Growth Stimulation of Durum Wheat and Common Buckwheat by Non-Thermal Atmospheric Pressure Plasma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-21-147
Slovak Research and Development Agency
PubMed
38140503
PubMed Central
PMC10748235
DOI
10.3390/plants12244172
PII: plants12244172
Knihovny.cz E-zdroje
- Klíčová slova
- Fagopyrum esculentum, Triticum durum, low-temperature plasma, plasma treatment, seed, seedling,
- Publikační typ
- časopisecké články MeSH
The grains of durum wheat (Triticum durum Desf.) and achenes of common buckwheat (Fagopyrum esculentum Moench) were tested after treatment with two sources of non-thermal atmospheric pressure plasma (DCSBD, MSDBD) with different treatment times (0, 3, 5, 10, 20, 30, and 40 s). The effect of these treatments was monitored with regard to the seed surface diagnostics (water contact angle-WCA, chemical changes by Fourier transform infrared spectroscopy-FTIR); twenty parameters associated with germination and initial seed growth were monitored. A study of the wettability confirmed a decrease in WCA values indicating an increase in surface energy and hydrophilicity depending on the type of seed, plasma source, and treatment time. Surface analysis by attenuated total reflectance FTIR (ATR-FTIR) showed no obvious changes in the chemical bonds on the surface of the plasma-treated seeds, which confirms the non-destructive effect of the plasma on the chemical composition of the seed shell. A multivariate analysis of the data showed many positive trends (not statistically significant) in germination and initial growth parameters. The repeated results for germination rate and root/shoot dry matter ratio indicate the tendency of plants to invest in underground organs. Durum wheat required longer treatment times with non-thermal plasma (10 s, 20 s) for germination and early growth, whereas buckwheat required shorter times (5 s, 10 s). The responses of durum wheat grains to the two non-thermal plasma sources used were equal. In contrast, the responses of buckwheat achenes were more favorable to MSDBD treatment than to DCSBD.
Zobrazit více v PubMed
Paterson R.R.M., Lima N. How Will Climate Change Affect Mycotoxins in Food? Food Res. Int. 2010;43:1902–1914. doi: 10.1016/j.foodres.2009.07.010. DOI
Macholdt J., Honermeier B. Impact of Climate Change on Cultivar Choice: Adaptation Strategies of Farmers and Advisors in German Cereal Production. Agronomy. 2016;6:40. doi: 10.3390/agronomy6030040. DOI
van Tilburg A.J., Hudson P.F. Extreme Weather Events and Farmer Adaptation in Zeeland, the Netherlands: A European Climate Change Case Study from the Rhine Delta. Sci. Total Environ. 2022;844:157212. doi: 10.1016/j.scitotenv.2022.157212. PubMed DOI
Zampieri M., Ceglar A., Dentener F., Toreti A. Wheat Yield Loss Attributable to Heat Waves, Drought and Water Excess at the Global, National and Subnational Scales. Environ. Res. Lett. 2017;12:064008. doi: 10.1088/1748-9326/aa723b. DOI
Dumalasová V., Bartoš P. Reaction of Wheat, Alternative Wheat and Triticale Cultivars to Common Bunt. Czech J. Genet. Plant Breed. 2010;46:14–20. doi: 10.17221/73/2009-CJGPB. DOI
Groth S., Wittmann R., Longin C.F.H., Böhm V. Influence of Variety and Growing Location on Carotenoid and Vitamin E Contents of 184 Different Durum Wheat Varieties (Triticum turgidum ssp. Durum) in Germany. Eur. Food Res. Technol. 2020;246:2079–2092. doi: 10.1007/s00217-020-03557-1. DOI
Rachoń L., Bobryk-Mamczarz A., Kiełtyka-Dadasiewicz A. Hulled Wheat Productivity and Quality in Modern Agriculture against Conventional Wheat Species. Agriculture. 2020;10:275. doi: 10.3390/agriculture10070275. DOI
Kolev T., Todorov Z., Mangova M. The Variety-main Factor for Increasing Yield and Quality of Durum Wheat Grain. Sci. Papers Ser. A Agron. 2021;64:411–416.
Erley G.S.A., Kaul H.P., Kruse M., Aufhammer W. Yield and Nitrogen Utilization Efficiency of the Pseudocereals Amaranth, Quinoa, and Buckwheat under Differing Nitrogen Fertilization. Eur. J. Agron. 2005;22:95–100. doi: 10.1016/j.eja.2003.11.002. DOI
Nazco R., Peña R.J., Ammar K., Villegas D., Crossa J., Royo C. Durum Wheat (Triticum durum Desf.) Mediterranean Landraces as Sources of Variability for Allelic Combinations at Glu-1/Glu-3 Loci Affecting Gluten Strength and Pasta Cooking Quality. Genet. Resour. Crop Evol. 2014;61:1219–1236. doi: 10.1007/s10722-014-0104-7. DOI
Stasiak M., Gidzinski D., Jordan M., Dixon M. Crop Selection for Advanced Life Support Systems in the ESA MELiSSA Program: Durum Wheat (Triticum turgidum Var Durum) Adv. Space Res. 2012;49:1684–1690. doi: 10.1016/j.asr.2012.03.001. DOI
Diffenbaugh N.S., Giorgi F. Climate Change Hotspots in the CMIP5 Global Climate Model Ensemble. Clim. Change. 2012;114:813–822. doi: 10.1007/s10584-012-0570-x. PubMed DOI PMC
Royo C., Nazco R., Villegas D. The Climate of the Zone of Origin of Mediterranean Durum Wheat (Triticum durum Desf.) Landraces Affects Their Agronomic Performance. Genet. Resour. Crop Evol. 2014;61:1345–1358. doi: 10.1007/s10722-014-0116-3. DOI
Sabella E., Aprile A., Negro C., Nicolì F., Nutricati E., Vergine M., Luvisi A., De Bellis L. Impact of Climate Change on Durum Wheat Yield. Agronomy. 2020;10:793. doi: 10.3390/agronomy10060793. DOI
Ceglar A., Toreti A., Zampieri M., Royo C. Global Loss of Climatically Suitable Areas for Durum Wheat Growth in the Future. Environ. Res. Lett. 2021;16:104049. doi: 10.1088/1748-9326/ac2d68. DOI
Bożek K.S., Żuk-Gołaszewska K., Bochenek A., Gołaszewski J., Kalaji H.M. Modelling the Growth, Development and Yield of Triticum durum Desf under the Changes of Climatic Conditions in North-Eastern Europe. Sci. Rep. 2021;11:21753. doi: 10.1038/s41598-021-01273-8. PubMed DOI PMC
Angioloni A., Collar C. Nutritional and Functional Added Value of Oat, Kamut ®, Spelt, Rye and Buckwheat versus Common Wheat in Breadmaking. J. Sci. Food Agric. 2011;91:1283–1292. doi: 10.1002/jsfa.4314. PubMed DOI
Unal H., Izli G., Izli N., Asik B.B. Comparison of Some Physical and Chemical Characteristics of Buckwheat (Fagopyrum Esculentum Moench) Grains. CyTA-J. Food. 2017;15:257–265. doi: 10.1080/19476337.2016.1245678. DOI
Domingos I.F.N., Bilsborrow P.E. The Effect of Variety and Sowing Date on the Growth, Development, Yield and Quality of Common Buckwheat (Fagopyrum Esculentum Moench) Eur. J. Agron. 2021;126:126264. doi: 10.1016/j.eja.2021.126264. DOI
Sobhani M.R., Rahmikhdoev G., Mazaheri D., Majidian M. Influence of Different Sowing Date and Planting Pattern and N Rate on Buckwheat Yield and Its Quality. Aust. J. Crop Sci. 2014;8:1402–1414.
Mariotti M., Masoni A., Arduini I. Forage and Grain Yield of Common Buckwheat in Mediterranean Conditions: Response to Sowing Time and Irrigation. Crop Pasture Sci. 2016;67:1000. doi: 10.1071/CP16091. DOI
Siracusa L., Gresta F., Sperlinga E., Ruberto G. Effect of Sowing Time and Soil Water Content on Grain Yield and Phenolic Profile of Four Buckwheat (Fagopyrum Esculentum Moench.) Varieties in a Mediterranean Environment. J. Food Compos. Anal. 2017;62:1–7. doi: 10.1016/j.jfca.2017.04.005. DOI
Waman A.A., Bohra P., Norman A. Chemical Pre-Treatments Improve Seed Germination and Seedling Growth in Semecarpus Kurzii: An Ethnomedicinally Important Plant. J. Res. 2018;29:1283–1289. doi: 10.1007/s11676-017-0562-9. DOI
Araújo S.D.S., Paparella S., Dondi D., Bentivoglio A., Carbonera D., Balestrazzi A. Physical Methods for Seed Invigoration: Advantages and Challenges in Seed Technology. Front. Plant Sci. 2016;7:646. doi: 10.3389/fpls.2016.00646. PubMed DOI PMC
Campobenedetto C., Grange E., Mannino G., van Arkel J., Beekwilder J., Karlova R., Garabello C., Contartese V., Bertea C.M. A Biostimulant Seed Treatment Improved Heat Stress Tolerance during Cucumber Seed Germination by Acting on the Antioxidant System and Glyoxylate Cycle. Front. Plant Sci. 2020;11:836. doi: 10.3389/fpls.2020.00836. PubMed DOI PMC
Šimek M., Homola T. Plasma-Assisted Agriculture: History, Presence, and Prospects—A Review. Eur. Phys. J. D. 2021;75:210. doi: 10.1140/epjd/s10053-021-00206-4. DOI
Attri P., Ishikawa K., Okumura T., Koga K., Shiratani M. Plasma Agriculture from Laboratory to Farm: A Review. Processes. 2020;8:1002. doi: 10.3390/pr8081002. DOI
Mitra A., Li Y.F., Klämpfl T.G., Shimizu T., Jeon J., Morfill G.E., Zimmermann J.L. Inactivation of Surface-Borne Microorganisms and Increased Germination of Seed Specimen by Cold Atmospheric Plasma. Food Bioprocess Technol. 2014;7:645–653. doi: 10.1007/s11947-013-1126-4. DOI
Zahoranová A., Henselová M., Hudecová D., Kaliňáková B., Kováčik D., Medvecká V., Černák M. Effect of Cold Atmospheric Pressure Plasma on the Wheat Seedlings Vigor and on the Inactivation of Microorganisms on the Seeds Surface. Plasma Chem. Plasma Process. 2016;36:397–414. doi: 10.1007/s11090-015-9684-z. DOI
Li Y., Wang T., Meng Y., Qu G., Sun Q., Liang D., Hu S. Air Atmospheric Dielectric Barrier Discharge Plasma Induced Germination and Growth Enhancement of Wheat Seed. Plasma Chem. Plasma Process. 2017;37:1621–1634. doi: 10.1007/s11090-017-9835-5. DOI
Sandanuwan T., Attygalle D., Amarasinghe S., Weragoda S.C., Ranaweera B., Rathnayake K., Alankara W. Shelf Life Extension of Cavendish Banana Fruit Using Cold Plasma Treatment; Proceedings of the MERCon 2020—6th International Multidisciplinary Moratuwa Engineering Research Conference; Moratuwa, Sri Lanka. 29–30 July 2020.
Takaki K., Takahashi K., Hamanaka D., Yoshida R., Uchino T. Function of Plasma and Electrostatics for Keeping Quality of Agricultural Produce in Post-Harvest Stage. Jpn. J. Appl. Phys. 2020;60:010501. doi: 10.35848/1347-4065/abcc13. DOI
Scholtz V., Pazlarova J., Souskova H., Khun J., Julak J. Nonthermal Plasma—A Tool for Decontamination and Disinfection. Biotechnol. Adv. 2015;33:1108–1119. doi: 10.1016/j.biotechadv.2015.01.002. PubMed DOI
Guiyun C., Yushan W., Mingyue Z., Wanxing M., Xixian X., Ye C. Cold Atmospheric Plasma Treatment Improves the γ-Aminobutyric Acid Content of Buckwheat Seeds Providing a New Anti-Hypertensive Functional Ingredient. Food Chem. 2022;388:133064. doi: 10.1016/j.foodchem.2022.133064. PubMed DOI
Nedyalkova S., Bozhanova V., Benova E., Marinova P., Tsonev I., Bogdanov T., Koleva M. Study on the Effect of Cold Plasma on the Germination and Growth of Durum Wheat Seeds Contaminated with Fusarium Graminearum. Int. J. Innov. Approaches Agric. Res. 2019;3:623–635. doi: 10.29329/ijiaar.2019.217.8. DOI
Mravlje J., Kobal T., Regvar M., Starič P., Zaplotnik R., Mozetič M., Vogel-Mikuš K. The Sensitivity of Fungi Colonising Buckwheat Grains to Cold Plasma Is Species Specific. J. Fungi. 2023;9:609. doi: 10.3390/jof9060609. PubMed DOI PMC
Scholtz V., Šerá B., Khun J., Šerý M., Julák J. Effects of Nonthermal Plasma on Wheat Grains and Products. J. Food Qual. 2019;2019:7917825. doi: 10.1155/2019/7917825. DOI
Homola T., Krumpolec R., Zemánek M., Kelar J., Synek P., Hoder T., Černák M. An Array of Micro-Hollow Surface Dielectric Barrier Discharges for Large-Area Atmospheric-Pressure Surface Treatments. Plasma Chem. Plasma Process. 2017;37:1149–1163. doi: 10.1007/s11090-017-9792-z. DOI
Dziadek K., Kopeć A., Pastucha E., Piątkowska E., Leszczyńska T., Pisulewska E., Witkowicz R., Francik R. Basic Chemical Composition and Bioactive Compounds Content in Selected Cultivars of Buckwheat Whole Seeds, Dehulled Seeds and Hulls. J. Cereal Sci. 2016;69:1–8. doi: 10.1016/j.jcs.2016.02.004. DOI
Devi P.B., Vijayabharathi R., Sathyabama S., Malleshi N.G., Priyadarisini V.B. Health Benefits of Finger Millet (Eleusine coracana L.) Polyphenols and Dietary Fiber: A Review. J. Food Sci. Technol. 2014;51:1021–1040. doi: 10.1007/s13197-011-0584-9. PubMed DOI PMC
Kostryukov S.G., Matyakubov H.B., Masterova Y.Y., Kozlov A.S., Pryanichnikova M.K., Pynenkov A.A., Khluchina N.A. Determination of Lignin, Cellulose, and Hemicellulose in Plant Materials by FTIR Spectroscopy. J. Anal. Chem. 2023;78:718–727. doi: 10.1134/S1061934823040093. DOI
Javier-Astete R., Jimenez-Davalos J., Zolla G. Determination of Hemicellulose, Cellulose, Holocellulose and Lignin Content Using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. And Guazuma crinita Lam. PLoS ONE. 2021;16:e0256559. doi: 10.1371/journal.pone.0256559. PubMed DOI PMC
Tomeková J., Kyzek S., Medvecká V., Gálová E., Zahoranová A. Influence of Cold Atmospheric Pressure Plasma on Pea Seeds: DNA Damage of Seedlings and Optical Diagnostics of Plasma. Plasma Chem. Plasma Process. 2020;40:1571–1584. doi: 10.1007/s11090-020-10109-8. DOI
Švubová R., Kyzek S., Medvecká V., Slováková Ľ., Gálová E., Zahoranová A. Novel Insight at the Effect of Cold Atmospheric Pressure Plasma on the Activity of Enzymes Essential for the Germination of Pea (Pisum sativum L. Cv. Prophet) Seeds. Plasma Chem. Plasma Process. 2020;40:1221–1240. doi: 10.1007/s11090-020-10089-9. DOI
Ďurčányová S., Slováková Ľ., Klas M., Tomeková J., Ďurina P., Stupavská M., Kováčik D., Zahoranová A. Efficacy Comparison of Three Atmospheric Pressure Plasma Sources for Soybean Seed Treatment: Plasma Characteristics, Seed Properties, Germination. Plasma Chem. Plasma Process. 2023;43:1863–1885. doi: 10.1007/s11090-023-10387-y. DOI
Slavíček P., Štěpánová V., Fleischer M., Kelar J., Kelar Tučeková Z., Jurmanová J., Pazderka M., Prášil V., Prášil J. The Multi-Hollow Surface Dielectric Barrier Discharge Usage for the Seeds’ Treatment Aimed to the Dustiness Decrease of Free-Floating Particles from Agrochemicals. Plasma Chem. Plasma Process. 2023;43:1887–1906. doi: 10.1007/s11090-023-10396-x. DOI
Mildaziene V., Ivankov A., Sera B., Baniulis D. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants. 2022;11:856. doi: 10.3390/plants11070856. PubMed DOI PMC
Royo C., Maccaferri M., Álvaro F., Moragues M., Sanguineti M.C., Tuberosa R., Maalouf F., del Moral L.F.G., Demontis A., Rhouma S., et al. Understanding the Relationships between Genetic and Phenotypic Structures of a Collection of Elite Durum Wheat Accessions. Field Crops Res. 2010;119:91–105. doi: 10.1016/j.fcr.2010.06.020. DOI
Monneveux P., Jing R., Misra S.C. Phenotyping for Drought Adaptation in Wheat Using Physiological Traits. Front. Physiol. 2012;3:429. doi: 10.3389/fphys.2012.00429. PubMed DOI PMC
Chaouachi L., Marín-Sanz M., Kthiri Z., Boukef S., Harbaoui K., Barro F., Karmous C. The Opportunity of Using Durum Wheat Landraces to Tolerate Drought Stress: Screening Morpho-Physiological Components. AoB Plants. 2023;15:plad022. doi: 10.1093/aobpla/plad022. PubMed DOI PMC
Šerá B., Gajdovâ I., Černâk M., Gavril B., Hnatiuc E., Kováčik D., Kříha V., Sláma J., Šerý M., Špatenka P. How Various Plasma Sources May Affect Seed Germination and Growth; Proceedings of the 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM); Brasov, Romania. 24–26 May 2012; pp. 1365–1370.
Ivankov A., Naučienė Z., Degutytė-Fomins L., Žūkienė R., Januškaitienė I., Malakauskienė A., Jakštas V., Ivanauskas L., Romanovskaja D., Šlepetienė A., et al. Changes in Agricultural Performance of Common Buckwheat Induced by Seed Treatment with Cold Plasma and Electromagnetic Field. Appl. Sci. 2021;11:4391. doi: 10.3390/app11104391. DOI
Starič P., Remic L., Vogel-Mikuš K., Junkar I., Vavpetič P., Kelemen M., Pongrac P. Exploring the Potential of Cold Plasma Treatment Followed by Zinc-Priming for Biofortification of Buckwheat Sprouts. Front. Nutr. 2023;10:1151101. doi: 10.3389/fnut.2023.1151101. PubMed DOI PMC
Černák M., Černáková L., Hudec I., Kováčik D., Zahoranová A. Diffuse Coplanar Surface Barrier Discharge and Its Applications for In-Line Processing of Low-Added-Value Materials. Eur. Phys. J.-Appl. Phys. 2009;47:22806. doi: 10.1051/epjap/2009131. DOI
Šerá B. Methodological Contribution on Seed Germination and Seedling Initial Growth Tests in Wild Plants. Not. Bot. Horti Agrobot. Cluj. Napoca. 2023;51:13164. doi: 10.15835/nbha51213164. DOI