Sequential electron transfer governs the UV-induced self-repair of DNA photolesions
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29732095
PubMed Central
PMC5916108
DOI
10.1039/c8sc00024g
PII: c8sc00024g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Cyclobutane pyrimidine dimers (CpDs) are among the most common DNA lesions occurring due to the interaction with ultraviolet light. While photolyases have been well known as external factors repairing CpDs, the intrinsic self-repairing capabilities of the GAT[double bond, length as m-dash]T DNA sequence were discovered only recently and are still largely obscure. Here, we elucidate the mechanistic details of this self-repair process by means of MD simulations and QM/MM computations involving the algebraic diagrammatic construction to the second order [ADC(2)] method. We show that local UV-excitation of guanine may be followed by up to three subsequent electron transfers, which may eventually enable efficient CpD ring opening when the negative charge resides on the T[double bond, length as m-dash]T dimer. Consequently, the molecular mechanism of GAT[double bond, length as m-dash]T self-repair can be envisaged as sequential electron transfer (SET) occurring downhill along the slope of the S1 potential energy surface. Even though the general features of the SET mechanism are retained in both of the studied stacked conformers, our optimizations of different S1/S0 state crossings revealed minor differences which could influence their self-repair efficiencies. We expect that such assessment of the availability and efficiency of the SET process in other DNA oligomers could hint towards other sequences exhibiting similar photochemical properties. Such explorations will be particularly fascinating in the context of the origins of biomolecules on Earth, owing to the lack of external repairing factors in the Archean age.
Zobrazit více v PubMed
Taylor J. S. Acc. Chem. Res. 1994;27:76–82.
Sinha R. P., Häder D.-P. Photochem. Photobiol. Sci. 2002;1:225–236. PubMed
Weber S. Biochim. Biophys. Acta, Bioenerg. 2005;1707:1–23. PubMed
Todo T., Takemori H., Ryo H., Lhara M., Matsunaga T., Nikaido O., Sato K., Nomura T. Nature. 1993;361:371–374. PubMed
Cleaver J. E., Crowley E. Front. Biosci. 2002;7:d1024–1043. PubMed
Gilchrest B. A., Eller M. S., Geller A. C., Yaar M. N. Engl. J. Med. 1999;340:1341–1348. PubMed
Reardon J. T., Sancar A. Genes Dev. 2003;17:2539–2551. PubMed PMC
Faraji S., Zhong D., Dreuw A. Angew. Chem., Int. Ed. 2016;55:5175–5178. PubMed PMC
Faraji S., Dreuw A. Photochem. Photobiol. 2017;93:37–50. PubMed
Faraji S., Dreuw A. Annu. Rev. Phys. Chem. 2014;65:275–292. PubMed
Schreier W. J., Schrader T. E., Koller F. O., Gilch P., Crespo-Hernández C. E., Swaminathan V. N., Carell T., Zinth W., Kohler B. Science. 2007;315:625–629. PubMed PMC
Liu L., Pilles B. M., Gontcharov J., Bucher D. B., Zinth W. J. Phys. Chem. B. 2016;120:292–298. PubMed
Rauer C., Nogueira J. J., Marquetand P., González L. J. Am. Chem. Soc. 2016;138:15911–15916. PubMed
Schreier W. J., Kubon J., Regner N., Haiser K., Schrader T. E., Zinth W., Clivio P., Gilch P. J. Am. Chem. Soc. 2009;131:5038–5039. PubMed
Haiser K., Fingerhut B. P., Heil K., Glas A., Herzog T. T., Pilles B. M., Schreier W. J., Zinth W., de Vivie-Riedle R., Carell T. Angew. Chem., Int. Ed. 2012;51:408–411. PubMed
Lee W., Kodali G., Stanley R. J., Matsika S. Chem.–Eur. J. 2016;22:11371–11381. PubMed
Rauer C., Nogueira J. J., Marquetand P., González L. Monatsh. Chem. 2018;149:1–9. PubMed PMC
Ranjan S., Sasselov D. D. Astrobiology. 2016;16:68–88. PubMed
Ranjan S., Sasselov D. D. Astrobiology. 2017;17:169–204. PubMed
Cockell C. S., Horneck G. Photochem. Photobiol. 2001;73:447–451. PubMed
Cockell C. S. Origins Life Evol. Biospheres. 2000;30:467–500. PubMed
Rapf R. J., Vaida V. Phys. Chem. Chem. Phys. 2016;18:20067–20084. PubMed
Bucher D. B., Kufner C. L., Schlueter A., Carell T., Zinth W. J. Am. Chem. Soc. 2016;138:186–190. PubMed
Beckstead A. A., Zhang Y., Vries M. S. d., Kohler B. Phys. Chem. Chem. Phys. 2016;18:24228–24238. PubMed
Bucher D. B., Pilles B. M., Carell T., Zinth W. Proc. Natl. Acad. Sci. U. S. A. 2014;111:4369–4374. PubMed PMC
Spata V. A., Matsika S. Phys. Chem. Chem. Phys. 2015;17:31073–31083. PubMed
Middleton C. T., Harpe K. d. L., Su C., Law Y. K., Crespo-Hernández C. E., Kohler B. Annu. Rev. Phys. Chem. 2009;60:217–239. PubMed
Zhang Y., Dood J., Beckstead A. A., Li X.-B., Nguyen K. V., Burrows C. J., Improta R., Kohler B. Proc. Natl. Acad. Sci. U. S. A. 2014;111:11612–11617. PubMed PMC
Martinez-Fernandez L., Zhang Y., Harpe K. d. L., Beckstead A. A., Kohler B., Improta R. Phys. Chem. Chem. Phys. 2016;18:21241–21245. PubMed
Dreuw A., Head-Gordon M. J. Am. Chem. Soc. 2004;126:4007–4016. PubMed
Maitra N. T. J. Phys.: Condens. Matter. 2017;29:423001. PubMed
Plasser F., Crespo-Otero R., Pederzoli M., Pittner J., Lischka H., Barbatti M. J. Chem. Theory Comput. 2014;10:1395–1405. PubMed
Trofimov A. B., Schirmer J. J. Phys. B: At., Mol. Opt. Phys. 1995;28:2299.
Dreuw A., Wormit M. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2015;5:82–95.
Spata V. A., Matsika S. J. Phys. Chem. A. 2014;118:12021–12030. PubMed
Spata V. A., Lee W., Matsika S. J. Phys. Chem. Lett. 2016;7:976–984. PubMed
Lee W., Matsika S. Phys. Chem. Chem. Phys. 2015;17:9927–9935. PubMed
Plasser F., Aquino A. J. A., Hase W. L., Lischka H. J. Phys. Chem. A. 2012;116:11151–11160. PubMed
Plasser F., Lischka H. Photochem. Photobiol. Sci. 2013;12:1440–1452. PubMed
Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A. J. Am. Chem. Soc. 1995;117:5179–5197.
Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T. E. I., Laughton C. A., Orozco M. Biophys. J. 2007;92:3817–3829. PubMed PMC
Krepl M., Zgarbová M., Stadlbauer P., Otyepka M., Banáš P., Koča J., Cheatham T. E., Jurečka P., Šponer J. J. Chem. Theory Comput. 2012;8:2506–2520. PubMed PMC
Zgarbová M., Luque F. J., Šponer J., Cheatham T. E., Otyepka M., Jurečka P. J. Chem. Theory Comput. 2013;9:2339–2354. PubMed PMC
Zgarbová M., Šponer J., Otyepka M., Cheatham T. E., Galindo-Murillo R., Jurečka P. J. Chem. Theory Comput. 2015;11:5723–5736. PubMed
Berendsen H. J. C., Grigera J. R., Straatsma T. P. J. Phys. Chem. 1987;91:6269–6271.
Izadi S., Anandakrishnan R., Onufriev A. V. J. Phys. Chem. Lett. 2014;5:3863–3871. PubMed PMC
Joung I. S., Cheatham T. E. J. Phys. Chem. B. 2008;112:9020–9041. PubMed PMC
Case D., Berryman J., Betz R., Cerutti D., Cheatham III T., Darden T., Duke R., Giese T., Gohlke H., Goetz A., Homeyer N., Izadi S., Janowski P., Kaus J., Kovalenko A., Lee T., Legrand S., Li P., Luchko T., Luo R., Madej B., Merz K., Monard G., Needham P., Nguyen H., Nguyen H., Omelyan I., Onufriev A., Roe D., Roitberg A., Salomon-Ferrer R., Simmerling C., Smith W., Swails J., Walker R., Wang J., Wolf R., Wu X., York D. and Kollman P., AMBER 14, 2015.
Kührová P., Best R. B., Bottaro S., Bussi G., Šponer J., Otyepka M., Banáš P. J. Chem. Theory Comput. 2016;12:4534–4548. PubMed PMC
Rodriguez A., Laio A. Science. 2014;344:1492–1496. PubMed
Bottaro S., DiPalma F., Bussi G. Nucleic Acids Res. 2014;42:13306–13314. PubMed PMC
Improta R., Santoro F., Blancafort L. Chem. Rev. 2016;116:3540–3593. PubMed
Nogueira J. J., Plasser F., González L. Chem. Sci. 2017;8:5682–5691. PubMed PMC
Götz A. W., Clark M. A., Walker R. C. J. Comput. Chem. 2014;35:95–108. PubMed PMC
Ahlrichs R., Bär M., Häser M., Horn H., Kölmel C. Chem. Phys. Lett. 1989;162:165–169.
Grimme S., Brandenburg J. G., Bannwarth C., Hansen A. J. Chem. Phys. 2015;143:054107. PubMed
Szabla R., Havrila M., Kruse H., Šponer J. J. Phys. Chem. B. 2016;120:10635–10648. PubMed
Kruse H., local development version, Institute of Biophysics, 2016, Brno, https://github.com/hokru/xopt.
Kruse H., Šponer J. Phys. Chem. Chem. Phys. 2015;17:1399–1410. PubMed
Eckert F., Pulay P., Werner H.-J. J. Comput. Chem. 1997;18:1473–1483.
Hättig C., Advances in Quantum Chemistry, Academic Press, 2005, vol. 50, pp. 37–60.
Stojanović L., Bai S., Nagesh J., Izmaylov A. F., Crespo-Otero R., Lischka H., Barbatti M. Molecules. 2016;21:1603. PubMed PMC
Plasser F., Wormit M., Dreuw A. J. Chem. Phys. 2014;141:024106. PubMed
Plasser F., Bäppler S. A., Wormit M., Dreuw A. J. Chem. Phys. 2014;141:024107. PubMed
Knizia G. J. Chem. Theory Comput. 2013;9:4834–4843. PubMed
Levine B. G., Coe J. D., Martínez T. J. J. Phys. Chem. B. 2008;112:405–413. PubMed
Tuna D., Lefrancois D., Wolański Ł., Gozem S., Schapiro I., Andruniów T., Dreuw A., Olivucci M. J. Chem. Theory Comput. 2015;11:5758–5781. PubMed
Szabla R., Góra R. W., Šponer J. Phys. Chem. Chem. Phys. 2016;18:20208–20218. PubMed
Bergonzo C., Henriksen N. M., Roe D. R., Swails J. M., Roitberg A. E., Cheatham T. E. J. Chem. Theory Comput. 2014;10:492–499. PubMed PMC
Tubbs J. D., Condon D. E., Kennedy S. D., Hauser M., Bevilacqua P. C., Turner D. H. Biochemistry. 2013;52:996–1010. PubMed PMC
Schrodt M. V., Andrews C. T., Elcock A. H. J. Chem. Theory Comput. 2015;11:5906–5917. PubMed PMC
Bergonzo C., Cheatham T. E. J. Chem. Theory Comput. 2015;11:3969–3972. PubMed
Besley N. A., Hirst J. D. J. Am. Chem. Soc. 1999;121:8559–8566.
Szabla R., Kruse H., Sponer J., Gora R. W. Phys. Chem. Chem. Phys. 2017;19:17531–17537. PubMed
Barbatti M., Aquino A. J. A., Szymczak J. J., Nachtigallová D., Hobza P., Lischka H. Proc. Natl. Acad. Sci. U. S. A. 2010;107:21453–21458. PubMed PMC
Yamazaki S., Domcke W., Sobolewski A. L. J. Phys. Chem. A. 2008;112:11965–11968. PubMed
Cave R. J., Newton M. D. J. Chem. Phys. 1997;106:9213–9226.
Subotnik J. E., Yeganeh S., Cave R. J., Ratner M. A. J. Chem. Phys. 2008;129:244101. PubMed
Masson F., Laino T., Tavernelli I., Rothlisberger U., Hutter J. J. Am. Chem. Soc. 2008;130:3443–3450. PubMed