Simulation of Airway Deposition of an Aerosol Drug in COPD Patients
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.2.69/0.0/0.0/16_027/0008371
European Union
FSI-S-17-4444
Brno University
INTER-COST LTC17087
Ministry of Education, Youth and Sports of Czech Republic
PubMed
30939795
PubMed Central
PMC6523717
DOI
10.3390/pharmaceutics11040153
PII: pharmaceutics11040153
Knihovny.cz E-resources
- Keywords
- aerosol drug deposition, dry powder inhalers, inhalation profile measurements,
- Publication type
- Journal Article MeSH
Medical aerosols are key elements of current chronic obstructive pulmonary disease (COPD) therapy. Therapeutic effects are conditioned by the delivery of the right amount of medication to the right place within the airways, that is, to the drug receptors. Deposition of the inhaled drugs is sensitive to the breathing pattern of the patients which is also connected with the patient's disease severity. The objective of this work was to measure the realistic inhalation profiles of mild, moderate, and severe COPD patients, simulate the deposition patterns of Symbicort® Turbuhaler® dry powder drug and compare them to similar patterns of healthy control subjects. For this purpose, a stochastic airway deposition model has been applied. Our results revealed that the amount of drug depositing within the lungs correlated with the degree of disease severity. While drug deposition fraction in the lungs of mild COPD patients compared with that of healthy subjects (28% versus 31%), lung deposition fraction characteristic of severe COPD patients was lower by a factor of almost two (about 17%). Deposition fraction of moderate COPD patients was in-between (23%). This implies that for the same inhaler dosage severe COPD patients receive a significantly lower lung dose, although, they would need more.
Chiesi Hungary Ltd Dunavirág u 2 1138 Budapest Hungary
Department of Pulmonology County Institute of Pulmonology 2045 Törökbálint Hungary
See more in PubMed
Anecchino C., Rossi E., Fanizza C., De Rosa M., Tognoni G., Romero M. Prevalence of chronic obstructive pulmonary disease and pattern of comorbidities in a general population. Int. J. Chron. Obstruct. Pulmon. Dis. 2007;2:567–574. PubMed PMC
Farkas Á., Jókay Á., Füri P., Balásházy I., Müller V., Balázs O., Horváth A. Computer modelling as a tool in characterization and optimization of aerosol drug delivery. Aerosol Air Qual. Res. 2015;15:2466–2474. doi: 10.4209/aaqr.2015.03.0144. DOI
Newman S.P., Busse W.W. Evolution of dry powder inhaler design, formulation and performance. Respir. Med. 2002;96:293–304. doi: 10.1053/rmed.2001.1276. PubMed DOI
Ciciliani A.-M., Langguth P., Wachtel H. In vitro dose comparison of Respimat® inhaler with dry powder inhalers for COPD maintenance therapy. Int. J. COPD. 2017;12:1565–1577. doi: 10.2147/COPD.S115886. PubMed DOI PMC
Buttini F., Brambilla G., Copelli D., Sisti V., Balducci A.G., Bettini R., Pasquali I. Effect of flow rate on in vitro aerodynamic performance of NEXThaler® in comparison with Diskus® and Turbohaler® dry powder inhalers. J. Aerosol Med. Pulm. Drug Deliv. 2016;29:167–178. doi: 10.1089/jamp.2015.1220. PubMed DOI PMC
Azouz W., Chetcuti P., Hosker H., Saralaya D., Chrystyn H. Inhalation characteristics of asthma patients, COPD patients and healthy volunteers with the Spiromax® and Turbuhaler® devices: A randomised, cross-over study. BMC Pulm. Med. 2015;15:47. doi: 10.1186/s12890-015-0043-x. PubMed DOI PMC
Wetterlin K. Turbuhaler: A new powder inhaler for administration of drugs to the airways. Pharma Res. 1988;5:506–508. doi: 10.1023/A:1015969324799. PubMed DOI
Global Initiative for Chronic Obstructive Lung Disease (GOLD) [(accessed on 22 January 2019)]; Available online: https://goldcopd.org/wp-content/uploads/2017/11/GOLD-2018-v6.0-FINAL-revised-20-Nov_WMS.pdf.
Farkas Á., Jókay Á., Balásházy I., Füri P., Müller V., Tomisa G., Horváth A. Numerical simulation of particle characteristics and airway deposition distribution of Symbicort® Turbuhaler® dry powder fixed combination aerosol drug. Eur. J. Pharma Sci. 2016;93:371–379. doi: 10.1016/j.ejps.2016.08.036. PubMed DOI
Tarsin W., Assi K.H., Chrystyn H. In-vitro intra- and inter-inhaler flow rate-dependent dosage emission from a combination of budesonide and eformoterol in a dry powder inhaler. J. Aerosol Med. 2004;17:25–32. doi: 10.1089/089426804322994433. PubMed DOI
Corradi M., Chrystyn H., Cosio B.G., Pirozynski M., Loukides S., Louis R., Spinola M., Usmani O.S. NEXThaler, an innovative dry powder inhaler delivering an extrafine fixed combination of beclomethasone and formoterol to treat large and small airways in asthma. Expert Opin. Drug Deliv. 2014;14:1497–1506. doi: 10.1517/17425247.2014.928282. PubMed DOI
de Boer A.H., Gjaltema D., Hagedoorn P., Frijlink H.W. Can ‘extrafine’ dry powder aerosols improve lung deposition? Eur. J. Pharm. Biopharm. 2015;96:143–151. doi: 10.1016/j.ejpb.2015.07.016. PubMed DOI
Bagherisadeghi G., Larhrib E.H., Chrystyn H. Real life dose emission characterization using COPD patient inhalation profiles when they inhaled using a fixed dose combination (FDC) of the medium strength Symbicort® Turbuhaler®. Int. J. Pharma. 2017;522:137–146. doi: 10.1016/j.ijpharm.2017.02.057. PubMed DOI
Hoppentocht M., Hagedoorn P., Frijlink H.W., de Boer A.H. Technological and practical challenges of dry powder inhalers and formulations. Adv. Drug Deliv. Rev. 2014;75:18–31. doi: 10.1016/j.addr.2014.04.004. PubMed DOI
Johal B., Howald M., Fischer M., Marshall J., Venthoye G. Fine particle profile of fluticasone propionate/formoterol fumarate versus other combination products: The DIFFUSE study. Comb. Prod. Ther. 2013;3:39–51. doi: 10.1007/s13556-013-0003-9. DOI
Assi K.H., Tarsin W., Chrystyn H. High performance liquid chromatography assay method for simultaneous quantitation of formoterol and budesonide in Symbicort Turbuhaler. J. Pharm. Biomed. Anal. 2006;41:325–328. doi: 10.1016/j.jpba.2005.11.015. PubMed DOI
Koblinger L., Hofmann W. Monte Carlo modeling of aerosol deposition in human lungs. Part I: Simulation of particle transport in a stochastic lung structure. J. Aerosol Sci. 1990;21:661–674. doi: 10.1016/0021-8502(90)90121-D. DOI
Cheng Y.S. Aerosol deposition in the extrathoracic region. Aerosol Sci. Technol. 2003;37:659–671. doi: 10.1080/02786820300906. PubMed DOI PMC
Raabe O.G., Yeh H.C., Schum G.M., Phalen R.F. Tracheobronchial Geometry: Human, Dog, Rat, Hamster. [(accessed on 22 January 2019)]; Available online: http://mae.engr.ucdavis.edu/wexler/lungs/LF53-Raabe/
Haefeli-Bleuer B., Weibel E.R. Morphometry of the human pulmonary acinus. Anat. Rec. 1988;220:401–414. doi: 10.1002/ar.1092200410. PubMed DOI