Atomistic Insights Into Interaction of Doxorubicin With DNA: From Duplex to Nucleosome

. 2025 Jan 30 ; 46 (3) : e70035.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39865531

Grantová podpora
90254 Ministry of Education, Youth and Sports of the Czech Republic
CZ.10.03.01/00/22_003/0000048 European Union
HORIZON-EIC-2021-PATHFINDERCHALLENGES-01:101070865 European Union
CA21101 European Cooperation in Science and Technology
CZ.02.01.01/00/22_008/0004587 ERDF/ESF

Doxorubicin (DOX) is a widely used chemotherapeutic agent known for intercalating into DNA. However, the exact modes of DOX interactions with various DNA structures remain unclear. Using molecular dynamics (MD) simulations, we explored DOX interactions with DNA duplexes (dsDNA), G-quadruplex, and nucleosome. DOX predominantly stacks on terminal bases of dsDNA and occasionally binds into its minor groove. In the G-quadruplex, DOX stacks on planar tetrads but does not spontaneously intercalate into these structures. Potential of mean force calculations indicate that while intercalation is the most energetically favorable interaction mode for DOX in dsDNA, the process requires overcoming a significant energy barrier. In contrast, DOX spontaneously intercalates into bent nucleosomal DNA, due to the increased torsional stress. This preferential intercalation of DOX into regions with higher torsional stress provides new insights into its mechanism of action and underscores the importance of DNA tertiary and quaternary structures in therapies utilizing DNA intercalation.

Zobrazit více v PubMed

Yang F., Teves S. S., Kemp C. J., and Henikoff S., “Doxorubicin, DNA Torsion, and Chromatin Dynamics,” Biochimica et Biophysica Acta 1845, no. 1 (2014): 84–89, 10.1016/j.bbcan.2013.12.002. PubMed DOI PMC

Nicoletto R. E. and Ofner C. M., “Cytotoxic Mechanisms of Doxorubicin at Clinically Relevant Concentrations in Breast Cancer Cells,” Cancer Chemotherapy and Pharmacology 89, no. 3 (2022): 285–311, 10.1007/s00280-022-04400-y. PubMed DOI

Neefjes J., Gurova K., Sarthy J., and Henikoff S., “Chromatin as an Old and New Anticancer Target,” Trends in Cancer 10, no. 8 (2024): 696–707, 10.1016/j.trecan.2024.05.005. PubMed DOI PMC

Yang F., Kemp C. J., and Henikoff S., “Doxorubicin Enhances Nucleosome Turnover Around Promoters,” Current Biology 23, no. 9 (2013): 782–787, 10.1016/j.cub.2013.03.043. PubMed DOI PMC

Lipscomb L. A., Peek M. E., Zhou F. X., Bertrand J. A., VanDerveer D., and Williams L. D., “Water Ring Structure at DNA Interfaces: Hydration and Dynamics of DNA‐Anthracycline Complexes,” Biochemistry 33, no. 12 (1994): 3649–3659, 10.1021/bi00178a023. PubMed DOI

Leonard G. A., Hambley T. W., McAuley‐Hecht K., Brown T., and Hunter W. N., “Anthracycline—DNA Interactions at Unfavourable Base‐Pair Triplet‐Binding Sites: Structures of d(CGGCCG)/daunomycin and d(TGGCCA)/Adriamycin Complexes,” Acta Crystallographica, Section D: Biological Crystallography 49, no. 5 (1993): 458–467, 10.1107/s090744499300527x. PubMed DOI

Pang B., Qiao X., Janssen L., et al., “Drug‐Induced Histone Eviction From Open Chromatin Contributes to the Chemotherapeutic Effects of Doxorubicin,” Nature Communications 4 (2013): 1908, 10.1038/ncomms2921. PubMed DOI PMC

Tartakoff S. S., Finan J. M., Curtis E. J., Anchukaitis H. M., Couture D. J., and Glazier S., “Investigations Into the DNA‐Binding Mode of Doxorubicinone,” Organic & Biomolecular Chemistry 17, no. 7 (2019): 1992–1998, 10.1039/c8ob02344a. PubMed DOI

Majzner K., Deckert‐Gaudig T., Baranska M., and Deckert V., “DOX‐DNA Interactions on the Nanoscale: In Situ Studies Using Tip‐Enhanced Raman Scattering,” Analytical Chemistry 96, no. 22 (2024): 8905–8913, 10.1021/acs.analchem.3c05372. PubMed DOI PMC

Fouzia P. F., Nasima A., Qureshi R., et al., “Electrochemical, Spectroscopic and Theoretical Monitoring of Anthracyclines' Interactions With DNA and Ascorbic Acid by Adopting Two Routes: Cancer Cell Line Studies,” PLoS One 13, no. 10 (2018): 1–19, 10.1371/journal.pone.0205764. PubMed DOI PMC

Hassani Moghadam F., Taher M. A., and Karimi‐Maleh H., “Doxorubicin Anticancer Drug Monitoring by ds‐Dna‐Based Electrochemical Biosensor in Clinical Samples,” Micromachines 12, no. 7 (2021): 808, 10.3390/mi12070808. PubMed DOI PMC

Airoldi M., Barone G., Gennaro G., Giuliani A. M., and Giustini M., “Interaction of Doxorubicin With Polynucleotides,” A Spectroscopic Study. Biochemistry 53, no. 13 (2014): 2197–2207, 10.1021/bi401687v. PubMed DOI

Jawad B., Poudel L., Podgornik R., Steinmetz N. F., and Ching W. Y., “Molecular Mechanism and Binding Free Energy of Doxorubicin Intercalation in DNA,” Physical Chemistry Chemical Physics 21, no. 7 (2019): 3877–3893, 10.1039/c8cp06776g. PubMed DOI

Lei H., Wang X., and Wu C., “Early Stage Intercalation of Doxorubicin to DNA Fragments Observed in Molecular Dynamics Binding Simulations,” Journal of Molecular Graphics & Modelling 38 (2012): 279–289, 10.1016/j.jmgm.2012.05.006. PubMed DOI

Mauro E., Lapaillerie D., Tumiotto C., et al., “Modulation of the Functional Interfaces Between Retroviral Intasomes and the Human Nucleosome,” MBio 14, no. 4 (2023): 14, 10.1128/mbio.01083-23. PubMed DOI PMC

Shukla A., Kumari S., Sankar M., and Nair M. S., “Insights Into the Mechanism of Binding of Doxorubicin and a Chlorin Compound With 22‐Mer c‐Myc G Quadruplex,” Biochimica et Biophysica Acta, General Subjects 1867, no. 12 (2023): 130482, 10.1016/j.bbagen.2023.130482. PubMed DOI

Manet I., Manoli F., Zambelli B., et al., “Complexes of the Antitumoral Drugs Doxorubicin and Sabarubicin With Telomeric G‐Quadruplex in Basket Conformation: Ground and Excited State Properties,” Photochemical & Photobiological Sciences 10, no. 8 (2011): 1326–1337, 10.1039/c1pp05065f. PubMed DOI

Hiyama E. and Hiyama K., “Telomerase as Tumor Marker,” Cancer Letters 194, no. 2 (2003): 221–233, 10.1016/S0304-3835(02)00709-7. PubMed DOI

Drew H. R., Wing R. M., Takano T., et al., “Structure of a B‐DNA Dodecamer: Conformation and Dynamics,” Proceedings of the National Academy of Sciences of the United States of America 78, no. 4 (1981): 2179–2183, 10.1073/pnas.78.4.2179. PubMed DOI PMC

Stump S., Mou T. C., Sprang S. R., Natale N. R., and Beall H. D., “Crystal Structure of the Major Quadruplex Formed in the Promoter Region of the Human C‐MYC Oncogene,” PLoS One 13, no. 10 (2018): 1–15, 10.1371/journal.pone.0205584. PubMed DOI PMC

Tachiwana H., Kagawa W., Osakabe A., et al., “Structural Basis of Instability of the Nucleosome Containing a Testis‐Specific Histone Variant, Human H3T,” Proceedings of the National Academy of Sciences of the United States of America 107, no. 23 (2010): 10454–10459, 10.1073/pnas.1003064107. PubMed DOI PMC

Anandakrishnan R., Aguilar B., and Onufriev A. V., “H++ 3.0: Automating PK Prediction and the Preparation of Biomolecular Structures for Atomistic Molecular Modeling and Simulations,” Nucleic Acids Research 40, no. W1 (2012): 537–541, 10.1093/nar/gks375. PubMed DOI PMC

Izadi S., Anandakrishnan R., and Onufriev A. V., “Building Water Models: A Different Approach,” Journal of Physical Chemistry Letters 5, no. 21 (2014): 3863–3871, 10.1021/jz501780a. PubMed DOI PMC

Joung I. S. and T. E. Cheatham, III , “Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations,” Journal of Physical Chemistry. B 112, no. 30 (2008): 9020–9041, 10.1021/jp8001614. PubMed DOI PMC

Zgarbová M., Šponer J., and Jurečka P., “Z‐DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA Torsions for AMBER,” Journal of Chemical Theory and Computation 17, no. 10 (2021): 6292–6301, 10.1021/acs.jctc.1c00697. PubMed DOI

Pérez A., Marchán I., Svozil D., et al., “Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers,” Biophysical Journal 92, no. 11 (2007): 3817–3829, 10.1529/biophysj.106.097782. PubMed DOI PMC

Cornell W. D., Cieplak P., Bayly C. I., et al., “A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules,” Journal of the American Chemical Society 117, no. 19 (1995): 5179–5197, 10.1021/ja00124a002. DOI

Krepl M., Zgarbová M., Stadlbauer P., et al., “Reference Simulations of Noncanonical Nucleic Acids With Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z‐DNA,” Journal of Chemical Theory and Computation 8, no. 7 (2012): 2506–2520, 10.1021/ct300275s. PubMed DOI PMC

Zgarbová M., Luque F. J., Šponer J., Cheatham T. E., Otyepka M., and Jurečka P., “Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters,” Journal of Chemical Theory and Computation 9, no. 5 (2013): 2339–2354, 10.1021/ct400154j. PubMed DOI PMC

Zgarbová M., Šponer J., Otyepka M., Cheatham T. E., Galindo‐Murillo R., and Jurečka P., “Refinement of the Sugar–Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z‐ and B‐DNA,” Journal of Chemical Theory and Computation 11, no. 12 (2015): 5723–5736, 10.1021/acs.jctc.5b00716. PubMed DOI

Maier J. A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K. E., and Simmerling C., “Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters From Ff99SB,” Journal of Chemical Theory and Computation 11, no. 8 (2015): 3696–3713, 10.1021/acs.jctc.5b00255. PubMed DOI PMC

Wang J., Cieplak P., and Kollman P. A., “How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules?,” Journal of Computational Chemistry 21, no. 12 (2000): 1049–1074, 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI

Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., and Case D. A., “Development and Testing of a General Amber Force Field,” Journal of Computational Chemistry 25, no. 9 (2004): 1157–1174, 10.1002/jcc.20035. PubMed DOI

Frisch M. J., Trucks G. W., Schlegel H. B., et al., Gaussian 16, Revision B.01 (Wallingford CT: Gaussian, Inc, 2016).

Case D. A., Aktulga H. M., Belfon K., et al., “AmberTools,” Journal of Chemical Information and Modeling 63, no. 20 (2023): 6183–6191, 10.1021/acs.jcim.3c01153. PubMed DOI PMC

“The PyMOL Molecular Graphics System, Version 2.0,” Schrödinger, LLC.

Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., and Berendsen H. J. C., “GROMACS: Fast, Flexible, and Free,” Journal of Computational Chemistry 26, no. 16 (2005): 1701–1718, 10.1002/jcc.20291. PubMed DOI

Humphrey W., Dalke A., and Schulten K., “VMD: Visual Molecular Dynamics,” Journal of Molecular Graphics 14, no. 1 (1996): 33–38, 10.1016/0263-7855(96)00018-5. PubMed DOI

Berendsen H., Postma J., Vangunsteren W., Dinola A., and Haak J., “Molecular‐Dynamics With Coupling to an External Bath,” Journal of Chemical Physics 81, no. 8 (1984): 3684–3690, 10.1063/1.448118. DOI

Gonçalves M. A., Gonçalves A. S., Franca T. C. C., Santana M. S., Da Cunha E. F. F., and Ramalho T. C., “Improved Protocol for the Selection of Structures From Molecular Dynamics of Organic Systems in Solution: The Value of Investigating Different Wavelet Families,” Journal of Chemical Theory and Computation 18, no. 10 (2022): 5810–5818, 10.1021/acs.jctc.2c00593. PubMed DOI

Sousa Da Silva A. W. and Vranken W. F., “ACPYPE–AnteChamber PYthon Parser InterfacE,” BMC Research Notes 5 (2012): 1–8, 10.1186/1756-0500-5-367. PubMed DOI PMC

Hub J. S., de Groot B. L., and van der Spoel D., “G_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates,” Journal of Chemical Theory and Computation 6, no. 12 (2010): 3713–3720, 10.1021/ct100494z. DOI

Kumar S., Rosenberg J. M., Bouzida D., Swendsen R. H., and Kollman P. A., “The Weighted Histogram Analysis Method for Free‐Energy Calculations on Biomolecules. I. The Method,” Journal of Computational Chemistry 13, no. 8 (1992): 1011–1021, 10.1002/jcc.540130812. DOI

Frederick C. A., Williams L. D., Ughetto G., et al., “Structural Comparison of Anticancer Drug‐DNA Complexes: Adriamycin and Daunomycin,” Biochemistry 29, no. 10 (1990): 2538–2549, 10.1021/bi00462a016. PubMed DOI

Shen Z., Mulholland K. A., Zheng Y., and Wu C., “Binding of Anticancer Drug Daunomycin to a TGGGGT G‐Quadruplex DNA Probed by all‐Atom Molecular Dynamics Simulations: Additional Pure Groove Binding Mode and Implications on Designing More Selective G‐Quadruplex Ligands,” Journal of Molecular Modeling 23, no. 9 (2017): 256, 10.1007/s00894-017-3417-6. PubMed DOI

Scaglioni L., Mondelli R., Artali R., Sirtori F. R., and Mazzini S., “Nemorubicin and Doxorubicin Bind the G‐Quadruplex Sequences of the Human Telomeres and of the c‐MYC Promoter Element Pu22,” Biochimica et Biophysica Acta (BBA) ‐ General Subjects 1860, no. 6 (2016): 1129–1138, 10.1016/j.bbagen.2016.02.011. PubMed DOI

Chaudhuri R., Bhattacharya S., Dash J., and Bhattacharya S., “Recent Update on Targeting C‐MYC G‐Quadruplexes by Small Molecules for Anticancer Therapeutics,” Journal of Medicinal Chemistry 64, no. 1 (2021): 42–70, 10.1021/acs.jmedchem.0c01145. PubMed DOI

Dai J., Carver M., Hurley L. H., and Yang D., “Solution Structure of a 2:1 Quindoline‐c‐MYC G‐Quadruplex: Insights Into G‐Quadruplex‐Interactive Small Molecule Drug Design,” Journal of the American Chemical Society 133, no. 44 (2011): 17673–17680, 10.1021/ja205646q. PubMed DOI PMC

Calabrese D. R., Chen X., Leon E. C., et al., “Chemical and Structural Studies Provide a Mechanistic Basis for Recognition of the MYC G‐Quadruplex,” Nature Communications 9, no. 1 (2018): 1–15, 10.1038/s41467-018-06315-w. PubMed DOI PMC

Dickerhoff J., Dai J., and Yang D., “Structural Recognition of the MYC Promoter G‐Quadruplex by a Quinoline Derivative: Insights Into Molecular Targeting of Parallel G‐Quadruplexes,” Nucleic Acids Research 49, no. 10 (2021): 5905–5915, 10.1093/nar/gkab330. PubMed DOI PMC

Dickerhoff J., Brundridge N., McLuckey S. A., and Yang D., “Berberine Molecular Recognition of the Parallel MYC G‐Quadruplex in Solution,” Journal of Medicinal Chemistry 64, no. 21 (2021): 16205–16212, 10.1021/acs.jmedchem.1c01508. PubMed DOI PMC

Liu W., Lin C., Wu G., Dai J., Chang T. C., and Yang D., “Structures of 1:1 and 2:1 Complexes of BMVC and MYC Promoter G‐Quadruplex Reveal a Mechanism of Ligand Conformation Adjustment for G4‐Recognition,” Nucleic Acids Research 47, no. 22 (2019): 11931–11942, 10.1093/nar/gkz1015. PubMed DOI PMC

Liu W., Zhu B. C., Liu L. Y., et al., “Solution Structures and Effects of a Platinum Compound Successively Bound MYC G‐Quadruplex,” Nucleic Acids Research 52, no. 16 (2024): 9397–9406, 10.1093/nar/gkae649. PubMed DOI PMC

Kotar A., Wang B., Shivalingam A., Gonzalez‐Garcia J., Vilar R., and Plavec J., “NMR Structure of a Triangulenium‐Based Long‐Lived Fluorescence Probe Bound to a G‐Quadruplex,” Angewandte Chemie 55, no. 40 (2016): 12508–12511, 10.1002/anie.201606877. PubMed DOI

Langer M., Paloncýová M., Otyepka M., et al., “Molecular Fluorophores Self‐Organize Into C‐Dot Seeds and Incorporate Into C‐Dot Structures,” Journal of Physical Chemistry Letters 11, no. 19 (2020): 8252–8258, 10.1021/acs.jpclett.0c01873. PubMed DOI

Zhang R., Zhu J., Sun D., et al., “The Mechanism of Dynamic Interaction Between Doxorubicin and Calf Thymus DNA at the Single‐Molecule Level Based on Confocal Raman Spectroscopy,” Micromachines 13, no. 6 (2022): 13, 10.3390/mi13060940. PubMed DOI PMC

Liu H., Ma W., Xie J., et al., “Nucleosome Positioning and Its Role in Gene Regulation in Yeast,” in The Yeast Role in Medical Applications (London, UK: InTech, 2018), 10.5772/intechopen.70935. DOI

Tan S. and Davey C. A., “Nucleosome Structural Studies,” Current Opinion in Structural Biology 21, no. 1 (2011): 128–136, 10.1016/j.sbi.2010.11.006. PubMed DOI PMC

Retureau R., Foloppe N., Elbahnsi A., Oguey C., and Hartmann B., “A Dynamic View of DNA Structure Within the Nucleosome: Biological Implications,” Journal of Structural Biology 211, no. 1 (2020): 107511, 10.1016/j.jsb.2020.107511. PubMed DOI

Edayathumangalam R. S., Weyermannt P., Gottesfeld J. M., Dervants P. B., and Luger K., “Molecular Recognition of the Nucleosomal "Supergroove",” Proceedings of the National Academy of Sciences of the United States of America 101, no. 18 (2004): 6864–6869, 10.1073/pnas.0401743101. PubMed DOI PMC

Pedone F. and Santoni D., “Preferential Nucleosome Occupancy at High Values of DNA Helical Rise,” DNA Research 19, no. 1 (2012): 81–90, 10.1093/dnares/dsr043. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace