Stability of psilocybin and its four analogs in the biomass of the psychotropic mushroom Psilocybe cubensis

. 2021 Feb ; 13 (2) : 439-446. [epub] 20201104

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33119971

Grantová podpora
RVO61389005 Czech Academy of Sciences
RVO67985831 Czech Academy of Sciences
MV0/VI20172020056 Ministry of the Interior of the Czech Republic

Psilocybin, psilocin, baeocystin, norbaeocystin, and aeruginascin are tryptamines structurally similar to the neurotransmitter serotonin. Psilocybin and its pharmacologically active metabolite psilocin in particular are known for their psychoactive effects. These substances typically occur in most species of the genus Psilocybe (Fungi, Strophariaceae). Even the sclerotia of some of these fungi known as "magic truffles" are of growing interest in microdosing due to them improving cognitive function studies. In addition to microdosing studies, psilocybin has also been applied in clinical studies, but only its pure form has been administrated so far. Moreover, the determination of tryptamine alkaloids is used in forensic analysis. In this study, freshly cultivated fruit bodies of Psilocybe cubensis were used for monitoring stability (including storage and processing conditions of fruiting bodies). Furthermore, mycelium and the individual parts of the fruiting bodies (caps, stipes, and basidiospores) were also examined. The concentration of tryptamines in final extracts was analyzed using ultra-high-performance liquid chromatography coupled with mass spectrometry. No tryptamines were detected in the basidiospores, and only psilocin was present at 0.47 wt.% in the mycelium. The stipes contained approximately half the amount of tryptamine alkaloids (0.52 wt.%) than the caps (1.03 wt.%); however, these results were not statistically significant, as the concentration of tryptamines in individual fruiting bodies is highly variable. The storage conditions showed that the highest degradation of tryptamines was seen in fresh mushrooms stored at -80°C, and the lowest decay was seen in dried biomass stored in the dark at room temperature.

Zobrazit více v PubMed

Araújo AM, Carvalho F, de Lourdes Bastos M, De Pinho PG, Carvalho M. The hallucinogenic world of tryptamines: an updated review. Arch Toxicol. 2015;89(8):1151-1173.

Blei F, Baldeweg F, Fricke J, Hoffmeister D. Biocatalytic production of psilocybin and derivatives in tryptophan synthase-enhanced reactions. Chem a Eur J. 2018;24(40):10028-10031.

Blei F, Dörner S, Fricke J, et al. Simultaneous production of psilocybin and a cocktail of β-carboline monoamine oxidase inhibitors in “magic” mushrooms. Chem a Eur J. 2020;26(3):729-734.

Stamets P. Psilocybin mushrooms of the world. Ten Speed Press; 1996. ISBN-13: 978-0898158397; ISBN-10: 9780898158397.

Kallifatidis B, Borovička J, Stránská J, Drábek J, Mills DK. Fluorescent random amplified microsatellites (F-RAMS) analysis of mushrooms as a forensic investigative tool. Forensic Sci Int Genet. 2014;9:25-32.

Zhuk O, Jasicka-Misiak I, Poliwoda A, et al. Research on acute toxicity and the behavioral effects of methanolic extract from psilocybin mushrooms and psilocin in mice. Toxins. 2015;7(4):1018-1029.

Gartz J, Wiedemann G. Discovery of a new caerulescent Psilocybe mushroom in Germany: Psilocybe germanica sp. nov. Drug Test Anal. 2015;7(9):853-857.

Nicholas L, Ogame K. Psilocybin Mushroom Handbook: Easy Indoor & Outdoor Cultivation. Ed Rosenthal; 2006.

Gartz J. Magic mushrooms around the world. A scientific journey across cultures and time. In: The Case for Challenging Research and Value Systems Claudia Taake, trans & ed. Los Angeles, California: Lis; 1996.

Hofmann A. The discovery of LSD and subsequent investigations on naturally occurring hallucinogens. In: Discoveries in biological psychiatry; 1970:91-106.

Hofmann A, Ott J. LSD, my problem child. 5 New York: McGraw-Hill; 1980. ISBN-13: 978-0199639410; ISBN-10: 0199639418.

Stijve T. Worldwide occurrence of psychoactive mushrooms-and update. Česká Mycologia. 1995;48:11-19.

Gambaro V, Roda G, Visconti GL, et al. DNA-based taxonomic identification of basidiospores in hallucinogenic mushrooms cultivated in “grow-kits” seized by the police: LC-UV quali-quantitative determination of psilocybin and psilocin. J Pharm Biomed Anal. 2016;125:427-432.

Andersson C, Kristinsson J, Gry J. Occurrence and Use of Hallucinogenic Mushrooms Containing Psilocybin Alkaloids. Nordic Council of Ministers; 2009. ISBN: 978-92-893-1836-5.

Leung A, Paul A. Baeocystin and norbaeocystin: new analogs of psilocybin from Psilocybe baeocystis. J Pharm Sci. 1968;57(10):1667-1671.

Shirota O, Hakamata W, Goda Y. Concise large-scale synthesis of psilocin and psilocybin, principal hallucinogenic constituents of “magic mushroom”. J Nat Prod. 2003;66(6):885-887.

Lenz C, Wick J, Hoffmeister D. Identification of ω-N-methyl-4-hydroxytryptamine (norpsilocin) as a Psilocybe natural product. J Nat Prod. 2017;80(10):2835-2838.

Tylš F, Páleníček T, Horáček J. Psilocybin-summary of knowledge and new perspectives. Eur Neuropsychopharmacol. 2014;24(3):342-356.

Madsen MK, Fisher PM, Burmester D, et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology. 2019;44(7):1328-1334.

Frood A. Benefits of 'magic mushroom' therapy long lasting. Nature. 2008. https://doi.org/10.1038/news.2008.934

Prochazkova L, Lippelt DP, Colzato LS, Kuchar M, Sjoerds Z, Hommel B. Exploring the effect of microdosing psychedelics on creativity in an open-label natural setting. Psychopharmacology (Berl). 2018;235(12):3401-3413.

Pellegrini M, Rotolo MC, Marchei E, Pacifici R, Saggio F, Pichini S. Magic truffles or philosopher's stones: a legal way to sell psilocybin? Drug Test Anal. 2013;5(3):182-185.

Anastos N, Barnett N, Pfeffer F, Lewis S. Investigation into the temporal stability of aqueous standard solutions of psilocin and psilocybin using high performance liquid chromatography. Forensic Sci Soc, J. 2006;46(2):91-96.

Horita A, Weber L. The enzymic dephosphorylation and oxidation of psilocybin and pscilocin by mammalian tissue homogenates. Biochem Pharmacol. 1961;7(1):47-54.

Weber LJ, Horita A. Oxidation of 4-and 5-hydroxyindole derivatives by mammalian cytochrome oxidase. Life Sci. 1963;2(1):44-49.

Wurst M, Semerdžieva M, Vokoun J. Analysis of psychotropic compounds in fungi of the genus Psilocybe by reversed-phase high-performance liquid chromatography. J Chromatogr a. 1984;286:229-235.

Beug MW, Bigwood J. Quantitative analysis of psilocybin and psilocin and Psilocybe baecystis (Singer and Smith) by high-performance liquid chromatography and by thin-layer chromatography. J Chromatogr a. 1981;207(3):379-385.

Laussmann T, Meier-Giebing S. Forensic analysis of hallucinogenic mushrooms and khat (Catha edulisForsk) using cation-exchange liquid chromatography. Forensic Sci Int. 2010;195(1-3):160-164.

Wieczorek PP, Witkowska D, Jasicka-Misiak I, Poliwoda A, Oterman M, Zielińska K. Bioactive alkaloids of hallucinogenic mushrooms. Studies in Nat Pros Chem. 2015;46:133-168.

Kikura-Hanajiri R, Hayashi M, Saisho K, Goda Y. Simultaneous determination of nineteen hallucinogenic tryptamines/β-calbolines and phenethylamines using gas chromatography-mass spectrometry and liquid chromatography-electrospray ionisation-mass spectrometry. J Chromatogr B. 2005;825(1):29-37.

Gartz J. Biotransformation of tryptamine derivatives in mycelial cultures of Psilocybe. J Basic Microbiol. 1989;29(6):347-352.

Bigwood J, Beug MW. Variation of psilocybin and psilocin levels with repeated flushes (harvests) of mature sporocarps of Psilocybe cubensis (Earle) Singer. J Ethnopharmacol. 1982;5(3):287-291.

Tsujikawa K, Kanamori T, Iwata Y, et al. Morphological and chemical analysis of magic mushrooms in Japan. Forensic Sci Int. 2003;138(1-3):85-90.

Scientific Working Group for Forensic Toxicology. Scientific Working Group for Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. J Anal Toxicol. 2013;37(7):452-474.

Kruve A, Rebane R, Kipper K, et al. Tutorial review on validation of liquid chromatography-mass spectrometry methods: part I. Anal Chim Acta. 2015;870:29-44.

European Medicines Agency. Guideline on bioanalytical method validation, 2011. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf (accesed on 17th July 2020).

Vanhaelen-Fastré R, Vanhaelen M. Qualitative and quantitative determinations of hallucinogenic components of Psilocybe mushrooms by reversed-phase high-performance liquid chromatography. J Chromatogr a. 1984;312:467-472.

Christiansen A, Rasmussen K. Analysis of indole alkaloids in Norwegian Psilocybe semilanceata using high-performance liquid chromatography and mass spectrometry. J Chromatogr a. 1982;244(2):357-364.

Gartz J, Moller G. Analysis and cultivation of fruit bodies and mycelia of Psilocybe bohemica. Biochem Physiol Pflanz. 1989;184(3-4):337-341.

Gartz J. Extraction and analysis of indole derivatives from fungal biomass. J Basic Microbiol. 1994;34(1):17-22.

Saito K, Toyo'oka T, Kato M, Fukushima T, Shirota O, Goda Y. Determination of psilocybin in hallucinogenic mushrooms by reversed-phase liquid chromatography with fluorescence detection. Talanta. 2005;66(3):562-568.

Hofmann A, Heim R, Brack A, Kobel H. Psilocybin, a psychotropic substance from the Mexican mushroom Psilicybe mexicana Heim. Experientia. 1958;14(3):107-109.

Hofmann A, Heim R, Brack A, et al. Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helv Chim Acta. 1959;42(5):1557-1572.

Markey SP. Pathways of drug metabolism. Princ Clin Pharmacol. 2007;143-162.

Neal J, Benedict R, Brady L. Interrelationship of phosphate nutrition, nitrogen metabolism, and accumulation of key secondary metabolites in saprophytic cultures of Psilocybe cubensis, Psilocybe cyanescens, and Panaeolus campanulatus. J Pharm Sci. 1968;57(10):1661-1667.

Wurst M, Kysilka R, Flieger M. Psychoactive tryptamines from basidiomycetes. Folia Microbiol. 2002;47(1):3-27.

Gartz J. Einfluss von phosphat auf Fruktifikation und Sekundarmetabolismen der Myzelien von Psilocybe cubensis, Psilocybe semilanceata, and Gymnopilus purpuratus. Z Mykol. 1991;57:149-154.

Borovička J, Konvalinková T, Žigová A, et al. Disentangling the factors of contrasting silver and copper accumulation in sporocarps of the ectomycorrhizal fungus Amanita strobiliformis from two sites. Sci Total Environ. 2019;694:133679.

Repke DB, Leslie DT, Guzman G. Baeocystin in psilocybe, conocybe and panaeolus. Lloydia. 1977;40(6):566-578.

Fricke J, Blei F, Hoffmeister D. Enzymatic synthesis of psilocybin. Angew Chem Int Ed. 2017;56(40):12352-12355.

Shulgin A. Profiles of psychedelic drugs, Psilocybin. J Psychedelic Drugs. 1980;12(1):79-79.

Gartz J, Allen JW, Merlin MD. Ethnomycology, biochemistry, and cultivation of Psilocybe samuiensis Guzman, Bandala and Allen, a new psychoactive fungus from Koh Samui, Thailand. J Ethnopharmacol. 1994;43(2):73-80.

Gartz J. Variation der Indolalkaloide von Psilocybe cubensis durch unterschiedliche Kultivierungsbedingungem. Beiträge Kenntnis Pilze Mitteleuropas. 1987;3:275-281.

Lindenblatt H, Krämer E, Holzmann-Erens P, Gouzoulis-Mayfrank E, Kovar K-A. Quantitation of psilocin in human plasma by high-performance liquid chromatography and electrochemical detection: comparison of liquid-liquid extraction with automated on-line solid-phase extraction. J Chromatogr B Biomed Sci Appl. 1998;709(2):255-263.

Dinis-Oliveira RJ. Metabolism of psilocybin and psilocin: clinical and forensic toxicological relevance. Drug Metab Rev. 2017;49(1):84-91.

Lenz C, Wick J, Braga D, et al. Injury-triggered blueing reactions of Psilocybe “magic” mushrooms. Angew Chem. 2020;132(4):1466-1470.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...