Sequential electron transfer governs the UV-induced self-repair of DNA photolesions

. 2018 Mar 28 ; 9 (12) : 3131-3140. [epub] 20180222

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29732095

Cyclobutane pyrimidine dimers (CpDs) are among the most common DNA lesions occurring due to the interaction with ultraviolet light. While photolyases have been well known as external factors repairing CpDs, the intrinsic self-repairing capabilities of the GAT[double bond, length as m-dash]T DNA sequence were discovered only recently and are still largely obscure. Here, we elucidate the mechanistic details of this self-repair process by means of MD simulations and QM/MM computations involving the algebraic diagrammatic construction to the second order [ADC(2)] method. We show that local UV-excitation of guanine may be followed by up to three subsequent electron transfers, which may eventually enable efficient CpD ring opening when the negative charge resides on the T[double bond, length as m-dash]T dimer. Consequently, the molecular mechanism of GAT[double bond, length as m-dash]T self-repair can be envisaged as sequential electron transfer (SET) occurring downhill along the slope of the S1 potential energy surface. Even though the general features of the SET mechanism are retained in both of the studied stacked conformers, our optimizations of different S1/S0 state crossings revealed minor differences which could influence their self-repair efficiencies. We expect that such assessment of the availability and efficiency of the SET process in other DNA oligomers could hint towards other sequences exhibiting similar photochemical properties. Such explorations will be particularly fascinating in the context of the origins of biomolecules on Earth, owing to the lack of external repairing factors in the Archean age.

Zobrazit více v PubMed

Taylor J. S. Acc. Chem. Res. 1994;27:76–82.

Sinha R. P., Häder D.-P. Photochem. Photobiol. Sci. 2002;1:225–236. PubMed

Weber S. Biochim. Biophys. Acta, Bioenerg. 2005;1707:1–23. PubMed

Todo T., Takemori H., Ryo H., Lhara M., Matsunaga T., Nikaido O., Sato K., Nomura T. Nature. 1993;361:371–374. PubMed

Cleaver J. E., Crowley E. Front. Biosci. 2002;7:d1024–1043. PubMed

Gilchrest B. A., Eller M. S., Geller A. C., Yaar M. N. Engl. J. Med. 1999;340:1341–1348. PubMed

Reardon J. T., Sancar A. Genes Dev. 2003;17:2539–2551. PubMed PMC

Faraji S., Zhong D., Dreuw A. Angew. Chem., Int. Ed. 2016;55:5175–5178. PubMed PMC

Faraji S., Dreuw A. Photochem. Photobiol. 2017;93:37–50. PubMed

Faraji S., Dreuw A. Annu. Rev. Phys. Chem. 2014;65:275–292. PubMed

Schreier W. J., Schrader T. E., Koller F. O., Gilch P., Crespo-Hernández C. E., Swaminathan V. N., Carell T., Zinth W., Kohler B. Science. 2007;315:625–629. PubMed PMC

Liu L., Pilles B. M., Gontcharov J., Bucher D. B., Zinth W. J. Phys. Chem. B. 2016;120:292–298. PubMed

Rauer C., Nogueira J. J., Marquetand P., González L. J. Am. Chem. Soc. 2016;138:15911–15916. PubMed

Schreier W. J., Kubon J., Regner N., Haiser K., Schrader T. E., Zinth W., Clivio P., Gilch P. J. Am. Chem. Soc. 2009;131:5038–5039. PubMed

Haiser K., Fingerhut B. P., Heil K., Glas A., Herzog T. T., Pilles B. M., Schreier W. J., Zinth W., de Vivie-Riedle R., Carell T. Angew. Chem., Int. Ed. 2012;51:408–411. PubMed

Lee W., Kodali G., Stanley R. J., Matsika S. Chem.–Eur. J. 2016;22:11371–11381. PubMed

Rauer C., Nogueira J. J., Marquetand P., González L. Monatsh. Chem. 2018;149:1–9. PubMed PMC

Ranjan S., Sasselov D. D. Astrobiology. 2016;16:68–88. PubMed

Ranjan S., Sasselov D. D. Astrobiology. 2017;17:169–204. PubMed

Cockell C. S., Horneck G. Photochem. Photobiol. 2001;73:447–451. PubMed

Cockell C. S. Origins Life Evol. Biospheres. 2000;30:467–500. PubMed

Rapf R. J., Vaida V. Phys. Chem. Chem. Phys. 2016;18:20067–20084. PubMed

Bucher D. B., Kufner C. L., Schlueter A., Carell T., Zinth W. J. Am. Chem. Soc. 2016;138:186–190. PubMed

Beckstead A. A., Zhang Y., Vries M. S. d., Kohler B. Phys. Chem. Chem. Phys. 2016;18:24228–24238. PubMed

Bucher D. B., Pilles B. M., Carell T., Zinth W. Proc. Natl. Acad. Sci. U. S. A. 2014;111:4369–4374. PubMed PMC

Spata V. A., Matsika S. Phys. Chem. Chem. Phys. 2015;17:31073–31083. PubMed

Middleton C. T., Harpe K. d. L., Su C., Law Y. K., Crespo-Hernández C. E., Kohler B. Annu. Rev. Phys. Chem. 2009;60:217–239. PubMed

Zhang Y., Dood J., Beckstead A. A., Li X.-B., Nguyen K. V., Burrows C. J., Improta R., Kohler B. Proc. Natl. Acad. Sci. U. S. A. 2014;111:11612–11617. PubMed PMC

Martinez-Fernandez L., Zhang Y., Harpe K. d. L., Beckstead A. A., Kohler B., Improta R. Phys. Chem. Chem. Phys. 2016;18:21241–21245. PubMed

Dreuw A., Head-Gordon M. J. Am. Chem. Soc. 2004;126:4007–4016. PubMed

Maitra N. T. J. Phys.: Condens. Matter. 2017;29:423001. PubMed

Plasser F., Crespo-Otero R., Pederzoli M., Pittner J., Lischka H., Barbatti M. J. Chem. Theory Comput. 2014;10:1395–1405. PubMed

Trofimov A. B., Schirmer J. J. Phys. B: At., Mol. Opt. Phys. 1995;28:2299.

Dreuw A., Wormit M. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2015;5:82–95.

Spata V. A., Matsika S. J. Phys. Chem. A. 2014;118:12021–12030. PubMed

Spata V. A., Lee W., Matsika S. J. Phys. Chem. Lett. 2016;7:976–984. PubMed

Lee W., Matsika S. Phys. Chem. Chem. Phys. 2015;17:9927–9935. PubMed

Plasser F., Aquino A. J. A., Hase W. L., Lischka H. J. Phys. Chem. A. 2012;116:11151–11160. PubMed

Plasser F., Lischka H. Photochem. Photobiol. Sci. 2013;12:1440–1452. PubMed

Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A. J. Am. Chem. Soc. 1995;117:5179–5197.

Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T. E. I., Laughton C. A., Orozco M. Biophys. J. 2007;92:3817–3829. PubMed PMC

Krepl M., Zgarbová M., Stadlbauer P., Otyepka M., Banáš P., Koča J., Cheatham T. E., Jurečka P., Šponer J. J. Chem. Theory Comput. 2012;8:2506–2520. PubMed PMC

Zgarbová M., Luque F. J., Šponer J., Cheatham T. E., Otyepka M., Jurečka P. J. Chem. Theory Comput. 2013;9:2339–2354. PubMed PMC

Zgarbová M., Šponer J., Otyepka M., Cheatham T. E., Galindo-Murillo R., Jurečka P. J. Chem. Theory Comput. 2015;11:5723–5736. PubMed

Berendsen H. J. C., Grigera J. R., Straatsma T. P. J. Phys. Chem. 1987;91:6269–6271.

Izadi S., Anandakrishnan R., Onufriev A. V. J. Phys. Chem. Lett. 2014;5:3863–3871. PubMed PMC

Joung I. S., Cheatham T. E. J. Phys. Chem. B. 2008;112:9020–9041. PubMed PMC

Case D., Berryman J., Betz R., Cerutti D., Cheatham III T., Darden T., Duke R., Giese T., Gohlke H., Goetz A., Homeyer N., Izadi S., Janowski P., Kaus J., Kovalenko A., Lee T., Legrand S., Li P., Luchko T., Luo R., Madej B., Merz K., Monard G., Needham P., Nguyen H., Nguyen H., Omelyan I., Onufriev A., Roe D., Roitberg A., Salomon-Ferrer R., Simmerling C., Smith W., Swails J., Walker R., Wang J., Wolf R., Wu X., York D. and Kollman P., AMBER 14, 2015.

Kührová P., Best R. B., Bottaro S., Bussi G., Šponer J., Otyepka M., Banáš P. J. Chem. Theory Comput. 2016;12:4534–4548. PubMed PMC

Rodriguez A., Laio A. Science. 2014;344:1492–1496. PubMed

Bottaro S., DiPalma F., Bussi G. Nucleic Acids Res. 2014;42:13306–13314. PubMed PMC

Improta R., Santoro F., Blancafort L. Chem. Rev. 2016;116:3540–3593. PubMed

Nogueira J. J., Plasser F., González L. Chem. Sci. 2017;8:5682–5691. PubMed PMC

Götz A. W., Clark M. A., Walker R. C. J. Comput. Chem. 2014;35:95–108. PubMed PMC

Ahlrichs R., Bär M., Häser M., Horn H., Kölmel C. Chem. Phys. Lett. 1989;162:165–169.

Grimme S., Brandenburg J. G., Bannwarth C., Hansen A. J. Chem. Phys. 2015;143:054107. PubMed

Szabla R., Havrila M., Kruse H., Šponer J. J. Phys. Chem. B. 2016;120:10635–10648. PubMed

Kruse H., local development version, Institute of Biophysics, 2016, Brno, https://github.com/hokru/xopt.

Kruse H., Šponer J. Phys. Chem. Chem. Phys. 2015;17:1399–1410. PubMed

Eckert F., Pulay P., Werner H.-J. J. Comput. Chem. 1997;18:1473–1483.

Hättig C., Advances in Quantum Chemistry, Academic Press, 2005, vol. 50, pp. 37–60.

Stojanović L., Bai S., Nagesh J., Izmaylov A. F., Crespo-Otero R., Lischka H., Barbatti M. Molecules. 2016;21:1603. PubMed PMC

Plasser F., Wormit M., Dreuw A. J. Chem. Phys. 2014;141:024106. PubMed

Plasser F., Bäppler S. A., Wormit M., Dreuw A. J. Chem. Phys. 2014;141:024107. PubMed

Knizia G. J. Chem. Theory Comput. 2013;9:4834–4843. PubMed

Levine B. G., Coe J. D., Martínez T. J. J. Phys. Chem. B. 2008;112:405–413. PubMed

Tuna D., Lefrancois D., Wolański Ł., Gozem S., Schapiro I., Andruniów T., Dreuw A., Olivucci M. J. Chem. Theory Comput. 2015;11:5758–5781. PubMed

Szabla R., Góra R. W., Šponer J. Phys. Chem. Chem. Phys. 2016;18:20208–20218. PubMed

Bergonzo C., Henriksen N. M., Roe D. R., Swails J. M., Roitberg A. E., Cheatham T. E. J. Chem. Theory Comput. 2014;10:492–499. PubMed PMC

Tubbs J. D., Condon D. E., Kennedy S. D., Hauser M., Bevilacqua P. C., Turner D. H. Biochemistry. 2013;52:996–1010. PubMed PMC

Schrodt M. V., Andrews C. T., Elcock A. H. J. Chem. Theory Comput. 2015;11:5906–5917. PubMed PMC

Bergonzo C., Cheatham T. E. J. Chem. Theory Comput. 2015;11:3969–3972. PubMed

Besley N. A., Hirst J. D. J. Am. Chem. Soc. 1999;121:8559–8566.

Szabla R., Kruse H., Sponer J., Gora R. W. Phys. Chem. Chem. Phys. 2017;19:17531–17537. PubMed

Barbatti M., Aquino A. J. A., Szymczak J. J., Nachtigallová D., Hobza P., Lischka H. Proc. Natl. Acad. Sci. U. S. A. 2010;107:21453–21458. PubMed PMC

Yamazaki S., Domcke W., Sobolewski A. L. J. Phys. Chem. A. 2008;112:11965–11968. PubMed

Cave R. J., Newton M. D. J. Chem. Phys. 1997;106:9213–9226.

Subotnik J. E., Yeganeh S., Cave R. J., Ratner M. A. J. Chem. Phys. 2008;129:244101. PubMed

Masson F., Laino T., Tavernelli I., Rothlisberger U., Hutter J. J. Am. Chem. Soc. 2008;130:3443–3450. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...