keil, P. , Seidler, G. , Bruelheide, H. , Jandt, U. , Aćić, S. , Biurrun, I. , Campos, J. A. , Čarni, A. , Chytrý, M. , Ćušterevska, R. , Dengler, J. , Golub, V. , Jansen, F. , Kuzemko, A. , Lenoir, J. , Marcenò, C. , Moeslund, J. E. , Pérez‐Haase, A. , … Welk, E. (2020). Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants. Journal of Biogeography, 47(10), 2210–2222. 10.1111/jbi.13926 DOI

Stahl, U. , Kattge, J. , Reu, B. , Voigt, W. , Ogle, K. , Dickie, J. , & Wirth, C. (2013). Whole‐plant trait spectra of North American woody plant species reflect fundamental ecological strategies. Ecosphere, 4(10), art128. 10.1890/ES13-00143.1 DOI

Strong, D. R., Jr. (1974). Rapid asymptotic species accumulation in phytophagous insect communities: The pests of cacao. Science, 185(4156), 1064–1066. PubMed

Strong, D. R., Jr. , McCoy, E. D. , & Rey, J. R. (1977). Time and the number of herbivore species: The pests of sugarcane. Ecology, 58(1), 167–175.

Suckling, D. M. , & Sforza, R. F. H. (2014). What magnitude are observed non‐target impacts from weed biocontrol? PLoS One, 9(1), e84847. 10.1371/journal.pone.0084847 PubMed DOI PMC

Sunny, A. , Diwakar, S. , & Sharma, G. P. (2015). Native insects and invasive plants encounters. Arthropod‐Plant Interactions, 9(4), 323–331. 10.1007/s11829-015-9384-x DOI

Trombik, J. , Mech, A. M. , Liebhold, A. M. , & Klapwijk, M. J. (2024). Native and non‐native insect herbivores associated with native and non‐native European trees [Dataset]. Dryad. 10.5061/dryad.3n5tb2rrx DOI

Turner, R. , Blake, R. , & Liebhold, A. M. (2021). International non‐native insect establishment data (0.1) [data set]. Zenodo. 10.5281/zenodo.5245302 DOI

Uden, D. R. , Mech, A. M. , Havill, N. P. , Schulz, A. N. , Ayres, M. P. , Herms, D. A. , Hoover, A. M. , Gandhi, K. J. K. , Hufbauer, R. A. , Liebhold, A. M. , Marsico, T. D. , Raffa, K. F. , Thomas, K. A. , Tobin, P. C. , & Allen, C. R. (2022). Phylogenetic risk assessment is robust for forecasting the impact of European insects on North American conifers. Ecological Applications, 33, e2761. 10.1002/eap.2761 PubMed DOI

Wingfield, M. J. , Brockerhoff, E. G. , Wingfield, B. D. , & Slippers, B. (2015). Planted forest health: The need for a global strategy. Science, 349(6250), 832–836. 10.1126/science.aac6674 PubMed DOI

Wolfe, L. M. (2002). Why alien invaders succeed: Support for the escape‐from‐enemy hypothesis. The American Naturalist, 160(6), 705–711. 10.1086/343872 PubMed DOI

Yang, S. , Sterck, F. J. , Sass‐Klaassen, U. , Cornelissen, J. H. C. , van Logtestijn, R. S. P. , Hefting, M. , Goudzwaard, L. , Zuo, J. , & Poorter, L. (2022). Stem trait spectra underpin multiple functions of temperate tree species. Frontiers in Plant Science, 13, 769551. 10.3389/fpls.2022.769551 PubMed DOI PMC

Yoon, S. , & Read, Q. (2016). Consequences of exotic host use: Impacts on Lepidoptera and a test of the ecological trap hypothesis. Oecologia, 181(4), 985–996. 10.1007/s00442-016-3560-2 PubMed DOI

Yu, G. , Smith, D. K. , Zhu, H. , Guan, Y. , & Lam, T. T.‐Y. (2017). ggtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8(1), 28–36. 10.1111/2041-210X.12628 DOI

Zanne, A. E. , Tank, D. C. , Cornwell, W. K. , Eastman, J. M. , Smith, S. A. , FitzJohn, R. G. , McGlinn, D. J. , O'Meara, B. C. , Moles, A. T. , Reich, P. B. , Royer, D. L. , Soltis, D. E. , Stevens, P. F. , Westoby, M. , Wright, I. J. , Aarssen, L. , Bertin, R. I. , Calaminus, A. , Govaerts, R. , … Beaulieu, J. M. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506(7486), 89–92. 10.1038/nature12872 PubMed DOI

See more in PubMed

Dryad
10.5061/dryad.3n5tb2rrx

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...