Identifying the generalizable controls on insect associations of native and non-native trees
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
38742186
PubMed Central
PMC11089089
DOI
10.1002/ece3.11265
PII: ECE311265
Knihovny.cz E-resources
- Keywords
- evolutionary isolation, geographic ranges, insect–tree associations, invasive species, native trees, novel interactions, phylogeny,
- Publication type
- Journal Article MeSH
Trees growing outside their native geographic ranges often exhibit exceptional growth and survival due in part to the lack of co-evolved natural enemies that may limit their spread and suppress population growth. While most non-native trees tend to accumulate natural enemies over time, it remains uncertain which host and insect characteristics affect these novel associations and whether novel associations follow patterns of assembly similar to those of native hosts. Here, we used a dataset of insect-host tree associations in Europe to model which native insect species are paired with which native tree species, and then tested the model on its ability to predict which native insects are paired with which non-native trees. We show that native and non-native tree species closely related to known hosts are more likely to be hosts themselves, but that native host geographic range size, insect feeding guild, and sampling effort similarly affect insect associations. Our model had a strong ability to predict which insect species utilize non-native trees as hosts, but evolutionarily isolated tree species posed the greatest challenge to the model. These results demonstrate that insect-host associations can be reliably predicted, regardless of whether insect and host trees have co-evolved, and provide a framework for predicting future pest threats using a select number of easily attainable tree and insect characteristics.
Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
Department of Forestry and Natural Resources Purdue University West Lafayette Indiana USA
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
School of Biology and Ecology University of Maine Orono Maine USA
USDA Forest Service Northern Research Station Delaware Ohio USA
USDA Forest Service Northern Research Station Morgantown West Virginia USA
See more in PubMed
Agosta, S. J. (2006). On ecological fitting, plant–insect associations, herbivore host shifts, and host plant selection. Oikos, 114(3), 556–565. 10.1111/j.2006.0030-1299.15025.x DOI
Bates, D. , Mächler, M. , Bolker, B. , & Walker, S. (2015). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67, 1–48. 10.18637/jss.v067.i01 DOI
Branco, M. , Brockerhoff, E. G. , Castagneyrol, B. , Orazio, C. , & Jactel, H. (2015). Host range expansion of native insects to exotic trees increases with area of introduction and the presence of congeneric native trees. Journal of Applied Ecology, 52(1), 69–77. 10.1111/1365-2664.12362 DOI
Brändle, M. , & Brandl, R. (2001). Species richness of insects and mites on trees: Expanding Southwood. Journal of Animal Ecology, 70(3), 491–504. 10.1046/j.1365-2656.2001.00506.x DOI
Brändle, M. , Kühn, I. , Klotz, S. , Belle, C. , & Brandl, R. (2008). Species richness of herbivores on exotic host plants increases with time since introduction of the host. Diversity and Distributions, 14(6), 905–912. 10.1111/j.1472-4642.2008.00511.x DOI
Castro‐Díez, P. , Alonso, Á. , Saldaña‐López, A. , & Granda, E. (2021). Effects of widespread non‐native trees on regulating ecosystem services. Science of the Total Environment, 778, 146141. 10.1016/j.scitotenv.2021.146141 PubMed DOI
Chamberlain, S. A. , & Boettiger, C. (2017). R Python, and Ruby clients for GBIF species occurrence data. PeerJ Preprints, 5, e3304v1. 10.7287/peerj.preprints.3304v1 DOI
Clay, K. (1995). Correlates of pathogen species richness in the grass family. Canadian Journal of Botany, 73(S1), 42–49. 10.1139/b95-223 DOI
Crous, C. J. , Burgess, T. I. , Le Roux, J. J. , Richardson, D. M. , Slippers, B. , & Wingfield, M. J. (2017). Ecological disequilibrium drives insect pest and pathogen accumulation in non‐native trees. AoB Plants, 9(1), plw081. 10.1093/aobpla/plw081 PubMed DOI PMC
Dang, Y. , Wei, K. , Wang, X. , Duan, J. J. , Jennings, D. E. , & Poland, T. M. (2022). Introduced plants induce outbreaks of a native pest and facilitate invasion in the plants' native range: Evidence from the emerald ash borer. Journal of Ecology, 110(3), 593–604. 10.1111/1365-2745.13822 DOI
De Jong, Y. , Verbeek, M. , Michelsen, V. , de Place Bjørn, P. , Los, W. , Steeman, F. , Bailly, N. , Basire, C. , Chylarecki, P. , & Stloukal, E. (2014). Fauna Europaea – All European animal species on the web. Biodiversity Data Journal, 2, e4034. PubMed PMC
Eschen, R. , O'Hanlon, R. , Santini, A. , Vannini, A. , Roques, A. , Kirichenko, N. , & Kenis, M. (2019). Safeguarding global plant health: The rise of sentinels. Journal of Pest Science, 92(1), 29–36. 10.1007/s10340-018-1041-6 DOI
European Environment Agency . (2023). [Publication]. CORINE Land Cover . https://www.eea.europa.eu/publications/COR0‐landcover
Forister, M. L. , Novotny, V. , Panorska, A. K. , Baje, L. , Basset, Y. , Butterill, P. T. , Cizek, L. , Coley, P. D. , Dem, F. , Diniz, I. R. , Drozd, P. , Fox, M. , Glassmire, A. E. , Hazen, R. , Hrcek, J. , Jahner, J. P. , Kaman, O. , Kozubowski, T. J. , Kursar, T. A. , … Dyer, L. A. (2015). The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 442–447. 10.1073/pnas.1423042112 PubMed DOI PMC
Gilbert, G. S. , Briggs, H. M. , & Magarey, R. (2015). The impact of plant enemies shows a phylogenetic signal. PLoS One, 10(4), e0123758. 10.1371/journal.pone.0123758 PubMed DOI PMC
Gilbert, G. S. , Magarey, R. , Suiter, K. , & Webb, C. O. (2012). Evolutionary tools for phytosanitary risk analysis: Phylogenetic signal as a predictor of host range of plant pests and pathogens. Evolutionary Applications, 5(8), 869–878. 10.1111/j.1752-4571.2012.00265.x PubMed DOI PMC
Gougherty, A. V. , & Davies, T. J. (2022). Host phylogenetic diversity predicts the global extent and composition of tree pests. Ecology Letters, 25(1), 101–112. 10.1111/ele.13908 PubMed DOI
Hardy, N. B. , & Cook, L. G. (2010). Gall‐induction in insects: Evolutionary dead‐end or speciation driver? BMC Evolutionary Biology, 10(1), 257. 10.1186/1471-2148-10-257 PubMed DOI PMC
Hawkes, C. V. (2007). Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. The American Naturalist, 170(6), 832–843. 10.1086/522842 PubMed DOI
Hurley, B. P. , Garnas, J. , Wingfield, M. J. , Branco, M. , Richardson, D. M. , & Slippers, B. (2016). Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biological Invasions, 18(4), 921–933. 10.1007/s10530-016-1081-x DOI
Janzen, D. H. (1968). Host plants as islands in evolutionary and contemporary time. The American Naturalist, 102(928), 592–595. 10.1086/282574 DOI
Jin, Y. , & Qian, H. (2019). V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42(8), 1353–1359. 10.1111/ecog.04434 PubMed DOI PMC
Joy, J. B. , & Crespi, B. J. (2012). Island phytophagy: Explaining the remarkable diversity of plant‐feeding insects. Proceedings of the Royal Society B: Biological Sciences, 279(1741), 3250–3255. 10.1098/rspb.2012.0397 PubMed DOI PMC
Keane, R. M. , & Crawley, M. J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17(4), 164–170. 10.1016/S0169-5347(02)02499-0 DOI
Lombardero, M. J. , Vázquez‐Mejuto, P. , & Ayres, M. P. (2008). Role of plant enemies in the forestry of indigenous vs. nonindigenous pines. Ecological Applications, 18(5), 1171–1181. 10.1890/07-1048.1 PubMed DOI
Lüdecke, D. (2023). sjPlot: Data visualization for statistics in social science. R package version 2.8.14. https://CRAN.R‐project.org/package=sjPlot
Mauri, A. , Strona, G. , & San‐Miguel‐Ayanz, J. (2017). EU‐Forest, a high‐resolution tree occurrence dataset for Europe. Scientific Data, 4(1), 1–8. PubMed PMC
Mech, A. M. , Thomas, K. A. , Marsico, T. D. , Herms, D. A. , Allen, C. R. , Ayres, M. P. , Gandhi, K. J. K. , Gurevitch, J. , Havill, N. P. , Hufbauer, R. A. , Liebhold, A. M. , Raffa, K. F. , Schulz, A. N. , Uden, D. R. , & Tobin, P. C. (2019). Evolutionary history predicts high‐impact invasions by herbivorous insects. Ecology and Evolution, 9(21), 12216–12230. 10.1002/ece3.5709 PubMed DOI PMC
Medzihorský, V. , Trombik, J. , Mally, R. , Turčáni, M. , & Liebhold, A. M. (2023). Insect invasions track a tree invasion: Global distribution of black locust herbivores. Journal of Biogeography, 50(7), 1285–1298. 10.1111/jbi.14625 DOI
Miller, Z. J. (2012). Fungal pathogen species richness: Why do some plant species have more pathogens than others? The American Naturalist, 179(2), 282–292. 10.1086/663676 PubMed DOI
Ness, J. H. , Rollinson, E. J. , & Whitney, K. D. (2011). Phylogenetic distance can predict susceptibility to attack by natural enemies. Oikos, 120(9), 1327–1334. 10.1111/j.1600-0706.2011.19119.x DOI
Novotny, V. , Miller, S. E. , Baje, L. , Balagawi, S. , Basset, Y. , Cizek, L. , Craft, K. J. , Dem, F. , Drew, R. A. I. , Hulcr, J. , Leps, J. , Lewis, O. T. , Pokon, R. , Stewart, A. J. A. , Allan Samuelson, G. , & Weiblen, G. D. (2010). Guild‐specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. Journal of Animal Ecology, 79(6), 1193–1203. 10.1111/j.1365-2656.2010.01728.x PubMed DOI
Parker, J. D. , & Hay, M. E. (2005). Biotic resistance to plant invasions? Native herbivores prefer non‐native plants. Ecology Letters, 8(9), 959–967. 10.1111/j.1461-0248.2005.00799.x PubMed DOI
Pearse, I. S. , & Altermatt, F. (2013). Predicting novel trophic interactions in a non‐native world. Ecology Letters, 16(8), 1088–1094. 10.1111/ele.12143 PubMed DOI
Pearse, I. S. , & Rosenheim, J. A. (2020). Phylogenetic escape from pests reduces pesticides on some crop plants. Proceedings of the National Academy of Sciences of the United States of America, 117(43), 26849–26853. 10.1073/pnas.2013751117 PubMed DOI PMC
Raffa, K. F. , Brockerhoff, E. G. , Grégoire, J.‐C. , Hamelin, R. C. , Liebhold, A. M. , Santini, A. , Venette, R. C. , & Wingfield, M. J. (2023). Approaches to forecasting damage by invasive forest insects and pathogens: A cross‐assessment. Bioscience, 73(2), 85–111.
Robin, X. , Turck, N. , Hainard, A. , Tiberti, N. , Lisacek, F. , Sanchez, J.‐C. , & Müller, M. (2011). pROC: An open‐source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12(1), 77. 10.1186/1471-2105-12-77 PubMed DOI PMC
San‐Miguel‐Ayanz, J. , de Rigo, D. , Caudullo, G. , Durrant, T. H. , Mauri, A. , Tinner, W. , Ballian, D. , Beck, P. , Birks, H. J. B. , Eaton, E. , Enescu, C. M. , Pasta, S. , Popescu, I. , Ravazzi, C. , Welk, E. , Abad Viñas, R. , Azevedo, J. C. , Barbati, A. , Barredo, J. I. , … Zecchin, B. (2016). European atlas of forest tree species . 10.2760/776635 DOI
Schulz, A. N. , Mech, A. M. , Ayres, M. P. , Gandhi, K. J. K. , Havill, N. P. , Herms, D. A. , Hoover, A. M. , Hufbauer, R. A. , Liebhold, A. M. , Marsico, T. D. , Raffa, K. F. , Tobin, P. C. , Uden, D. R. , & Thomas, K. A. (2021). Predicting non‐native insect impact: Focusing on the trees to see the forest. Biological Invasions, 23(12), 3921–3936. 10.1007/s10530-021-02621-5 DOI
Siemann, E. , Rogers, W. E. , & Dewalt, S. J. (2006). Rapid adaptation of insect herbivores to an invasive plant. Proceedings of the Royal Society B: Biological Sciences, 273(1602), 2763–2769. 10.1098/rspb.2006.3644 PubMed DOI PMC
Southwood, T. R. E. , & Kennedy, C. E. J. (1983). Trees as islands. Oikos, 41(3), 359–371. 10.2307/3544094 DOI
Sporbert, M. , Keil, P. , Seidler, G. , Bruelheide, H. , Jandt, U. , Aćić, S. , Biurrun, I. , Campos, J. A. , Čarni, A. , Chytrý, M. , Ćušterevska, R. , Dengler, J. , Golub, V. , Jansen, F. , Kuzemko, A. , Lenoir, J. , Marcenò, C. , Moeslund, J. E. , Pérez‐Haase, A. , … Welk, E. (2020). Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants. Journal of Biogeography, 47(10), 2210–2222. 10.1111/jbi.13926 DOI
Stahl, U. , Kattge, J. , Reu, B. , Voigt, W. , Ogle, K. , Dickie, J. , & Wirth, C. (2013). Whole‐plant trait spectra of North American woody plant species reflect fundamental ecological strategies. Ecosphere, 4(10), art128. 10.1890/ES13-00143.1 DOI
Strong, D. R., Jr. (1974). Rapid asymptotic species accumulation in phytophagous insect communities: The pests of cacao. Science, 185(4156), 1064–1066. PubMed
Strong, D. R., Jr. , McCoy, E. D. , & Rey, J. R. (1977). Time and the number of herbivore species: The pests of sugarcane. Ecology, 58(1), 167–175.
Suckling, D. M. , & Sforza, R. F. H. (2014). What magnitude are observed non‐target impacts from weed biocontrol? PLoS One, 9(1), e84847. 10.1371/journal.pone.0084847 PubMed DOI PMC
Sunny, A. , Diwakar, S. , & Sharma, G. P. (2015). Native insects and invasive plants encounters. Arthropod‐Plant Interactions, 9(4), 323–331. 10.1007/s11829-015-9384-x DOI
Trombik, J. , Mech, A. M. , Liebhold, A. M. , & Klapwijk, M. J. (2024). Native and non‐native insect herbivores associated with native and non‐native European trees [Dataset]. Dryad. 10.5061/dryad.3n5tb2rrx DOI
Turner, R. , Blake, R. , & Liebhold, A. M. (2021). International non‐native insect establishment data (0.1) [data set]. Zenodo. 10.5281/zenodo.5245302 DOI
Uden, D. R. , Mech, A. M. , Havill, N. P. , Schulz, A. N. , Ayres, M. P. , Herms, D. A. , Hoover, A. M. , Gandhi, K. J. K. , Hufbauer, R. A. , Liebhold, A. M. , Marsico, T. D. , Raffa, K. F. , Thomas, K. A. , Tobin, P. C. , & Allen, C. R. (2022). Phylogenetic risk assessment is robust for forecasting the impact of European insects on North American conifers. Ecological Applications, 33, e2761. 10.1002/eap.2761 PubMed DOI
Wingfield, M. J. , Brockerhoff, E. G. , Wingfield, B. D. , & Slippers, B. (2015). Planted forest health: The need for a global strategy. Science, 349(6250), 832–836. 10.1126/science.aac6674 PubMed DOI
Wolfe, L. M. (2002). Why alien invaders succeed: Support for the escape‐from‐enemy hypothesis. The American Naturalist, 160(6), 705–711. 10.1086/343872 PubMed DOI
Yang, S. , Sterck, F. J. , Sass‐Klaassen, U. , Cornelissen, J. H. C. , van Logtestijn, R. S. P. , Hefting, M. , Goudzwaard, L. , Zuo, J. , & Poorter, L. (2022). Stem trait spectra underpin multiple functions of temperate tree species. Frontiers in Plant Science, 13, 769551. 10.3389/fpls.2022.769551 PubMed DOI PMC
Yoon, S. , & Read, Q. (2016). Consequences of exotic host use: Impacts on Lepidoptera and a test of the ecological trap hypothesis. Oecologia, 181(4), 985–996. 10.1007/s00442-016-3560-2 PubMed DOI
Yu, G. , Smith, D. K. , Zhu, H. , Guan, Y. , & Lam, T. T.‐Y. (2017). ggtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8(1), 28–36. 10.1111/2041-210X.12628 DOI
Zanne, A. E. , Tank, D. C. , Cornwell, W. K. , Eastman, J. M. , Smith, S. A. , FitzJohn, R. G. , McGlinn, D. J. , O'Meara, B. C. , Moles, A. T. , Reich, P. B. , Royer, D. L. , Soltis, D. E. , Stevens, P. F. , Westoby, M. , Wright, I. J. , Aarssen, L. , Bertin, R. I. , Calaminus, A. , Govaerts, R. , … Beaulieu, J. M. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506(7486), 89–92. 10.1038/nature12872 PubMed DOI
Dryad
10.5061/dryad.3n5tb2rrx