Extensive Collection of Psychotropic Mushrooms with Determination of Their Tryptamine Alkaloids

. 2022 Nov 15 ; 23 (22) : . [epub] 20221115

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36430546

Grantová podpora
NU21-04-00307 Ministry of Health
RVO67985831 Czech Academy of Sciences
RVO67985831 Czech Academy of Sciences

Since not only psilocybin (PSB) but also PSB-containing mushrooms are used for psychedelic therapy and microdosing, it is necessary to know their concentration variability in wild-grown mushrooms. This article aimed to determine the PSB, psilocin (PS), baeocystin (BA), norbaeocystin (NB), and aeruginascin (AE) concentrations in a large sample set of mushrooms belonging to genera previously reported to contain psychotropic tryptamines. Ultra-high performance liquid chromatography coupled with tandem mass spectrometry was used to quantify tryptamine alkaloids in the mushroom samples. Most mushroom collections were documented by fungarium specimens and/or ITS rDNA/LSU/EF1-α sequencing. Concentrations of five tryptamine alkaloids were determined in a large sample set of 226 fruiting bodies of 82 individual collections from seven mushroom genera. For many mushroom species, concentrations of BA, NB, and AE are reported for the first time. The highest PSB/PS concentrations were found in Psilocybe species, but no tryptamines were detected in the P. fuscofulva and P. fimetaria collections. The tryptamine concentrations in mushrooms are extremely variable, representing a problem for mushroom consumers due to the apparent risk of overdose. The varied cocktail of tryptamines in wild mushrooms could influence the medicinal effect compared to therapy with chemically pure PSB, posing a serious problem for data interpretation.

Zobrazit více v PubMed

Hyde K.D., Xu J., Rapior S., Jeewon R., Lumyong S., Niego A.G.T., Abeywickrama P.D., Aluthmuhandiram J.V.S., Brahamanage R.S., Brooks S., et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019;97:1–136. doi: 10.1007/s13225-019-00430-9. DOI

Jensen N., Gartz J., Laatsch H. Aeruginascin, a trimethylammonium analogue of psilocybin from the hallucinogenic mushroom Inocybe aeruginascens. Planta Med. 2006;72:665–666. doi: 10.1055/s-2006-931576. PubMed DOI

Wurst M., Kysilka R., Flieger M. Psychoactive tryptamines from basidiomycetes. Folia Microbiol. 2002;47:3–27. doi: 10.1007/BF02818560. PubMed DOI

Lenz C., Sherwood A., Kargbo R., Hoffmeister D. Taking different roads: L-tryptophan as the origin of Psilocybe natural products. ChemPlusChem. 2021;86:28–35. doi: 10.1002/cplu.202000581. PubMed DOI

Gartz J. Magic Mushrooms around the World. LIS Publs.; Los Angeles, CA, USA: 1996.

Lenz C., Wick J., Hoffmeister D. Identification of ω-N-Methyl-4-hydroxytryptamine (norpsilocin) as a Psilocybe natural product. J. Nat. Prod. 2017;80:2835–2838. doi: 10.1021/acs.jnatprod.7b00407. PubMed DOI

Blei F., Dörner S., Fricke J., Baldeweg F., Trottmann F., Komor A., Meyer F., Hertweck C., Hoffmeister D. Simultaneous production of psilocybin and a cocktail of β-carboline monoamine oxidase inhibitors in “magic” mushrooms. Chem. Eur. J. 2020;26:729–734. doi: 10.1002/chem.201904363. PubMed DOI PMC

Schultes R.E., Hofmann A. Plants of the Gods: Their Sacred, Healing, and Hallucinogenic Powers. McGraw-Hill; New York, NY, USA: 1992.

Froese T., Guzmán G., Guzmán-Dávalos L. On the origin of the genus Psilocybe and its potential ritual use in ancient Africa and Europe. Econ. Bot. 2016;70:103–114. doi: 10.1007/s12231-016-9342-2. DOI

Stijve T. Psilocin, psilocybin, serotonin and urea in Panaeolus cyanescens from various origin. Persoonia. 1992;15:117–121.

Saupe S.G. Occurrence of psilocybin/psilocin in Pluteus salicinus (Pluteaceae) Mycologia. 1981;73:781–784. doi: 10.1080/00275514.1981.12021406. DOI

Kreisel H., Lindequist U. Gymnopilus purpuratus, ein psilocybinhaltiger Pilz adventiv in Berzirk Rostock. Z. Mykol. 1988;54:73–76.

Halama M., Poliwoda A., Jasicka-Misiak I., Wieczorek P.P., Rutkowski R. Pholiotina cyanopus, a rare fungus producing psychoactive tryptamines. Open Life Sci. 2015;10:40–51. doi: 10.1515/biol-2015-0005. DOI

Besl H. Galerina steglichii spec. nov., a hallucinogenic Galerina. Z. Mykol. 1993;59:215–218.

Kosentka P., Sprague S.L., Ryberg M., Gartz J., May A.L., Campagna S.R., Matheny P.B. Evolution of the toxins muscarine and psilocybin in a family of mushroom-forming fungi. PLoS ONE. 2013;8:e64646. doi: 10.1371/journal.pone.0064646. PubMed DOI PMC

Boyce G.R., Gluck-Thaler E., Slot J.C., Stajich J.E., Davis W.J., James T.Y., Cooley J.R., Panaccione D.G., Eilenberg J., Henrik H. Psychoactive plant-and mushroom-associated alkaloids from two behavior modifying cicada pathogens. Fungal Ecol. 2019;41:147–164. doi: 10.1016/j.funeco.2019.06.002. PubMed DOI PMC

Letcher A. Shroom: A Cultural History of the Magic Mushroom. Ecco Harper Collins; New York, NY, USA: 2007.

Passie T., Seifert J., Schneider U., Emrich H.M. The pharmacology of psilocybin. Addict. Biol. 2002;7:357–364. doi: 10.1080/1355621021000005937. PubMed DOI

Wark C., Galliher J.F. Timothy Leary, Richard Alpert (Ram Dass) and the changing definition of psilocybin. Int. J. Drug Policy. 2010;21:234–239. doi: 10.1016/j.drugpo.2009.08.004. PubMed DOI

Winkler P., Csémy L. Self-experimentations with psychedelics among mental health professionals: LSD in the former Czechoslovakia. J. Psychoact. Drugs. 2014;46:11–19. doi: 10.1080/02791072.2013.873158. PubMed DOI

Nutt D.J., King L.A., Phillips L.D. Drug harms in the UK: A multicriteria decision analysis. Lancet. 2010;376:1558–1565. doi: 10.1016/S0140-6736(10)61462-6. PubMed DOI

Madsen M.K., Fisher P.M., Burmester D., Dyssegaard A., Stenbæk D.S., Kristiansen S., Johansen S.S., Lehel S., Linnet K. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology. 2019;44:1328–1334. doi: 10.1038/s41386-019-0324-9. PubMed DOI PMC

Nichols D.E. Psychedelics. Pharmacol. Rev. 2016;68:264–355. doi: 10.1124/pr.115.011478. PubMed DOI PMC

Bogenschutz M.P., Ross S. Therapeutic applications of classic hallucinogens. In: Halberstadt A.L., Vollenweider F.X., Nichols D.E., editors. Behavioral Neurobiology of Psychedelic Drugs. Springer; Berlin/Heidelberg, Germany: 2016. pp. 361–391.

Dos Santos R.G., Hallak J.E.C. Therapeutic use of serotoninergic hallucinogens: A review of the evidence and of the biological and psychological mechanisms. Neurosci. Biobehav. Rev. 2020;108:423–434. doi: 10.1016/j.neubiorev.2019.12.001. PubMed DOI

Froese T., Leenen I., Páleníček T. A role for enhanced functions of sleep in psychedelic therapy? Adapt. Behav. 2018;26:129–135. doi: 10.1177/1059712318762735. DOI

Tylš F., Páleníček T., Horáček J. Psilocybin–summary of knowledge and new perspectives. Eur. Neuropsychopharmacol. 2014;24:342–356. doi: 10.1016/j.euroneuro.2013.12.006. PubMed DOI

Daws R.E., Timmermann C., Giribaldi B., Sexton J.D., Wall M.B., Erritzoe D., Roseman L., Nutt D., Carhart-Harris R. Increased global integration in the brain after psilocybin therapy for depression. Nat. Med. 2022;28:844–851. doi: 10.1038/s41591-022-01744-z. PubMed DOI

Stamets P. Psilocybin Mushrooms of the World. Ten Speed Press; Berkeley, CA, USA: 1996.

Lenz C., Wick J., Braga D., García-Altares M., Lackner G., Hertweck C., Gressler M., Hoffmeister D. Injury-triggered blueing reactions of Psilocybe “magic” mushrooms. Angew. Chem. Int. Ed. 2020;132:1466–1470. doi: 10.1002/ange.201910175. PubMed DOI PMC

Borovička J. The wood-rotting bluing Psilocybe species in Central Europe—an identification key. Czech Mycol. 2008;60:173–192. doi: 10.33585/cmy.60202. DOI

Menolli N., Justo A., Arrillaga P., Pradeep C., Minnis A.M., Capelari M. Taxonomy and phylogeny of Pluteus glaucotinctus sensu lato (Agaricales, Basidiomycota), a multicontinental species complex. Phytotaxa. 2014;188:78–90. doi: 10.11646/phytotaxa.188.2.2. DOI

Benedict R., Tyler V., Watling R. Blueing in Conocybe, Psilocybe and a Stropharia species and detection if psilocybin. Lloydia. 1967;30:150.

Hatfield G., Valdes L. The occurrence of psilocybin in Gymnopilus species. Lloydia. 1978;41:140–144. PubMed

Moser M., Horak E. Psilocybe serbica spec. nov: Eine neue Psilocybin und Psilocin bildende Art aus Serbien. Z. Pilzkd. 1968;34:137–144.

Ott J., Guzmán G. Detection of psilocybin in species of Psilocybe, Panaeolus and Psathyrella. Lloydia. 1976;39:258–260. PubMed

Semerdžieva M. Halluzinogene Pilze in der Tschechoslowakei. Česká Mykol. 1973;27:42–47.

Weeks R.A., Singer R., Hearn W.L. A new psilocybian species of Copelandia. J. Nat. Prod. 1979;42:469–474. doi: 10.1021/np50005a005. DOI

Michaelis H. Psilocybe semilanceata (Fr.) Quél. (Spitzkegliger Kahlkopf): Nachweis von Psilocybin in deutschen Funden. Z. Pilzkd. 1977;43:305–310.

Allen J.W., Gartz J., Molter D. The occurrence, cultivation, and chemistry of Psilocybe ovoideocystidiata, a new bluing species (Agaricales) from Ohio, Pennsylvania and West Virginia. Ethnomycol. J. Sacred Mushroom Stud. 2009;8:70–81.

Gartz J., Allen J.W., Merlin M.D. Ethnomycology, biochemistry, and cultivation of Psilocybe samuiensis Guzmán, Bandala and Allen, a new psychoactive fungus from Koh Samui, Thailand. J. Ethnopharmacol. 1994;43:73–80. doi: 10.1016/0378-8741(94)90006-X. PubMed DOI

Christiansen A., Rasmussen K. Analysis of indole alkaloids in Norwegian Psilocybe semilanceata using high-performance liquid chromatography and mass spectrometry. J. Chromatogr. A. 1982;244:357–364. doi: 10.1016/S0021-9673(00)85700-3. DOI

Ohenoja E., Jokiranta J., Mäkinen T., Kaikkonen A., Airaksinen M. The occurrence of psilocybin and psilocin in Finnish Fungi. J. Nat. Prod. 1987;50:741–744. doi: 10.1021/np50052a030. PubMed DOI

Semerdžieva M., Wurst M. Psychotrope Inhaltsstoffe zweier Psilocybe Arten-Kahlkopfe aus der CSSR. Mykol. Mitteilungsblatt. 1986;29:65–70.

Stříbrný J., Borovička J., Sokol M. Psilocibin content of several macrofungal species. Soud. Lék. 2003;48:45–49. (In Czech) PubMed

Vanhaelen-Fastré R., Vanhaelen M. Qualitative and quantitative determinations of hallucinogenic components of Psilocybe mushrooms by reversed-phase high-performance liquid chromatography. J. Chromatogr. A. 1984;312:467–472. doi: 10.1016/S0021-9673(01)92800-6. PubMed DOI

Wurst M., Kysilka R., Koza T. Analysis and isolation of indole alkaloids of fungi by high-performance liquid chromatography. J. Chromatogr. A. 1992;593:201–208. doi: 10.1016/0021-9673(92)80287-5. DOI

Wurst M., Semerdžieva M., Vokoun J. Analysis of psychotropic compounds in fungi of the genus Psilocybe by reversed-phase high-performance liquid chromatography. J. Chromatogr. A. 1984;286:229–235. doi: 10.1016/S0021-9673(01)99190-3. DOI

Gartz J. Detection of tryptamine derivatives in fungi of the genera Gerronema, Hygrocybe, Psathyrella and Inocybe. Biochem. Physiol. Pflanzen. 1986;181:275–278. doi: 10.1016/S0015-3796(86)80094-4. DOI

Gartz J. Analysis of aeruginascin in fruit bodies of the mushroom Inocybe aeruginascens. Int. J. Crude Drug Res. 1989;27:141–144. doi: 10.3109/13880208909053954. DOI

Repke D.B., Leslie D.T., Guzmán G. Baeocystin in Psilocybe, Conocybe and Panaeolus. Lloydia. 1977;40:566–578. PubMed

Stijve T., Kuyper T.W. Occurrence of psilocybin in various higher fungi from several European countries. Planta Med. 1985;51:385–387. doi: 10.1055/s-2007-969526. PubMed DOI

Gartz J. New aspects of the occurrence, chemistry and cultivation of European hallucinogenic mushrooms. Ann. Musei Civ. Rovereto. 1992;8:107–124.

Thomas B. Boletus manicus Heim. J. Psychoact. Drugs. 2003;35:393–394. doi: 10.1080/02791072.2003.10400024. PubMed DOI

Gotvaldová K., Hájková K., Borovička J., Jurok R., Cihlářová P., Kuchař M. Stability of psilocybin and its four analogs in the biomass of the psychotropic mushroom Psilocybe cubensis. Drug Test. Anal. 2021;13:439–446. doi: 10.1002/dta.2950. PubMed DOI

Stijve T., Klán J., Kuyper T.W. Occurrence of psilocybin and baeocystin in the genus Inocybe (Fr.) Fr. Persoonia. 1985;12:469–473.

Læssøe T., Petersen J.H. Fungi of Temperate Europe. Princeton University Press; Princeton, NJ, USA: 2019. p. 813.

Besl H., Mack P., Schmid-Heckel H. Giftpilze in den Gattungen Galerina und Leipiota. Z. Mykol. 1984;50:183–192.

Stijve T., Kuyper T.W. Absence of psilocybin in species of fungi previously reported to contain psilocybin and related tryptamine derivatives. Persoonia. 1988;13:463–465.

Gerhardt E. Taxonomische Revision der Gattungen Panaeolus and Panaeolina (Fungi, Agaricales, Coprinaceae) Bibliotheca Botanica; Berlin/Heidelberg, Germany: 1996.

Stamets P., Gartz J. A new caerulescent Psilocybe from the Pacific Coast of Northwestern America. Integration. 1995;6:21–28.

Stijve T., De Meijer A. Macromycetes from the State of Paraná, Brazil. The psychoactive species. Arq. Biol. Tecnol. 1993;36:313–329.

Allen J.W., Merlin M.D. Observations regarding the suspected psychoactive properties of Panaeolina foenisecii Maire. In: Rätsch C., editor. Yearbook for Ethnomedicine and the Study of Consciousness. Springer; Berlin/Heidelberg, Germany: 1992. pp. 99–115.

Perkal M., Blackman G.L., Ottrey A., Turner L. Determination of hallucinogenic components of Psilocybe mushrooms using high-performance liquid chromatography. J. Chromatogr. A. 1980;196:180–184. doi: 10.1016/S0021-9673(00)80375-1. DOI

Anastos N., Barnett N.W., Lewis S.W., Gathergood N., Scammells P.J., Sims D.N. Determination of psilocin and psilocybin using flow injection analysis with acidic potassium permanganate and tris (2, 2′-bipyridyl) ruthenium (II) chemiluminescence detection respectively. Talanta. 2005;67:354–359. doi: 10.1016/j.talanta.2004.11.038. PubMed DOI

Leung A.Y., Smith A., Paul A. Production of psilocybin in Psilocybe baeocystis saprophytic culture. J. Pharm. Sci. 1965;54:1576–1579. doi: 10.1002/jps.2600541104. DOI

Borovička J., Oborník M., Stříbrný J., Noordeloos M., Parra Sánchez L.A., Gryndler M. Phylogenetic and chemical studies in the potential psychotropic species complex of Psilocybe atrobrunnea with taxonomic and nomenclatural notes. Persoonia. 2015;34:1–9. doi: 10.3767/003158515X685283. PubMed DOI PMC

Reynolds H.T., Vijayakumar V., Gluck-Thaler E., Korotkin H.B., Matheny P.B., Slot J.C. Horizontal gene cluster transfer increased hallucinogenic mushroom diversity. Evol. Lett. 2018;2:88–101. doi: 10.1002/evl3.42. PubMed DOI PMC

Redhead S.A., Moncalvo J.-M., Vilgalys R., Matheny P.B., Guzmán-Dávalos L., Guzmán G. (1757) Proposal to conserve the name Psilocybe (Basidiomycota) with a conserved type. Taxon. 2007;56:255–257.

Guzmán G. In: The Genus Psilocybe. Cramer J., editor. Lubrecht & Cramer Ltd.; Vaduz, Liechtenstein: 1983. Beihefte Nova Hedwigia 74.

Noordeloos M.E. Fungi Europaei, Volume 13: Strophariaceae s.l. Edizioni Candusso; Caronno Pertusella, Italy: 2011.

Cortés-Pérez A., Ramírez-Guillén F., Guzmán G., Guzmán-Dávalos L., Rockefeller A., Ramírez-Cruz V. Type studies in five species of Psilocybe (Agaricales, Basidiomycota) Nova Hedwig. 2021;112:197–221. doi: 10.1127/nova_hedwigia/2020/0609. DOI

Hofmann A., Heim R., Brack A., Kobel H. Psilocybin, ein psychotroper Wirkstoff aus dem mexikanischen Rauschpilz Psilocybe mexicana Heim. Experientia. 1958;14:107–109. doi: 10.1007/BF02159243. PubMed DOI

Hofmann A., Heim R., Brack A., Kobel H., Frey A., Ott H., Petrzilka T., Troxler F. Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helv. Chim. Acta. 1959;42:1557–1572. doi: 10.1002/hlca.19590420518. DOI

Borovička J., Noordeloos M.E., Gryndler M., Oborník M. Molecular phylogeny of Psilocybe cyanescens complex in Europe, with reference to the position of the secotioid Weraroa novae-zelandiae. Mycol. Prog. 2011;10:149–155. doi: 10.1007/s11557-010-0684-3. DOI

Fricke J., Blei F., Hoffmeister D. Enzymatic synthesis of psilocybin. Angew. Chem. Int. Ed. 2017;56:12352–12355. doi: 10.1002/anie.201705489. PubMed DOI

Tsujikawa K., Kanamori T., Iwata Y., Ohmae Y., Sugita R., Inoue H., Kishi T. Morphological and chemical analysis of magic mushrooms in Japan. Forensic Sci. Int. 2003;138:85–90. doi: 10.1016/j.forsciint.2003.08.009. PubMed DOI

Saito K., Toyo’oka T., Kato M., Fukushima T., Shirota O., Goda Y. Determination of psilocybin in hallucinogenic mushrooms by reversed-phase liquid chromatography with fluorescence detection. Talanta. 2005;66:562–568. doi: 10.1016/j.talanta.2004.11.031. PubMed DOI

Keller T., Schneider A., Regenscheit P., Dirnhofer R., Rücker T., Jaspers J., Kisser W. Analysis of psilocybin and psilocin in Psilocybe subcubensis Guzmán by ion mobility spectrometry and gas chromatography–mass spectrometry. Forensic Sci. Int. 1999;99:93–105. doi: 10.1016/S0379-0738(98)00168-6. PubMed DOI

Arkhipchenko I., Shaposhnikov A., Kravchenko L.V. Tryptophan concentration of animal wastes and organic fertilizers. Appl. Soil Ecol. 2006;34:62–64. doi: 10.1016/j.apsoil.2005.12.008. DOI

Guzmán-Dávalos L., Mueller G.M., Cifuentes J., Miller A.N., Santerre A. Traditional infrageneric classification of Gymnopilus is not supported by ribosomal DNA sequence data. Mycologia. 2003;95:1204–1214. doi: 10.1080/15572536.2004.11833028. PubMed DOI

Ramírez-Cruz V., Guzmán G., Villalobos-Arámbula A.R., Rodríguez A., Matheny P.B., Sánchez-García M., Guzmán-Dávalos L. Phylogenetic inference and trait evolution of the psychedelic mushroom genus Psilocybe sensu lato (Agaricales) Botany. 2013;91:573–591. doi: 10.1139/cjb-2013-0070. DOI

Osmundson T.W., Eyre C.A., Hayden K.M., Dhillon J., Garbelotto M.M. Back to basics: An evaluation of NaOH and alternative rapid DNA extraction protocols for DNA barcoding, genotyping, and disease diagnostics from fungal and Oomycete samples. Mol. Ecol. Resour. 2013;13:66–74. doi: 10.1111/1755-0998.12031. PubMed DOI

Borovička J., Rockefeller A., Werner P.G. Psilocybe allenii—A new bluing species from the Pacific Coast, USA. Czech Mycol. 2012;64:181–195. doi: 10.33585/cmy.64207. DOI

Ma T., Ling X.-F., Hyde K.D. Species of Psilocybe (Hymenogastraceae) from Yunnan, southwest China. Phytotaxa. 2016;284:181–193. doi: 10.11646/phytotaxa.284.3.3. DOI

Vu D., Groenewald M., De Vries M., Gehrmann T., Stielow B., Eberhardt U., Al-Hatmi A., Groenewald J., Cardinali G., Houbraken J. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for Fungal species and higher taxon delimitation. Stud. Mycol. 2018;91:23–36. doi: 10.1016/j.simyco.2018.05.001. PubMed DOI PMC

Wang Y.-W., Tzean S.-S. Dung-associated, potentially hallucinogenic mushrooms from Taiwan. Taiwania. 2015;60:160–168.

Zhang X., Yu H., Yang Q., Wang Z., Xia R., Chen C., Qu Y., Tan R., Shi Y. A forensic detection method for hallucinogenic mushrooms via High-Resolution Melting (HRM) analysis. Genes. 2021;12:199. doi: 10.3390/genes12020199. PubMed DOI PMC

Ma T., Feng Y., Lin X.-F., Karunarathna S.C. Psilocybe chuxiongensis, a new bluing species from subtropical China. Phytotaxa. 2014;156:211–220. doi: 10.11646/phytotaxa.156.4.3. DOI

Katoh K., Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinform. 2008;9:1–13. doi: 10.1186/1471-2105-9-212. PubMed DOI PMC

Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI

Kimura M. A simple method for estimating evolutionary rate of base substitutions throughcomparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111–120. doi: 10.1007/BF01731581. PubMed DOI

Borovička J., Braeuer S., Walenta M., Hršelová H., Leonhardt T., Sácký J., Kaňa A., Goessler W. A new mushroom hyperaccumulator: Cadmium and arsenic in the ectomycorrhizal basidiomycete Thelephora penicillata. Sci. Total Environ. 2022;826:154227. doi: 10.1016/j.scitotenv.2022.154227. PubMed DOI

Leonhardt T., Borovička J., Sácký J., Šantrůček J., Kameník J., Kotrba P. Zn overaccumulating Russula species clade together and use the same mechanism for the detoxification of excess Zn. Chemosphere. 2019;225:618–626. doi: 10.1016/j.chemosphere.2019.03.062. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...