Antibacterial activity of the novel peptide Pac-525 with the RGD motif against intracellular Escherichia coli

. 2025 Jun 06 ; 15 (1) : 19995. [epub] 20250606

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40481070

Grantová podpora
AF-IGA2023-IP-014 Internal Grand Agency of Mendel University in Brno
LX22NPO5103 European Union-Next Generation EU

Odkazy

PubMed 40481070
PubMed Central PMC12144240
DOI 10.1038/s41598-025-04901-9
PII: 10.1038/s41598-025-04901-9
Knihovny.cz E-zdroje

Infections caused by invasive intracellular bacteria pose major therapeutic challenges due to pathogen survival and growth inside of host cells as well as the low intracellular accessibility for conventional antibiotics. The limited ability of most antibiotics to enter intracellular compartments underscores the urgent need for innovative antimicrobial agents capable of overcoming these barriers. In this study, the antibacterial peptide Pac525 was synthesized with the RGD domain to facilitate efficient penetration into eukaryotic cells. The efficacy and safety of RGD-Pac525 was evaluated in intracellular infection models, using the macrophage cell line RAW 264.7, chicken intestinal organoids, and chicken embryo tissues via the chorioallantoic membrane (CAM). Our findings from cell line experiments demonstrate that the RGD-Pac525 peptide retained the antimicrobial properties of the original peptide without compromising its efficacy. While RGD-Pac525 reduced the intracellular adherent-invasive pathogen Escherichia coli KV203 by 50% in RAW 264.7 macrophage cells, it did not adversely affect the macrophage viability. Additionally, RGD-Pac525 effectively reduced the intracellular bacterial burden in organoids, without compromising their structural integrity. In ovo bioassays, a substantial reduction in the bacterial load was observed in liver and intestinal tissues, indicating the peptide ability to achieve systemic distribution and to overcome tissue barriers. RGD-Pac525 was effective in infection models by suppressing bacterial growth. Preliminary observations suggest it may also affect host responses, indicating a potential for combined antimicrobial and therapeutic effects that warrant further studies. This study provides a compelling proof of concept for utilizing RGD-modified antimicrobial peptides for treatment of intracellular bacterial infections.

Zobrazit více v PubMed

Kaufmann, S. H. E. Intracellular pathogens: living in an extreme environment. Immunol. Rev.240, 5–10 (2011). PubMed

Thakur, A., Mikkelsen, H. & Jungersen, G. Intracellular pathogens: Host immunity and microbial persistence strategies. J. Immunol. Res.2019, 1–24 (2019). PubMed PMC

Anderson, G., Dodson, K., Hooton, T. & Hultgren, S. Intracellular bacterial communities of uropathogenic in urinary tract pathogenesis. Trends Microbiol.12, 424–430 (2004). PubMed

Conover, M. S. et al. Metabolic requirements of Escherichia coli in intracellular bacterial communities during urinary tract infection pathogenesis. mBio7, e00104–e00116 (2016). PubMed PMC

Kaper, J. B., Nataro, J. P. & Mobley, H. L. T. Pathogenic Escherichia coli. Nat. Rev. Microbiol.2, 123–140 (2004). PubMed

Conte, M. P. et al. Adherent-invasive Escherichia coli (AIEC) in pediatric crohn’s disease patients: phenotypic and genetic pathogenic features. BMC Res. Notes. 7, 748 (2014). PubMed PMC

Darfeuille-Michaud, A. et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with crohn’s disease. Gastroenterology115, 1405–1413 (1998). PubMed

Darfeuille-Michaud, A. et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 127, 412–421 (2004). PubMed

Darfeuille-Michaud, A. Adherent-invasive Escherichia coli: a putative new E. coli pathotype associated with crohn’s disease. Int. J. Med. Microbiol.292, 185–193 (2002). PubMed

Buccini, D. F., Cardoso, M. H. & Franco, O. L. Antimicrobial peptides and Cell-Penetrating peptides for treating intracellular bacterial infections. Front. Cell. Infect. Microbiol.10, 612931 (2021). PubMed PMC

Van Bambeke, F., Barcia-Macay, M., Lemaire, S. & Tulkens, P. M. Cellular pharmacodynamics and pharmacokinetics of antibiotics: current views and perspectives. Curr. Opin. Drug Discov. Dev. 9, 218–230 (2006). PubMed

Dalhoff, A., Schubert, S. & Ullmann, U. Effect of pH on the in vitro activity of and propensity for emergence of resistance to fluoroquinolones, macrolides, and a ketolide. Infection33, 36–43 (2005). PubMed

Morales, L. D., Av-Gay, Y. & Murphy, M. E. P. Acidic pH modulates Burkholderia cenocepacia antimicrobial susceptibility in the cystic fibrosis nutritional environment. Microbiol. Spectr.11, e02731–e02723 (2023). PubMed PMC

Nussbaumer-Pröll, A. K. et al. Low pH reduces the activity of ceftolozane/tazobactam in human urine, but confirms current breakpoints for urinary tract infections. J. Antimicrob. Chemother.75, 593–599 (2020). PubMed

Nussbaumer-Pröll, A. K., Eberl, S., Schober, C. & Zeitlinger, M. Impact of pH on the activity of novel cephalosporin Cefiderocol in human urine. J. Antimicrob. Chemother.79, 166–171 (2024). PubMed PMC

Smith, C. B., Evavold, C. & Kersh, G. J. The effect of pH on antibiotic efficacy against Coxiella burnetii in axenic media. Sci. Rep.9, 18132 (2019). PubMed PMC

Carryn, S. et al. Intracellular pharmacodynamics of antibiotics. Infect. Dis. Clin. N. Am.17, 615–634 (2003). PubMed

Lewies, A., Du Plessis, L. H. & Wentzel, J. F. Antimicrobial peptides: the achilles’ heel of antibiotic resistance? Probiotics Antimicrob. Proteins. 11, 370–381 (2019). PubMed

Magana, M. et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis.20, e216–e230 (2020). PubMed

Moravej, H. et al. Antimicrobial peptides: features, action, and their resistance mechanisms in Bacteria. Microb. Drug Resist.24, 747–767 (2018). PubMed

Rima, M. et al. Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics. 10, 1095 (2021). PubMed PMC

Steinstraesser, L., Kraneburg, U., Jacobsen, F. & Al-Benna Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology. 216, 322–333 (2011). PubMed

Mba, I. E. & Nweze, E. I. Antimicrobial peptides therapy: an emerging alternative for treating Drug-Resistant Bacteria. Yale J. Biol. Med.95, 445–463 (2022). PubMed PMC

Mookherjee, N. & Hancock, R. E. W. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell. Mol. Life Sci.64, 922–933 (2007). PubMed PMC

Cudic, M. & Otvos, L. Jr. Intracellular targets of antibacterial peptides. Curr. Drug Targets. 3, 101–106 (2002). PubMed

Ludwig, B. S., Kessler, H., Kossatz, S. & Reuning, U. RGD-Binding integrins revisited: how recently discovered functions and novel synthetic ligands (Re-)Shape an Ever-Evolving field. Cancers. 13, 1711 (2021). PubMed PMC

Wang, F. et al. The functions and applications of RGD in tumor therapy and tissue engineering. Int. J. Mol. Sci.14, 13447–13462 (2013). PubMed PMC

Erdem Büyükkiraz, M. & Kesmen, Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J. Appl. Microbiol.132, 1573–1596 (2022). PubMed

Ahn, M. J. et al. Enhancement of antibacterial activity of short Tryptophan-rich antimicrobial peptide Pac-525 by replacing trp with His(chx). Bull. Korean Chem. Soc.35, 2818–2824 (2014).

Lau, Q. Y. et al. A Head-to-Head comparison of the antimicrobial activities of 30 Ultra-Short antimicrobial peptides against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Int. J. Pept. Res. Ther.21, 21–28 (2015).

Qi, X. et al. Novel short antibacterial and antifungal peptides with low cytotoxicity: efficacy and action mechanisms. Biochem. Biophys. Res. Commun.398, 594–600 (2010). PubMed

Wei, S. Y. et al. Solution structure of a novel tryptophan-rich peptide with bidirectional antimicrobial activity. J. Bacteriol.188, 328–334 (2006). PubMed PMC

Cuperus, T., Van Dijk, A., Matthijs, M. G. R., Veldhuizen, E. J. A. & Haagsman, H. P. Protective effect of in Ovo treatment with the chicken Cathelicidin analog D-CATH-2 against avian pathogenic E. coli. Sci. Rep.6, 26622 (2016). PubMed PMC

Nguyen, T. T. T. et al. Avian antimicrobial peptides: in vitro and in Ovo characterization and protection from early chick mortality caused by yolk sac infection. Sci. Rep.11, 2132 (2021). PubMed PMC

Verma, S., Senger, S., Cherayil, B. J. & Faherty, C. S. Spheres of influence: insights into Salmonella pathogenesis from intestinal organoids. Microorganisms. 8, 504 (2020). PubMed PMC

Zhang, Y. & Sun, J. Study Bacteria–Host interactions using intestinal organoids. In Organoids, vol 1576 (ed Turksen, K.) 249–254 (Springer New York, 2016). PubMed PMC

Divya, M. et al. Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity. J. Photochem. Photobiol. B. 178, 211–218 (2018). PubMed

Mitchell, J. et al. Chicken intestinal organoids: a novel method to measure the mode of action of feed additives. Front. Immunol.15, 1368545 (2024). PubMed PMC

Chen, K. et al. Requirement of CRAMP for mouse macrophages to eliminate phagocytosed E. coli through an autophagy pathway. J. Cell. Sci.134, jcs252148 (2021). PubMed PMC

Bosák, J. et al. Escherichia coli from biopsies differ in virulence genes between patients with colorectal neoplasia and healthy controls. Front. Microbiol.14, 1141619 (2023). PubMed PMC

ISO. ISO 10993-5:2009 - Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity. vol. ISO 10993-5:2009 34 (2009).

Elsinghorst, E. A. Measurement of invasion by gentamicin resistance. In Methods in Enzymology, vol. 236, 405–420 (Elsevier, 1994). PubMed

Bio-Rad Laboratories. Electroporation of E. coli using the gene pulser X-Cell electroporation system (2008).

Li, J. et al. Culture and characterization of chicken small intestinal crypts. Poult. Sci.97, 1536–1543 (2018). PubMed

Merlos Rodrigo, M. A. et al. Extending the applicability of in Ovo and ex Ovo chicken Chorioallantoic membrane assays to study cytostatic activity in neuroblastoma cells. Front. Oncol.11, 707366 (2021). PubMed PMC

He, Y. et al. An antimicrobial Peptide-Loaded gelatin/chitosan nanofibrous membrane fabricated by sequential Layer-by-Layer electrospinning and electrospraying techniques. Nanomaterials. 8, 327 (2018). PubMed PMC

He, Y. et al. Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair. Regen. Biomater.7, 515–525 (2020). PubMed PMC

He, Y. et al. A novel antibacterial titanium modification with a sustained release of Pac-525. Nanomaterials. 11, 3306 (2021). PubMed PMC

He, Y. et al. Composite mineralized collagen/polycaprolactone Scaffold-Loaded microsphere system with dual osteogenesis and antibacterial functions. Polymers. 16, 2394 (2024). PubMed PMC

Li, J. et al. High in vitro antibacterial activity of Pac-525 against Porphyromonas gingivalis biofilms cultured on titanium. BioMed Res. Int.2015, 1–8 (2015). PubMed PMC

Zhang, Z. et al. Construction and characterizations of antibacterial surfaces based on Self-Assembled monolayer of antimicrobial peptides (Pac-525) derivatives on gold. Coatings. 11, 1014 (2021).

Temming, K., Schiffelers, R. M., Molema, G. & Kok, R. J. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist. Updat. 8, 381–402 (2005). PubMed

Abd El-Azeem, S. H., Khalil, A. A., Ibrahim, M. A. M. & Gamal, A. Y. The use of integrin binding domain loaded hydrogel (RGD) with minimally invasive surgical technique in treatment of periodontal intrabony defect: a randomized clinical and biochemical study. J. Appl. Oral Sci.31, e20230263 (2023). PubMed PMC

Colin, M. et al. Liposomes enhance delivery and expression of an RGD-oligolysine gene transfer vector in human tracheal cells. Gene Ther.5, 1488–1498 (1998). PubMed

Cossu, J., Thoreau, F. & Boturyn, D. Multimeric RGD-based strategies for selective drug delivery to tumor tissues. Pharmaceutics. 15, 525 (2023). PubMed PMC

He, M. et al. Spatiotemporally controllable diphtheria toxin expression using a light-switchable transgene system combining multifunctional nanoparticle delivery system for targeted melanoma therapy. J. Controlled Release. 319, 1–14 (2020). PubMed

Chen, C. W., Lu, Yeh, S. & Chiang Novel RGD-lipid conjugate-modified liposomes for enhancing SiRNA delivery in human retinal pigment epithelial cells. Int. J. Nanomed.256710.2147/IJN.S24447 (2011). PubMed PMC

Jain, S. et al. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int. J. Pharm.261, 43–55 (2003). PubMed

Javid, H. et al. RGD peptide in cancer targeting: benefits, challenges, solutions, and possible integrin–RGD interactions. Cancer Med.13, e6800 (2024). PubMed PMC

Shen, Z. et al. Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials. 235, 119783 (2020). PubMed PMC

Wang, D. B. et al. Molecular magnetic resonance imaging of activated hepatic stellate cells with ultrasmall superparamagnetic iron oxide targeting integrin αvβ3 for staging liver fibrosis in rat model. Int. J. Nanomed.109710.2147/IJN.S101366 (2016). PubMed PMC

Zhan, C. et al. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances Paclitaxel anti-glioblastoma effect. J. Controlled Release. 143, 136–142 (2010). PubMed

Manjusha, V., Reshma, L. R. & Anirudhan, T. S. Mesoporous silica gated mixed micelle for the targeted co-delivery of doxorubicin and Paclitaxel. J. Drug Deliv. Sci. Technol.79, 104032 (2023).

Raut, S. Y. et al. Engineered nano-carrier systems for the oral targeted delivery of follicle stimulating hormone: development, characterization, and, assessment of in vitro and in vivo performance and targetability. Int. J. Pharm.637, 122868 (2023). PubMed

Thakur, R., Suri, C. R., Kaur, I. P. & Rishi, P. Peptides as diagnostic, therapeutic, and theranostic tools: progress and future challenges. Crit. Rev. Ther. Drug Carr. Syst.40, 49–100 (2023). PubMed

Xu, Z. et al. RGD peptide modified RBC membrane functionalized biomimetic nanoparticles for thrombolytic therapy. J. Mater. Sci. Mater. Med.34, 18 (2023). PubMed PMC

Kemker, I., Feiner, R. C., Müller, K. M. & Sewald, N. Size-dependent cellular uptake of RGD peptides. ChemBioChem. 21, 496–499 (2020). PubMed PMC

Diaferia, C., Rosa, E., Accardo, A. & Morelli, G. Peptide-based hydrogels as delivery systems for doxorubicin. J. Pept. Sci.28, e3301 (2022). PubMed

He, T. et al. Dual-stimuli-responsive nanotheranostics for dual-targeting photothermal-enhanced chemotherapy of tumor. ACS Appl. Mater. Interfaces. 13, 22204–22212 (2021). PubMed

Juan, H. F. et al. Proteomics analysis of a novel compound: Cyclic RGD in breast carcinoma cell line MCF-7. Proteomics. 6, 2991–3000 (2006). PubMed

Duarte-Mata, D. I. & Salinas-Carmona, M. C. Antimicrobial peptides´ immune modulation role in intracellular bacterial infection. Front. Immunol.14, 1119574 (2023). PubMed PMC

Fang, Y. & Eglen, R. M. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 22, 456–472 (2017). PubMed PMC

Yan, J., Monlong, J., Cougoule, C., Lacroix-Lamandé, S. & Wiedemann, A. Mapping the scientific output of organoids for animal and human modeling infectious diseases: a bibliometric assessment. Vet. Res.55, 81 (2024). PubMed PMC

Yao, Q. et al. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm. 5, e735 (2024). PubMed PMC

Bozzetti, V. & Senger, S. Organoid technologies for the study of intestinal microbiota–host interactions. Trends Mol. Med.28, 290–303 (2022). PubMed PMC

Forbester, J. L. et al. Interaction of Salmonella enterica serovar typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect. Immun.83, 2926–2934 (2015). PubMed PMC

Nickerson, K. P. et al. A versatile human intestinal organoid-derived epithelial monolayer model for the study of enteric pathogens. Microbiol. Spectr.9, e00003–21 (2021). PubMed PMC

Schafer, S. T. et al. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell. 186, 2111–2126e20 (2023). PubMed PMC

Alnassan, A. A. et al. Embryonated chicken eggs as an alternative model for mixed Clostridium perfringens and Eimeria Tenella infection in chickens. Parasitol. Res.112, 2299–2306 (2013). PubMed

Ribeiro, L. N. M., Schlemper, A. E., da Silva, M. V. & Fonseca, B. B. Chicken embryo: a useful animal model for drug testing? Eur. Rev. Med. Pharmacol. Sci.26, 4828–4839 (2022). PubMed

Rezaee, M. S., Liebhart, D., Hess, C., Hess, M. & Paudel, S. Bacterial infection in chicken embryos and consequences of yolk sac constitution for embryo survival. Vet. Pathol.58, 71–79 (2021). PubMed

Li, G. et al. cRGD enables rapid phagocytosis of liposomal Vancomycin for intracellular bacterial clearance. J. Controlled Release. 344, 202–213 (2022). PubMed

Kember, M., Grandy, S., Raudonis, R. & Cheng, Z. Non-Canonical host intracellular niche links to new antimicrobial resistance mechanism. Pathogens11, 220 (2022). PubMed PMC

Pollet, I. et al. Bacterial lipopolysaccharide directly induces angiogenesis through TRAF6-mediated activation of NF-κB and c-Jun N-terminal kinase. Blood. 102, 1740–1742 (2003). PubMed

Safari, Z. et al. Promotion of angiogenesis by M13 phage and RGD peptide in vitro and in vivo. Sci. Rep.9, 11182 (2019). PubMed PMC

Kühl, L. et al. Human lung Organoids—A novel experimental and precision medicine approach. Cells. 12, 2067 (2023). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...