Atomistic Insights Into Interaction of Doxorubicin With DNA: From Duplex to Nucleosome
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
90254
Ministry of Education, Youth and Sports of the Czech Republic
CZ.10.03.01/00/22_003/0000048
European Union
HORIZON-EIC-2021-PATHFINDERCHALLENGES-01:101070865
European Union
CA21101
European Cooperation in Science and Technology
CZ.02.01.01/00/22_008/0004587
ERDF/ESF
PubMed
39865531
PubMed Central
PMC11771641
DOI
10.1002/jcc.70035
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, G‐quadruplex, MD simulations, doxorubicin intercalation, intercalation, nucleosome,
- MeSH
- antibiotika antitumorózní chemie farmakologie MeSH
- DNA * chemie MeSH
- doxorubicin * chemie farmakologie MeSH
- G-kvadruplexy MeSH
- interkalátory chemie farmakologie MeSH
- konformace nukleové kyseliny MeSH
- nukleozomy * chemie metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibiotika antitumorózní MeSH
- DNA * MeSH
- doxorubicin * MeSH
- interkalátory MeSH
- nukleozomy * MeSH
Doxorubicin (DOX) is a widely used chemotherapeutic agent known for intercalating into DNA. However, the exact modes of DOX interactions with various DNA structures remain unclear. Using molecular dynamics (MD) simulations, we explored DOX interactions with DNA duplexes (dsDNA), G-quadruplex, and nucleosome. DOX predominantly stacks on terminal bases of dsDNA and occasionally binds into its minor groove. In the G-quadruplex, DOX stacks on planar tetrads but does not spontaneously intercalate into these structures. Potential of mean force calculations indicate that while intercalation is the most energetically favorable interaction mode for DOX in dsDNA, the process requires overcoming a significant energy barrier. In contrast, DOX spontaneously intercalates into bent nucleosomal DNA, due to the increased torsional stress. This preferential intercalation of DOX into regions with higher torsional stress provides new insights into its mechanism of action and underscores the importance of DNA tertiary and quaternary structures in therapies utilizing DNA intercalation.
Institute of Biophysics of the Czech Academy of Sciences Brno Czech Republic
IT4Innovations VŠB Technical University of Ostrava Ostrava Poruba Czech Republic
Zobrazit více v PubMed
Yang F., Teves S. S., Kemp C. J., and Henikoff S., “Doxorubicin, DNA Torsion, and Chromatin Dynamics,” Biochimica et Biophysica Acta 1845, no. 1 (2014): 84–89, 10.1016/j.bbcan.2013.12.002. PubMed DOI PMC
Nicoletto R. E. and Ofner C. M., “Cytotoxic Mechanisms of Doxorubicin at Clinically Relevant Concentrations in Breast Cancer Cells,” Cancer Chemotherapy and Pharmacology 89, no. 3 (2022): 285–311, 10.1007/s00280-022-04400-y. PubMed DOI
Neefjes J., Gurova K., Sarthy J., and Henikoff S., “Chromatin as an Old and New Anticancer Target,” Trends in Cancer 10, no. 8 (2024): 696–707, 10.1016/j.trecan.2024.05.005. PubMed DOI PMC
Yang F., Kemp C. J., and Henikoff S., “Doxorubicin Enhances Nucleosome Turnover Around Promoters,” Current Biology 23, no. 9 (2013): 782–787, 10.1016/j.cub.2013.03.043. PubMed DOI PMC
Lipscomb L. A., Peek M. E., Zhou F. X., Bertrand J. A., VanDerveer D., and Williams L. D., “Water Ring Structure at DNA Interfaces: Hydration and Dynamics of DNA‐Anthracycline Complexes,” Biochemistry 33, no. 12 (1994): 3649–3659, 10.1021/bi00178a023. PubMed DOI
Leonard G. A., Hambley T. W., McAuley‐Hecht K., Brown T., and Hunter W. N., “Anthracycline—DNA Interactions at Unfavourable Base‐Pair Triplet‐Binding Sites: Structures of d(CGGCCG)/daunomycin and d(TGGCCA)/Adriamycin Complexes,” Acta Crystallographica, Section D: Biological Crystallography 49, no. 5 (1993): 458–467, 10.1107/s090744499300527x. PubMed DOI
Pang B., Qiao X., Janssen L., et al., “Drug‐Induced Histone Eviction From Open Chromatin Contributes to the Chemotherapeutic Effects of Doxorubicin,” Nature Communications 4 (2013): 1908, 10.1038/ncomms2921. PubMed DOI PMC
Tartakoff S. S., Finan J. M., Curtis E. J., Anchukaitis H. M., Couture D. J., and Glazier S., “Investigations Into the DNA‐Binding Mode of Doxorubicinone,” Organic & Biomolecular Chemistry 17, no. 7 (2019): 1992–1998, 10.1039/c8ob02344a. PubMed DOI
Majzner K., Deckert‐Gaudig T., Baranska M., and Deckert V., “DOX‐DNA Interactions on the Nanoscale: In Situ Studies Using Tip‐Enhanced Raman Scattering,” Analytical Chemistry 96, no. 22 (2024): 8905–8913, 10.1021/acs.analchem.3c05372. PubMed DOI PMC
Fouzia P. F., Nasima A., Qureshi R., et al., “Electrochemical, Spectroscopic and Theoretical Monitoring of Anthracyclines' Interactions With DNA and Ascorbic Acid by Adopting Two Routes: Cancer Cell Line Studies,” PLoS One 13, no. 10 (2018): 1–19, 10.1371/journal.pone.0205764. PubMed DOI PMC
Hassani Moghadam F., Taher M. A., and Karimi‐Maleh H., “Doxorubicin Anticancer Drug Monitoring by ds‐Dna‐Based Electrochemical Biosensor in Clinical Samples,” Micromachines 12, no. 7 (2021): 808, 10.3390/mi12070808. PubMed DOI PMC
Airoldi M., Barone G., Gennaro G., Giuliani A. M., and Giustini M., “Interaction of Doxorubicin With Polynucleotides,” A Spectroscopic Study. Biochemistry 53, no. 13 (2014): 2197–2207, 10.1021/bi401687v. PubMed DOI
Jawad B., Poudel L., Podgornik R., Steinmetz N. F., and Ching W. Y., “Molecular Mechanism and Binding Free Energy of Doxorubicin Intercalation in DNA,” Physical Chemistry Chemical Physics 21, no. 7 (2019): 3877–3893, 10.1039/c8cp06776g. PubMed DOI
Lei H., Wang X., and Wu C., “Early Stage Intercalation of Doxorubicin to DNA Fragments Observed in Molecular Dynamics Binding Simulations,” Journal of Molecular Graphics & Modelling 38 (2012): 279–289, 10.1016/j.jmgm.2012.05.006. PubMed DOI
Mauro E., Lapaillerie D., Tumiotto C., et al., “Modulation of the Functional Interfaces Between Retroviral Intasomes and the Human Nucleosome,” MBio 14, no. 4 (2023): 14, 10.1128/mbio.01083-23. PubMed DOI PMC
Shukla A., Kumari S., Sankar M., and Nair M. S., “Insights Into the Mechanism of Binding of Doxorubicin and a Chlorin Compound With 22‐Mer c‐Myc G Quadruplex,” Biochimica et Biophysica Acta, General Subjects 1867, no. 12 (2023): 130482, 10.1016/j.bbagen.2023.130482. PubMed DOI
Manet I., Manoli F., Zambelli B., et al., “Complexes of the Antitumoral Drugs Doxorubicin and Sabarubicin With Telomeric G‐Quadruplex in Basket Conformation: Ground and Excited State Properties,” Photochemical & Photobiological Sciences 10, no. 8 (2011): 1326–1337, 10.1039/c1pp05065f. PubMed DOI
Hiyama E. and Hiyama K., “Telomerase as Tumor Marker,” Cancer Letters 194, no. 2 (2003): 221–233, 10.1016/S0304-3835(02)00709-7. PubMed DOI
Drew H. R., Wing R. M., Takano T., et al., “Structure of a B‐DNA Dodecamer: Conformation and Dynamics,” Proceedings of the National Academy of Sciences of the United States of America 78, no. 4 (1981): 2179–2183, 10.1073/pnas.78.4.2179. PubMed DOI PMC
Stump S., Mou T. C., Sprang S. R., Natale N. R., and Beall H. D., “Crystal Structure of the Major Quadruplex Formed in the Promoter Region of the Human C‐MYC Oncogene,” PLoS One 13, no. 10 (2018): 1–15, 10.1371/journal.pone.0205584. PubMed DOI PMC
Tachiwana H., Kagawa W., Osakabe A., et al., “Structural Basis of Instability of the Nucleosome Containing a Testis‐Specific Histone Variant, Human H3T,” Proceedings of the National Academy of Sciences of the United States of America 107, no. 23 (2010): 10454–10459, 10.1073/pnas.1003064107. PubMed DOI PMC
Anandakrishnan R., Aguilar B., and Onufriev A. V., “H++ 3.0: Automating PK Prediction and the Preparation of Biomolecular Structures for Atomistic Molecular Modeling and Simulations,” Nucleic Acids Research 40, no. W1 (2012): 537–541, 10.1093/nar/gks375. PubMed DOI PMC
Izadi S., Anandakrishnan R., and Onufriev A. V., “Building Water Models: A Different Approach,” Journal of Physical Chemistry Letters 5, no. 21 (2014): 3863–3871, 10.1021/jz501780a. PubMed DOI PMC
Joung I. S. and T. E. Cheatham, III , “Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations,” Journal of Physical Chemistry. B 112, no. 30 (2008): 9020–9041, 10.1021/jp8001614. PubMed DOI PMC
Zgarbová M., Šponer J., and Jurečka P., “Z‐DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA Torsions for AMBER,” Journal of Chemical Theory and Computation 17, no. 10 (2021): 6292–6301, 10.1021/acs.jctc.1c00697. PubMed DOI
Pérez A., Marchán I., Svozil D., et al., “Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers,” Biophysical Journal 92, no. 11 (2007): 3817–3829, 10.1529/biophysj.106.097782. PubMed DOI PMC
Cornell W. D., Cieplak P., Bayly C. I., et al., “A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules,” Journal of the American Chemical Society 117, no. 19 (1995): 5179–5197, 10.1021/ja00124a002. DOI
Krepl M., Zgarbová M., Stadlbauer P., et al., “Reference Simulations of Noncanonical Nucleic Acids With Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z‐DNA,” Journal of Chemical Theory and Computation 8, no. 7 (2012): 2506–2520, 10.1021/ct300275s. PubMed DOI PMC
Zgarbová M., Luque F. J., Šponer J., Cheatham T. E., Otyepka M., and Jurečka P., “Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters,” Journal of Chemical Theory and Computation 9, no. 5 (2013): 2339–2354, 10.1021/ct400154j. PubMed DOI PMC
Zgarbová M., Šponer J., Otyepka M., Cheatham T. E., Galindo‐Murillo R., and Jurečka P., “Refinement of the Sugar–Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z‐ and B‐DNA,” Journal of Chemical Theory and Computation 11, no. 12 (2015): 5723–5736, 10.1021/acs.jctc.5b00716. PubMed DOI
Maier J. A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K. E., and Simmerling C., “Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters From Ff99SB,” Journal of Chemical Theory and Computation 11, no. 8 (2015): 3696–3713, 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Wang J., Cieplak P., and Kollman P. A., “How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules?,” Journal of Computational Chemistry 21, no. 12 (2000): 1049–1074, 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI
Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., and Case D. A., “Development and Testing of a General Amber Force Field,” Journal of Computational Chemistry 25, no. 9 (2004): 1157–1174, 10.1002/jcc.20035. PubMed DOI
Frisch M. J., Trucks G. W., Schlegel H. B., et al., Gaussian 16, Revision B.01 (Wallingford CT: Gaussian, Inc, 2016).
Case D. A., Aktulga H. M., Belfon K., et al., “AmberTools,” Journal of Chemical Information and Modeling 63, no. 20 (2023): 6183–6191, 10.1021/acs.jcim.3c01153. PubMed DOI PMC
“The PyMOL Molecular Graphics System, Version 2.0,” Schrödinger, LLC.
Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., and Berendsen H. J. C., “GROMACS: Fast, Flexible, and Free,” Journal of Computational Chemistry 26, no. 16 (2005): 1701–1718, 10.1002/jcc.20291. PubMed DOI
Humphrey W., Dalke A., and Schulten K., “VMD: Visual Molecular Dynamics,” Journal of Molecular Graphics 14, no. 1 (1996): 33–38, 10.1016/0263-7855(96)00018-5. PubMed DOI
Berendsen H., Postma J., Vangunsteren W., Dinola A., and Haak J., “Molecular‐Dynamics With Coupling to an External Bath,” Journal of Chemical Physics 81, no. 8 (1984): 3684–3690, 10.1063/1.448118. DOI
Gonçalves M. A., Gonçalves A. S., Franca T. C. C., Santana M. S., Da Cunha E. F. F., and Ramalho T. C., “Improved Protocol for the Selection of Structures From Molecular Dynamics of Organic Systems in Solution: The Value of Investigating Different Wavelet Families,” Journal of Chemical Theory and Computation 18, no. 10 (2022): 5810–5818, 10.1021/acs.jctc.2c00593. PubMed DOI
Sousa Da Silva A. W. and Vranken W. F., “ACPYPE–AnteChamber PYthon Parser InterfacE,” BMC Research Notes 5 (2012): 1–8, 10.1186/1756-0500-5-367. PubMed DOI PMC
Hub J. S., de Groot B. L., and van der Spoel D., “G_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates,” Journal of Chemical Theory and Computation 6, no. 12 (2010): 3713–3720, 10.1021/ct100494z. DOI
Kumar S., Rosenberg J. M., Bouzida D., Swendsen R. H., and Kollman P. A., “The Weighted Histogram Analysis Method for Free‐Energy Calculations on Biomolecules. I. The Method,” Journal of Computational Chemistry 13, no. 8 (1992): 1011–1021, 10.1002/jcc.540130812. DOI
Frederick C. A., Williams L. D., Ughetto G., et al., “Structural Comparison of Anticancer Drug‐DNA Complexes: Adriamycin and Daunomycin,” Biochemistry 29, no. 10 (1990): 2538–2549, 10.1021/bi00462a016. PubMed DOI
Shen Z., Mulholland K. A., Zheng Y., and Wu C., “Binding of Anticancer Drug Daunomycin to a TGGGGT G‐Quadruplex DNA Probed by all‐Atom Molecular Dynamics Simulations: Additional Pure Groove Binding Mode and Implications on Designing More Selective G‐Quadruplex Ligands,” Journal of Molecular Modeling 23, no. 9 (2017): 256, 10.1007/s00894-017-3417-6. PubMed DOI
Scaglioni L., Mondelli R., Artali R., Sirtori F. R., and Mazzini S., “Nemorubicin and Doxorubicin Bind the G‐Quadruplex Sequences of the Human Telomeres and of the c‐MYC Promoter Element Pu22,” Biochimica et Biophysica Acta (BBA) ‐ General Subjects 1860, no. 6 (2016): 1129–1138, 10.1016/j.bbagen.2016.02.011. PubMed DOI
Chaudhuri R., Bhattacharya S., Dash J., and Bhattacharya S., “Recent Update on Targeting C‐MYC G‐Quadruplexes by Small Molecules for Anticancer Therapeutics,” Journal of Medicinal Chemistry 64, no. 1 (2021): 42–70, 10.1021/acs.jmedchem.0c01145. PubMed DOI
Dai J., Carver M., Hurley L. H., and Yang D., “Solution Structure of a 2:1 Quindoline‐c‐MYC G‐Quadruplex: Insights Into G‐Quadruplex‐Interactive Small Molecule Drug Design,” Journal of the American Chemical Society 133, no. 44 (2011): 17673–17680, 10.1021/ja205646q. PubMed DOI PMC
Calabrese D. R., Chen X., Leon E. C., et al., “Chemical and Structural Studies Provide a Mechanistic Basis for Recognition of the MYC G‐Quadruplex,” Nature Communications 9, no. 1 (2018): 1–15, 10.1038/s41467-018-06315-w. PubMed DOI PMC
Dickerhoff J., Dai J., and Yang D., “Structural Recognition of the MYC Promoter G‐Quadruplex by a Quinoline Derivative: Insights Into Molecular Targeting of Parallel G‐Quadruplexes,” Nucleic Acids Research 49, no. 10 (2021): 5905–5915, 10.1093/nar/gkab330. PubMed DOI PMC
Dickerhoff J., Brundridge N., McLuckey S. A., and Yang D., “Berberine Molecular Recognition of the Parallel MYC G‐Quadruplex in Solution,” Journal of Medicinal Chemistry 64, no. 21 (2021): 16205–16212, 10.1021/acs.jmedchem.1c01508. PubMed DOI PMC
Liu W., Lin C., Wu G., Dai J., Chang T. C., and Yang D., “Structures of 1:1 and 2:1 Complexes of BMVC and MYC Promoter G‐Quadruplex Reveal a Mechanism of Ligand Conformation Adjustment for G4‐Recognition,” Nucleic Acids Research 47, no. 22 (2019): 11931–11942, 10.1093/nar/gkz1015. PubMed DOI PMC
Liu W., Zhu B. C., Liu L. Y., et al., “Solution Structures and Effects of a Platinum Compound Successively Bound MYC G‐Quadruplex,” Nucleic Acids Research 52, no. 16 (2024): 9397–9406, 10.1093/nar/gkae649. PubMed DOI PMC
Kotar A., Wang B., Shivalingam A., Gonzalez‐Garcia J., Vilar R., and Plavec J., “NMR Structure of a Triangulenium‐Based Long‐Lived Fluorescence Probe Bound to a G‐Quadruplex,” Angewandte Chemie 55, no. 40 (2016): 12508–12511, 10.1002/anie.201606877. PubMed DOI
Langer M., Paloncýová M., Otyepka M., et al., “Molecular Fluorophores Self‐Organize Into C‐Dot Seeds and Incorporate Into C‐Dot Structures,” Journal of Physical Chemistry Letters 11, no. 19 (2020): 8252–8258, 10.1021/acs.jpclett.0c01873. PubMed DOI
Zhang R., Zhu J., Sun D., et al., “The Mechanism of Dynamic Interaction Between Doxorubicin and Calf Thymus DNA at the Single‐Molecule Level Based on Confocal Raman Spectroscopy,” Micromachines 13, no. 6 (2022): 13, 10.3390/mi13060940. PubMed DOI PMC
Liu H., Ma W., Xie J., et al., “Nucleosome Positioning and Its Role in Gene Regulation in Yeast,” in The Yeast Role in Medical Applications (London, UK: InTech, 2018), 10.5772/intechopen.70935. DOI
Tan S. and Davey C. A., “Nucleosome Structural Studies,” Current Opinion in Structural Biology 21, no. 1 (2011): 128–136, 10.1016/j.sbi.2010.11.006. PubMed DOI PMC
Retureau R., Foloppe N., Elbahnsi A., Oguey C., and Hartmann B., “A Dynamic View of DNA Structure Within the Nucleosome: Biological Implications,” Journal of Structural Biology 211, no. 1 (2020): 107511, 10.1016/j.jsb.2020.107511. PubMed DOI
Edayathumangalam R. S., Weyermannt P., Gottesfeld J. M., Dervants P. B., and Luger K., “Molecular Recognition of the Nucleosomal "Supergroove",” Proceedings of the National Academy of Sciences of the United States of America 101, no. 18 (2004): 6864–6869, 10.1073/pnas.0401743101. PubMed DOI PMC
Pedone F. and Santoni D., “Preferential Nucleosome Occupancy at High Values of DNA Helical Rise,” DNA Research 19, no. 1 (2012): 81–90, 10.1093/dnares/dsr043. PubMed DOI PMC