Extensive Collection of Psychotropic Mushrooms with Determination of Their Tryptamine Alkaloids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-04-00307
Ministry of Health
RVO67985831
Czech Academy of Sciences
RVO67985831
Czech Academy of Sciences
PubMed
36430546
PubMed Central
PMC9693126
DOI
10.3390/ijms232214068
PII: ijms232214068
Knihovny.cz E-zdroje
- Klíčová slova
- Psilocybe, baeocystin, hallucinogenic fungi, psilocin, psilocybin,
- MeSH
- Agaricales * genetika chemie MeSH
- alkaloidy * analýza MeSH
- tryptaminy MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkaloidy * MeSH
- baeocystin MeSH Prohlížeč
- N, N, N-trimethyl-4-phosphoryloxytryptamine MeSH Prohlížeč
- tryptamine MeSH Prohlížeč
- tryptaminy MeSH
Since not only psilocybin (PSB) but also PSB-containing mushrooms are used for psychedelic therapy and microdosing, it is necessary to know their concentration variability in wild-grown mushrooms. This article aimed to determine the PSB, psilocin (PS), baeocystin (BA), norbaeocystin (NB), and aeruginascin (AE) concentrations in a large sample set of mushrooms belonging to genera previously reported to contain psychotropic tryptamines. Ultra-high performance liquid chromatography coupled with tandem mass spectrometry was used to quantify tryptamine alkaloids in the mushroom samples. Most mushroom collections were documented by fungarium specimens and/or ITS rDNA/LSU/EF1-α sequencing. Concentrations of five tryptamine alkaloids were determined in a large sample set of 226 fruiting bodies of 82 individual collections from seven mushroom genera. For many mushroom species, concentrations of BA, NB, and AE are reported for the first time. The highest PSB/PS concentrations were found in Psilocybe species, but no tryptamines were detected in the P. fuscofulva and P. fimetaria collections. The tryptamine concentrations in mushrooms are extremely variable, representing a problem for mushroom consumers due to the apparent risk of overdose. The varied cocktail of tryptamines in wild mushrooms could influence the medicinal effect compared to therapy with chemically pure PSB, posing a serious problem for data interpretation.
Zobrazit více v PubMed
Hyde K.D., Xu J., Rapior S., Jeewon R., Lumyong S., Niego A.G.T., Abeywickrama P.D., Aluthmuhandiram J.V.S., Brahamanage R.S., Brooks S., et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019;97:1–136. doi: 10.1007/s13225-019-00430-9. DOI
Jensen N., Gartz J., Laatsch H. Aeruginascin, a trimethylammonium analogue of psilocybin from the hallucinogenic mushroom Inocybe aeruginascens. Planta Med. 2006;72:665–666. doi: 10.1055/s-2006-931576. PubMed DOI
Wurst M., Kysilka R., Flieger M. Psychoactive tryptamines from basidiomycetes. Folia Microbiol. 2002;47:3–27. doi: 10.1007/BF02818560. PubMed DOI
Lenz C., Sherwood A., Kargbo R., Hoffmeister D. Taking different roads: L-tryptophan as the origin of Psilocybe natural products. ChemPlusChem. 2021;86:28–35. doi: 10.1002/cplu.202000581. PubMed DOI
Gartz J. Magic Mushrooms around the World. LIS Publs.; Los Angeles, CA, USA: 1996.
Lenz C., Wick J., Hoffmeister D. Identification of ω-N-Methyl-4-hydroxytryptamine (norpsilocin) as a Psilocybe natural product. J. Nat. Prod. 2017;80:2835–2838. doi: 10.1021/acs.jnatprod.7b00407. PubMed DOI
Blei F., Dörner S., Fricke J., Baldeweg F., Trottmann F., Komor A., Meyer F., Hertweck C., Hoffmeister D. Simultaneous production of psilocybin and a cocktail of β-carboline monoamine oxidase inhibitors in “magic” mushrooms. Chem. Eur. J. 2020;26:729–734. doi: 10.1002/chem.201904363. PubMed DOI PMC
Schultes R.E., Hofmann A. Plants of the Gods: Their Sacred, Healing, and Hallucinogenic Powers. McGraw-Hill; New York, NY, USA: 1992.
Froese T., Guzmán G., Guzmán-Dávalos L. On the origin of the genus Psilocybe and its potential ritual use in ancient Africa and Europe. Econ. Bot. 2016;70:103–114. doi: 10.1007/s12231-016-9342-2. DOI
Stijve T. Psilocin, psilocybin, serotonin and urea in Panaeolus cyanescens from various origin. Persoonia. 1992;15:117–121.
Saupe S.G. Occurrence of psilocybin/psilocin in Pluteus salicinus (Pluteaceae) Mycologia. 1981;73:781–784. doi: 10.1080/00275514.1981.12021406. DOI
Kreisel H., Lindequist U. Gymnopilus purpuratus, ein psilocybinhaltiger Pilz adventiv in Berzirk Rostock. Z. Mykol. 1988;54:73–76.
Halama M., Poliwoda A., Jasicka-Misiak I., Wieczorek P.P., Rutkowski R. Pholiotina cyanopus, a rare fungus producing psychoactive tryptamines. Open Life Sci. 2015;10:40–51. doi: 10.1515/biol-2015-0005. DOI
Besl H. Galerina steglichii spec. nov., a hallucinogenic Galerina. Z. Mykol. 1993;59:215–218.
Kosentka P., Sprague S.L., Ryberg M., Gartz J., May A.L., Campagna S.R., Matheny P.B. Evolution of the toxins muscarine and psilocybin in a family of mushroom-forming fungi. PLoS ONE. 2013;8:e64646. doi: 10.1371/journal.pone.0064646. PubMed DOI PMC
Boyce G.R., Gluck-Thaler E., Slot J.C., Stajich J.E., Davis W.J., James T.Y., Cooley J.R., Panaccione D.G., Eilenberg J., Henrik H. Psychoactive plant-and mushroom-associated alkaloids from two behavior modifying cicada pathogens. Fungal Ecol. 2019;41:147–164. doi: 10.1016/j.funeco.2019.06.002. PubMed DOI PMC
Letcher A. Shroom: A Cultural History of the Magic Mushroom. Ecco Harper Collins; New York, NY, USA: 2007.
Passie T., Seifert J., Schneider U., Emrich H.M. The pharmacology of psilocybin. Addict. Biol. 2002;7:357–364. doi: 10.1080/1355621021000005937. PubMed DOI
Wark C., Galliher J.F. Timothy Leary, Richard Alpert (Ram Dass) and the changing definition of psilocybin. Int. J. Drug Policy. 2010;21:234–239. doi: 10.1016/j.drugpo.2009.08.004. PubMed DOI
Winkler P., Csémy L. Self-experimentations with psychedelics among mental health professionals: LSD in the former Czechoslovakia. J. Psychoact. Drugs. 2014;46:11–19. doi: 10.1080/02791072.2013.873158. PubMed DOI
Nutt D.J., King L.A., Phillips L.D. Drug harms in the UK: A multicriteria decision analysis. Lancet. 2010;376:1558–1565. doi: 10.1016/S0140-6736(10)61462-6. PubMed DOI
Madsen M.K., Fisher P.M., Burmester D., Dyssegaard A., Stenbæk D.S., Kristiansen S., Johansen S.S., Lehel S., Linnet K. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology. 2019;44:1328–1334. doi: 10.1038/s41386-019-0324-9. PubMed DOI PMC
Nichols D.E. Psychedelics. Pharmacol. Rev. 2016;68:264–355. doi: 10.1124/pr.115.011478. PubMed DOI PMC
Bogenschutz M.P., Ross S. Therapeutic applications of classic hallucinogens. In: Halberstadt A.L., Vollenweider F.X., Nichols D.E., editors. Behavioral Neurobiology of Psychedelic Drugs. Springer; Berlin/Heidelberg, Germany: 2016. pp. 361–391.
Dos Santos R.G., Hallak J.E.C. Therapeutic use of serotoninergic hallucinogens: A review of the evidence and of the biological and psychological mechanisms. Neurosci. Biobehav. Rev. 2020;108:423–434. doi: 10.1016/j.neubiorev.2019.12.001. PubMed DOI
Froese T., Leenen I., Páleníček T. A role for enhanced functions of sleep in psychedelic therapy? Adapt. Behav. 2018;26:129–135. doi: 10.1177/1059712318762735. DOI
Tylš F., Páleníček T., Horáček J. Psilocybin–summary of knowledge and new perspectives. Eur. Neuropsychopharmacol. 2014;24:342–356. doi: 10.1016/j.euroneuro.2013.12.006. PubMed DOI
Daws R.E., Timmermann C., Giribaldi B., Sexton J.D., Wall M.B., Erritzoe D., Roseman L., Nutt D., Carhart-Harris R. Increased global integration in the brain after psilocybin therapy for depression. Nat. Med. 2022;28:844–851. doi: 10.1038/s41591-022-01744-z. PubMed DOI
Stamets P. Psilocybin Mushrooms of the World. Ten Speed Press; Berkeley, CA, USA: 1996.
Lenz C., Wick J., Braga D., García-Altares M., Lackner G., Hertweck C., Gressler M., Hoffmeister D. Injury-triggered blueing reactions of Psilocybe “magic” mushrooms. Angew. Chem. Int. Ed. 2020;132:1466–1470. doi: 10.1002/ange.201910175. PubMed DOI PMC
Borovička J. The wood-rotting bluing Psilocybe species in Central Europe—an identification key. Czech Mycol. 2008;60:173–192. doi: 10.33585/cmy.60202. DOI
Menolli N., Justo A., Arrillaga P., Pradeep C., Minnis A.M., Capelari M. Taxonomy and phylogeny of Pluteus glaucotinctus sensu lato (Agaricales, Basidiomycota), a multicontinental species complex. Phytotaxa. 2014;188:78–90. doi: 10.11646/phytotaxa.188.2.2. DOI
Benedict R., Tyler V., Watling R. Blueing in Conocybe, Psilocybe and a Stropharia species and detection if psilocybin. Lloydia. 1967;30:150.
Hatfield G., Valdes L. The occurrence of psilocybin in Gymnopilus species. Lloydia. 1978;41:140–144. PubMed
Moser M., Horak E. Psilocybe serbica spec. nov: Eine neue Psilocybin und Psilocin bildende Art aus Serbien. Z. Pilzkd. 1968;34:137–144.
Ott J., Guzmán G. Detection of psilocybin in species of Psilocybe, Panaeolus and Psathyrella. Lloydia. 1976;39:258–260. PubMed
Semerdžieva M. Halluzinogene Pilze in der Tschechoslowakei. Česká Mykol. 1973;27:42–47.
Weeks R.A., Singer R., Hearn W.L. A new psilocybian species of Copelandia. J. Nat. Prod. 1979;42:469–474. doi: 10.1021/np50005a005. DOI
Michaelis H. Psilocybe semilanceata (Fr.) Quél. (Spitzkegliger Kahlkopf): Nachweis von Psilocybin in deutschen Funden. Z. Pilzkd. 1977;43:305–310.
Allen J.W., Gartz J., Molter D. The occurrence, cultivation, and chemistry of Psilocybe ovoideocystidiata, a new bluing species (Agaricales) from Ohio, Pennsylvania and West Virginia. Ethnomycol. J. Sacred Mushroom Stud. 2009;8:70–81.
Gartz J., Allen J.W., Merlin M.D. Ethnomycology, biochemistry, and cultivation of Psilocybe samuiensis Guzmán, Bandala and Allen, a new psychoactive fungus from Koh Samui, Thailand. J. Ethnopharmacol. 1994;43:73–80. doi: 10.1016/0378-8741(94)90006-X. PubMed DOI
Christiansen A., Rasmussen K. Analysis of indole alkaloids in Norwegian Psilocybe semilanceata using high-performance liquid chromatography and mass spectrometry. J. Chromatogr. A. 1982;244:357–364. doi: 10.1016/S0021-9673(00)85700-3. DOI
Ohenoja E., Jokiranta J., Mäkinen T., Kaikkonen A., Airaksinen M. The occurrence of psilocybin and psilocin in Finnish Fungi. J. Nat. Prod. 1987;50:741–744. doi: 10.1021/np50052a030. PubMed DOI
Semerdžieva M., Wurst M. Psychotrope Inhaltsstoffe zweier Psilocybe Arten-Kahlkopfe aus der CSSR. Mykol. Mitteilungsblatt. 1986;29:65–70.
Stříbrný J., Borovička J., Sokol M. Psilocibin content of several macrofungal species. Soud. Lék. 2003;48:45–49. (In Czech) PubMed
Vanhaelen-Fastré R., Vanhaelen M. Qualitative and quantitative determinations of hallucinogenic components of Psilocybe mushrooms by reversed-phase high-performance liquid chromatography. J. Chromatogr. A. 1984;312:467–472. doi: 10.1016/S0021-9673(01)92800-6. PubMed DOI
Wurst M., Kysilka R., Koza T. Analysis and isolation of indole alkaloids of fungi by high-performance liquid chromatography. J. Chromatogr. A. 1992;593:201–208. doi: 10.1016/0021-9673(92)80287-5. DOI
Wurst M., Semerdžieva M., Vokoun J. Analysis of psychotropic compounds in fungi of the genus Psilocybe by reversed-phase high-performance liquid chromatography. J. Chromatogr. A. 1984;286:229–235. doi: 10.1016/S0021-9673(01)99190-3. DOI
Gartz J. Detection of tryptamine derivatives in fungi of the genera Gerronema, Hygrocybe, Psathyrella and Inocybe. Biochem. Physiol. Pflanzen. 1986;181:275–278. doi: 10.1016/S0015-3796(86)80094-4. DOI
Gartz J. Analysis of aeruginascin in fruit bodies of the mushroom Inocybe aeruginascens. Int. J. Crude Drug Res. 1989;27:141–144. doi: 10.3109/13880208909053954. DOI
Repke D.B., Leslie D.T., Guzmán G. Baeocystin in Psilocybe, Conocybe and Panaeolus. Lloydia. 1977;40:566–578. PubMed
Stijve T., Kuyper T.W. Occurrence of psilocybin in various higher fungi from several European countries. Planta Med. 1985;51:385–387. doi: 10.1055/s-2007-969526. PubMed DOI
Gartz J. New aspects of the occurrence, chemistry and cultivation of European hallucinogenic mushrooms. Ann. Musei Civ. Rovereto. 1992;8:107–124.
Thomas B. Boletus manicus Heim. J. Psychoact. Drugs. 2003;35:393–394. doi: 10.1080/02791072.2003.10400024. PubMed DOI
Gotvaldová K., Hájková K., Borovička J., Jurok R., Cihlářová P., Kuchař M. Stability of psilocybin and its four analogs in the biomass of the psychotropic mushroom Psilocybe cubensis. Drug Test. Anal. 2021;13:439–446. doi: 10.1002/dta.2950. PubMed DOI
Stijve T., Klán J., Kuyper T.W. Occurrence of psilocybin and baeocystin in the genus Inocybe (Fr.) Fr. Persoonia. 1985;12:469–473.
Læssøe T., Petersen J.H. Fungi of Temperate Europe. Princeton University Press; Princeton, NJ, USA: 2019. p. 813.
Besl H., Mack P., Schmid-Heckel H. Giftpilze in den Gattungen Galerina und Leipiota. Z. Mykol. 1984;50:183–192.
Stijve T., Kuyper T.W. Absence of psilocybin in species of fungi previously reported to contain psilocybin and related tryptamine derivatives. Persoonia. 1988;13:463–465.
Gerhardt E. Taxonomische Revision der Gattungen Panaeolus and Panaeolina (Fungi, Agaricales, Coprinaceae) Bibliotheca Botanica; Berlin/Heidelberg, Germany: 1996.
Stamets P., Gartz J. A new caerulescent Psilocybe from the Pacific Coast of Northwestern America. Integration. 1995;6:21–28.
Stijve T., De Meijer A. Macromycetes from the State of Paraná, Brazil. The psychoactive species. Arq. Biol. Tecnol. 1993;36:313–329.
Allen J.W., Merlin M.D. Observations regarding the suspected psychoactive properties of Panaeolina foenisecii Maire. In: Rätsch C., editor. Yearbook for Ethnomedicine and the Study of Consciousness. Springer; Berlin/Heidelberg, Germany: 1992. pp. 99–115.
Perkal M., Blackman G.L., Ottrey A., Turner L. Determination of hallucinogenic components of Psilocybe mushrooms using high-performance liquid chromatography. J. Chromatogr. A. 1980;196:180–184. doi: 10.1016/S0021-9673(00)80375-1. DOI
Anastos N., Barnett N.W., Lewis S.W., Gathergood N., Scammells P.J., Sims D.N. Determination of psilocin and psilocybin using flow injection analysis with acidic potassium permanganate and tris (2, 2′-bipyridyl) ruthenium (II) chemiluminescence detection respectively. Talanta. 2005;67:354–359. doi: 10.1016/j.talanta.2004.11.038. PubMed DOI
Leung A.Y., Smith A., Paul A. Production of psilocybin in Psilocybe baeocystis saprophytic culture. J. Pharm. Sci. 1965;54:1576–1579. doi: 10.1002/jps.2600541104. DOI
Borovička J., Oborník M., Stříbrný J., Noordeloos M., Parra Sánchez L.A., Gryndler M. Phylogenetic and chemical studies in the potential psychotropic species complex of Psilocybe atrobrunnea with taxonomic and nomenclatural notes. Persoonia. 2015;34:1–9. doi: 10.3767/003158515X685283. PubMed DOI PMC
Reynolds H.T., Vijayakumar V., Gluck-Thaler E., Korotkin H.B., Matheny P.B., Slot J.C. Horizontal gene cluster transfer increased hallucinogenic mushroom diversity. Evol. Lett. 2018;2:88–101. doi: 10.1002/evl3.42. PubMed DOI PMC
Redhead S.A., Moncalvo J.-M., Vilgalys R., Matheny P.B., Guzmán-Dávalos L., Guzmán G. (1757) Proposal to conserve the name Psilocybe (Basidiomycota) with a conserved type. Taxon. 2007;56:255–257.
Guzmán G. In: The Genus Psilocybe. Cramer J., editor. Lubrecht & Cramer Ltd.; Vaduz, Liechtenstein: 1983. Beihefte Nova Hedwigia 74.
Noordeloos M.E. Fungi Europaei, Volume 13: Strophariaceae s.l. Edizioni Candusso; Caronno Pertusella, Italy: 2011.
Cortés-Pérez A., Ramírez-Guillén F., Guzmán G., Guzmán-Dávalos L., Rockefeller A., Ramírez-Cruz V. Type studies in five species of Psilocybe (Agaricales, Basidiomycota) Nova Hedwig. 2021;112:197–221. doi: 10.1127/nova_hedwigia/2020/0609. DOI
Hofmann A., Heim R., Brack A., Kobel H. Psilocybin, ein psychotroper Wirkstoff aus dem mexikanischen Rauschpilz Psilocybe mexicana Heim. Experientia. 1958;14:107–109. doi: 10.1007/BF02159243. PubMed DOI
Hofmann A., Heim R., Brack A., Kobel H., Frey A., Ott H., Petrzilka T., Troxler F. Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helv. Chim. Acta. 1959;42:1557–1572. doi: 10.1002/hlca.19590420518. DOI
Borovička J., Noordeloos M.E., Gryndler M., Oborník M. Molecular phylogeny of Psilocybe cyanescens complex in Europe, with reference to the position of the secotioid Weraroa novae-zelandiae. Mycol. Prog. 2011;10:149–155. doi: 10.1007/s11557-010-0684-3. DOI
Fricke J., Blei F., Hoffmeister D. Enzymatic synthesis of psilocybin. Angew. Chem. Int. Ed. 2017;56:12352–12355. doi: 10.1002/anie.201705489. PubMed DOI
Tsujikawa K., Kanamori T., Iwata Y., Ohmae Y., Sugita R., Inoue H., Kishi T. Morphological and chemical analysis of magic mushrooms in Japan. Forensic Sci. Int. 2003;138:85–90. doi: 10.1016/j.forsciint.2003.08.009. PubMed DOI
Saito K., Toyo’oka T., Kato M., Fukushima T., Shirota O., Goda Y. Determination of psilocybin in hallucinogenic mushrooms by reversed-phase liquid chromatography with fluorescence detection. Talanta. 2005;66:562–568. doi: 10.1016/j.talanta.2004.11.031. PubMed DOI
Keller T., Schneider A., Regenscheit P., Dirnhofer R., Rücker T., Jaspers J., Kisser W. Analysis of psilocybin and psilocin in Psilocybe subcubensis Guzmán by ion mobility spectrometry and gas chromatography–mass spectrometry. Forensic Sci. Int. 1999;99:93–105. doi: 10.1016/S0379-0738(98)00168-6. PubMed DOI
Arkhipchenko I., Shaposhnikov A., Kravchenko L.V. Tryptophan concentration of animal wastes and organic fertilizers. Appl. Soil Ecol. 2006;34:62–64. doi: 10.1016/j.apsoil.2005.12.008. DOI
Guzmán-Dávalos L., Mueller G.M., Cifuentes J., Miller A.N., Santerre A. Traditional infrageneric classification of Gymnopilus is not supported by ribosomal DNA sequence data. Mycologia. 2003;95:1204–1214. doi: 10.1080/15572536.2004.11833028. PubMed DOI
Ramírez-Cruz V., Guzmán G., Villalobos-Arámbula A.R., Rodríguez A., Matheny P.B., Sánchez-García M., Guzmán-Dávalos L. Phylogenetic inference and trait evolution of the psychedelic mushroom genus Psilocybe sensu lato (Agaricales) Botany. 2013;91:573–591. doi: 10.1139/cjb-2013-0070. DOI
Osmundson T.W., Eyre C.A., Hayden K.M., Dhillon J., Garbelotto M.M. Back to basics: An evaluation of NaOH and alternative rapid DNA extraction protocols for DNA barcoding, genotyping, and disease diagnostics from fungal and Oomycete samples. Mol. Ecol. Resour. 2013;13:66–74. doi: 10.1111/1755-0998.12031. PubMed DOI
Borovička J., Rockefeller A., Werner P.G. Psilocybe allenii—A new bluing species from the Pacific Coast, USA. Czech Mycol. 2012;64:181–195. doi: 10.33585/cmy.64207. DOI
Ma T., Ling X.-F., Hyde K.D. Species of Psilocybe (Hymenogastraceae) from Yunnan, southwest China. Phytotaxa. 2016;284:181–193. doi: 10.11646/phytotaxa.284.3.3. DOI
Vu D., Groenewald M., De Vries M., Gehrmann T., Stielow B., Eberhardt U., Al-Hatmi A., Groenewald J., Cardinali G., Houbraken J. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for Fungal species and higher taxon delimitation. Stud. Mycol. 2018;91:23–36. doi: 10.1016/j.simyco.2018.05.001. PubMed DOI PMC
Wang Y.-W., Tzean S.-S. Dung-associated, potentially hallucinogenic mushrooms from Taiwan. Taiwania. 2015;60:160–168.
Zhang X., Yu H., Yang Q., Wang Z., Xia R., Chen C., Qu Y., Tan R., Shi Y. A forensic detection method for hallucinogenic mushrooms via High-Resolution Melting (HRM) analysis. Genes. 2021;12:199. doi: 10.3390/genes12020199. PubMed DOI PMC
Ma T., Feng Y., Lin X.-F., Karunarathna S.C. Psilocybe chuxiongensis, a new bluing species from subtropical China. Phytotaxa. 2014;156:211–220. doi: 10.11646/phytotaxa.156.4.3. DOI
Katoh K., Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinform. 2008;9:1–13. doi: 10.1186/1471-2105-9-212. PubMed DOI PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Kimura M. A simple method for estimating evolutionary rate of base substitutions throughcomparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111–120. doi: 10.1007/BF01731581. PubMed DOI
Borovička J., Braeuer S., Walenta M., Hršelová H., Leonhardt T., Sácký J., Kaňa A., Goessler W. A new mushroom hyperaccumulator: Cadmium and arsenic in the ectomycorrhizal basidiomycete Thelephora penicillata. Sci. Total Environ. 2022;826:154227. doi: 10.1016/j.scitotenv.2022.154227. PubMed DOI
Leonhardt T., Borovička J., Sácký J., Šantrůček J., Kameník J., Kotrba P. Zn overaccumulating Russula species clade together and use the same mechanism for the detoxification of excess Zn. Chemosphere. 2019;225:618–626. doi: 10.1016/j.chemosphere.2019.03.062. PubMed DOI