• This record comes from PubMed

Simulation of Airway Deposition of an Aerosol Drug in COPD Patients

. 2019 Apr 01 ; 11 (4) : . [epub] 20190401

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CZ.02.2.69/0.0/0.0/16_027/0008371 European Union
FSI-S-17-4444 Brno University
INTER-COST LTC17087 Ministry of Education, Youth and Sports of Czech Republic

Links

PubMed 30939795
PubMed Central PMC6523717
DOI 10.3390/pharmaceutics11040153
PII: pharmaceutics11040153
Knihovny.cz E-resources

Medical aerosols are key elements of current chronic obstructive pulmonary disease (COPD) therapy. Therapeutic effects are conditioned by the delivery of the right amount of medication to the right place within the airways, that is, to the drug receptors. Deposition of the inhaled drugs is sensitive to the breathing pattern of the patients which is also connected with the patient's disease severity. The objective of this work was to measure the realistic inhalation profiles of mild, moderate, and severe COPD patients, simulate the deposition patterns of Symbicort® Turbuhaler® dry powder drug and compare them to similar patterns of healthy control subjects. For this purpose, a stochastic airway deposition model has been applied. Our results revealed that the amount of drug depositing within the lungs correlated with the degree of disease severity. While drug deposition fraction in the lungs of mild COPD patients compared with that of healthy subjects (28% versus 31%), lung deposition fraction characteristic of severe COPD patients was lower by a factor of almost two (about 17%). Deposition fraction of moderate COPD patients was in-between (23%). This implies that for the same inhaler dosage severe COPD patients receive a significantly lower lung dose, although, they would need more.

See more in PubMed

Anecchino C., Rossi E., Fanizza C., De Rosa M., Tognoni G., Romero M. Prevalence of chronic obstructive pulmonary disease and pattern of comorbidities in a general population. Int. J. Chron. Obstruct. Pulmon. Dis. 2007;2:567–574. PubMed PMC

Farkas Á., Jókay Á., Füri P., Balásházy I., Müller V., Balázs O., Horváth A. Computer modelling as a tool in characterization and optimization of aerosol drug delivery. Aerosol Air Qual. Res. 2015;15:2466–2474. doi: 10.4209/aaqr.2015.03.0144. DOI

Newman S.P., Busse W.W. Evolution of dry powder inhaler design, formulation and performance. Respir. Med. 2002;96:293–304. doi: 10.1053/rmed.2001.1276. PubMed DOI

Ciciliani A.-M., Langguth P., Wachtel H. In vitro dose comparison of Respimat® inhaler with dry powder inhalers for COPD maintenance therapy. Int. J. COPD. 2017;12:1565–1577. doi: 10.2147/COPD.S115886. PubMed DOI PMC

Buttini F., Brambilla G., Copelli D., Sisti V., Balducci A.G., Bettini R., Pasquali I. Effect of flow rate on in vitro aerodynamic performance of NEXThaler® in comparison with Diskus® and Turbohaler® dry powder inhalers. J. Aerosol Med. Pulm. Drug Deliv. 2016;29:167–178. doi: 10.1089/jamp.2015.1220. PubMed DOI PMC

Azouz W., Chetcuti P., Hosker H., Saralaya D., Chrystyn H. Inhalation characteristics of asthma patients, COPD patients and healthy volunteers with the Spiromax® and Turbuhaler® devices: A randomised, cross-over study. BMC Pulm. Med. 2015;15:47. doi: 10.1186/s12890-015-0043-x. PubMed DOI PMC

Wetterlin K. Turbuhaler: A new powder inhaler for administration of drugs to the airways. Pharma Res. 1988;5:506–508. doi: 10.1023/A:1015969324799. PubMed DOI

Global Initiative for Chronic Obstructive Lung Disease (GOLD) [(accessed on 22 January 2019)]; Available online: https://goldcopd.org/wp-content/uploads/2017/11/GOLD-2018-v6.0-FINAL-revised-20-Nov_WMS.pdf.

Farkas Á., Jókay Á., Balásházy I., Füri P., Müller V., Tomisa G., Horváth A. Numerical simulation of particle characteristics and airway deposition distribution of Symbicort® Turbuhaler® dry powder fixed combination aerosol drug. Eur. J. Pharma Sci. 2016;93:371–379. doi: 10.1016/j.ejps.2016.08.036. PubMed DOI

Tarsin W., Assi K.H., Chrystyn H. In-vitro intra- and inter-inhaler flow rate-dependent dosage emission from a combination of budesonide and eformoterol in a dry powder inhaler. J. Aerosol Med. 2004;17:25–32. doi: 10.1089/089426804322994433. PubMed DOI

Corradi M., Chrystyn H., Cosio B.G., Pirozynski M., Loukides S., Louis R., Spinola M., Usmani O.S. NEXThaler, an innovative dry powder inhaler delivering an extrafine fixed combination of beclomethasone and formoterol to treat large and small airways in asthma. Expert Opin. Drug Deliv. 2014;14:1497–1506. doi: 10.1517/17425247.2014.928282. PubMed DOI

de Boer A.H., Gjaltema D., Hagedoorn P., Frijlink H.W. Can ‘extrafine’ dry powder aerosols improve lung deposition? Eur. J. Pharm. Biopharm. 2015;96:143–151. doi: 10.1016/j.ejpb.2015.07.016. PubMed DOI

Bagherisadeghi G., Larhrib E.H., Chrystyn H. Real life dose emission characterization using COPD patient inhalation profiles when they inhaled using a fixed dose combination (FDC) of the medium strength Symbicort® Turbuhaler®. Int. J. Pharma. 2017;522:137–146. doi: 10.1016/j.ijpharm.2017.02.057. PubMed DOI

Hoppentocht M., Hagedoorn P., Frijlink H.W., de Boer A.H. Technological and practical challenges of dry powder inhalers and formulations. Adv. Drug Deliv. Rev. 2014;75:18–31. doi: 10.1016/j.addr.2014.04.004. PubMed DOI

Johal B., Howald M., Fischer M., Marshall J., Venthoye G. Fine particle profile of fluticasone propionate/formoterol fumarate versus other combination products: The DIFFUSE study. Comb. Prod. Ther. 2013;3:39–51. doi: 10.1007/s13556-013-0003-9. DOI

Assi K.H., Tarsin W., Chrystyn H. High performance liquid chromatography assay method for simultaneous quantitation of formoterol and budesonide in Symbicort Turbuhaler. J. Pharm. Biomed. Anal. 2006;41:325–328. doi: 10.1016/j.jpba.2005.11.015. PubMed DOI

Koblinger L., Hofmann W. Monte Carlo modeling of aerosol deposition in human lungs. Part I: Simulation of particle transport in a stochastic lung structure. J. Aerosol Sci. 1990;21:661–674. doi: 10.1016/0021-8502(90)90121-D. DOI

Cheng Y.S. Aerosol deposition in the extrathoracic region. Aerosol Sci. Technol. 2003;37:659–671. doi: 10.1080/02786820300906. PubMed DOI PMC

Raabe O.G., Yeh H.C., Schum G.M., Phalen R.F. Tracheobronchial Geometry: Human, Dog, Rat, Hamster. [(accessed on 22 January 2019)]; Available online: http://mae.engr.ucdavis.edu/wexler/lungs/LF53-Raabe/

Haefeli-Bleuer B., Weibel E.R. Morphometry of the human pulmonary acinus. Anat. Rec. 1988;220:401–414. doi: 10.1002/ar.1092200410. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...