Local-to-global signal transduction at the core of a Mn2+ sensing riboswitch

. 2019 Sep 20 ; 10 (1) : 4304. [epub] 20190920

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid31541094

Grantová podpora
S10 RR029205 NCRR NIH HHS - United States
R01 GM118524 NIGMS NIH HHS - United States
R35 GM118174 NIGMS NIH HHS - United States
P30 GM124165 NIGMS NIH HHS - United States
R01 GM062357 NIGMS NIH HHS - United States

Odkazy

PubMed 31541094
PubMed Central PMC6754395
DOI 10.1038/s41467-019-12230-5
PII: 10.1038/s41467-019-12230-5
Knihovny.cz E-zdroje

The widespread Mn2+-sensing yybP-ykoY riboswitch controls the expression of bacterial Mn2+ homeostasis genes. Here, we first determine the crystal structure of the ligand-bound yybP-ykoY riboswitch aptamer from Xanthomonas oryzae at 2.96 Å resolution, revealing two conformations with docked four-way junction (4WJ) and incompletely coordinated metal ions. In >100 µs of MD simulations, we observe that loss of divalents from the core triggers local structural perturbations in the adjacent docking interface, laying the foundation for signal transduction to the regulatory switch helix. Using single-molecule FRET, we unveil a previously unobserved extended 4WJ conformation that samples transient docked states in the presence of Mg2+. Only upon adding sub-millimolar Mn2+, however, can the 4WJ dock stably, a feature lost upon mutation of an adenosine contacting Mn2+ in the core. These observations illuminate how subtly differing ligand preferences of competing metal ions become amplified by the coupling of local with global RNA dynamics.

Zobrazit více v PubMed

Mandal M, Breaker RR. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 2004;5:451–463. doi: 10.1038/nrm1403. PubMed DOI

Serganov A, Nudler E. A decade of riboswitches. Cell. 2013;152:17–24. doi: 10.1016/j.cell.2012.12.024. PubMed DOI PMC

McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR. Riboswitch diversity and distribution. RNA. 2017;23:995–1011. doi: 10.1261/rna.061234.117. PubMed DOI PMC

Grundy FJ, Henkin TM. The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram-positive bacteria. Mol. Microbiol. 1998;30:737–749. doi: 10.1046/j.1365-2958.1998.01105.x. PubMed DOI

Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. 2002;419:952–956. doi: 10.1038/nature01145. PubMed DOI

Smith KD, et al. Structural basis of ligand binding by a c-di-GMP riboswitch. Nat. Struct. Mol. Biol. 2009;16:1218–1223. doi: 10.1038/nsmb.1702. PubMed DOI PMC

Nelson JW, et al. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat. Chem. Biol. 2013;9:834–839. doi: 10.1038/nchembio.1363. PubMed DOI PMC

Sudarsan N, et al. Riboswitches in eubacteria sense the second messenger cyclic Di-GMP. Science. 2008;321:411–413. doi: 10.1126/science.1159519. PubMed DOI PMC

Green NJ, Grundy FJ, Henkin TM. The T box mechanism: tRNA as a regulatory molecule. FEBS Lett. 2010;584:318–324. doi: 10.1016/j.febslet.2009.11.056. PubMed DOI PMC

Dann CE, III, et al. Structure and mechanism of a metal-sensing regulatory RNA. Cell. 2007;130:878–892. doi: 10.1016/j.cell.2007.06.051. PubMed DOI

Wedekind JE, Dutta D, Belashov IA, Jenkins JL. Metalloriboswitches: RNA-based inorganic ion sensors that regulate genes. J. Biol. Chem. 2017;292:9441–9450. doi: 10.1074/jbc.R117.787713. PubMed DOI PMC

Price IR, Gaballa A, Ding F, Helmann JD, Ke A. Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches. Mol. Cell. 2015;57:1110–1123. doi: 10.1016/j.molcel.2015.02.016. PubMed DOI PMC

Suddala KC, Walter NG. Riboswitch structure and dynamics by smFRET microscopy. Methods Enzymol. 2014;549:343–373. doi: 10.1016/B978-0-12-801122-5.00015-5. PubMed DOI PMC

Jones CP, Ferre-D'Amare AR. Long-range interactions in riboswitch control of gene expression. Annu Rev. Biophys. 2017;46:455–481. doi: 10.1146/annurev-biophys-070816-034042. PubMed DOI PMC

Barrick JCK, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RR. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl Acad. Sci. USA. 2004;101:6421–6426. doi: 10.1073/pnas.0308014101. PubMed DOI PMC

Argaman L, et al. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol. 2001;11:941–950. doi: 10.1016/S0960-9822(01)00270-6. PubMed DOI

Breaker R. R. Riboswitches and the RNA World. Cold Spring Harbor Perspectives in Biology. 2010;4(2):a003566–a003566. PubMed PMC

Dambach M, et al. The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. Mol. Cell. 2015;57:1099–1109. doi: 10.1016/j.molcel.2015.01.035. PubMed DOI PMC

Bachas ST, Ferre-D'Amare AR. Convergent use of heptacoordination for cation selectivity by RNA and protein metalloregulators. Cell Chem. Biol. 2018;25:962–973, e5. doi: 10.1016/j.chembiol.2018.04.016. PubMed DOI PMC

Liang H, et al. Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae. BMC Genomics. 2011;12:87. doi: 10.1186/1471-2164-12-87. PubMed DOI PMC

Li C, Tao J, Mao D, He C. A novel manganese efflux system, YebN, is required for virulence by Xanthomonas oryzae pv. oryzae. PLoS One. 2011;6:e21983. doi: 10.1371/journal.pone.0021983. PubMed DOI PMC

Sponer J, et al. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem. Rev. 2018;118:4177–4338. doi: 10.1021/acs.chemrev.7b00427. PubMed DOI PMC

Ditzler MA, Otyepka M, Sponer J, Walter NG. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe. Acc. Chem. Res. 2010;43:40–47. doi: 10.1021/ar900093g. PubMed DOI PMC

Leontis NB, Stombaugh J, Westhof E. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 2002;30:3497–3531. doi: 10.1093/nar/gkf481. PubMed DOI PMC

Duarte CM, Wadley LM, Pyle AM. RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. Nucleic Acids Res. 2003;31:4755–4761. doi: 10.1093/nar/gkg682. PubMed DOI PMC

Blanco M, Walter NG. Analysis of complex single-molecule FRET time trajectories. Methods Enzymol. 2010;472:153–178. doi: 10.1016/S0076-6879(10)72011-5. PubMed DOI PMC

Zhuang X, et al. Correlating structural dynamics and function in single ribozyme molecules. Science. 2002;296:1473–1476. doi: 10.1126/science.1069013. PubMed DOI

Rueda D., Bokinsky G., Rhodes M. M., Rust M. J., Zhuang X., Walter N. G. Single-molecule enzymology of RNA: Essential functional groups impact catalysis from a distance. Proceedings of the National Academy of Sciences. 2004;101(27):10066–10071. doi: 10.1073/pnas.0403575101. PubMed DOI PMC

Okumus B, Wilson TJ, Lilley DM, Ha T. Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys. J. 2004;87:2798–2806. doi: 10.1529/biophysj.104.045971. PubMed DOI PMC

Ditzler MA, Rueda D, Mo J, Hakansson K, Walter NG. A rugged free energy landscape separates multiple functional RNA folds throughout denaturation. Nucleic acids Res. 2008;36:7088–7099. doi: 10.1093/nar/gkn871. PubMed DOI PMC

Fiore JL, Kraemer B, Koberling F, Edmann R, Nesbitt DJ. Enthalpy-driven RNA folding: single-molecule thermodynamics of tetraloop-receptor tertiary interaction. Biochemistry. 2009;48:2550–2558. doi: 10.1021/bi8019788. PubMed DOI PMC

Greenfeld M, Solomatin SV, Herschlag D. Removal of covalent heterogeneity reveals simple folding behavior for P4-P6 RNA. J. Biol. Chem. 2011;286:19872–19879. doi: 10.1074/jbc.M111.235465. PubMed DOI PMC

Solomatin SV, Greenfeld M, Herschlag D. Implications of molecular heterogeneity for the cooperativity of biological macromolecules. Nat. Struct. Mol. Biol. 2011;18:732–734. doi: 10.1038/nsmb.2052. PubMed DOI PMC

Solomatin SV, Greenfeld M, Chu S, Herschlag D. Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature. 2010;463:681–684. doi: 10.1038/nature08717. PubMed DOI PMC

Marek MS, Johnson-Buck A, Walter NG. The shape-shifting quasispecies of RNA: one sequence, many functional folds. Phys. Chem. Chem. Phys. 2011;13:11524–11537. doi: 10.1039/c1cp20576e. PubMed DOI PMC

Rinaldi AJ, Lund PE, Blanco MR, Walter NG. The Shine-Dalgarno sequence of riboswitch-regulated single mRNAs shows ligand-dependent accessibility bursts. Nat. Commun. 2016;7:8976. doi: 10.1038/ncomms9976. PubMed DOI PMC

Sung HL, Nesbitt DJ. Single-molecule FRET kinetics of the Mn(2+) riboswitch: evidence for allosteric Mg(2+) control of “Induced-Fit” vs “Conformational Selection” folding pathways. J. Phys. Chem. B. 2019;123:2005–2015. doi: 10.1021/acs.jpcb.8b11841. PubMed DOI

Furukawa K, et al. Bacterial riboswitches cooperatively bind Ni(2+) or Co(2+) ions and control expression of heavy metal transporters. Mol. Cell. 2015;57:1088–1098. doi: 10.1016/j.molcel.2015.02.009. PubMed DOI PMC

Wakeman CA, Ramesh A, Winkler WC. Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs. J. Mol. Biol. 2009;392:723–735. doi: 10.1016/j.jmb.2009.07.033. PubMed DOI PMC

Pleiss JA, Derrick ML, Uhlenbeck OC. T7 RNA polymerase produces 5' end heterogeneity during in vitro transcription from certain templates. RNA. 1988;4:1313–1317. doi: 10.1017/S135583829800106X. PubMed DOI PMC

Kabsch W. XDS. Acta Cryst. 2010;D66:125–132. PubMed PMC

Robertson MP, Chi Y-I, Scott WG. Solving novel RNA structures using only secondary structural fragments. Methods. 2010;52:168–172. doi: 10.1016/j.ymeth.2010.06.011. PubMed DOI PMC

Adams PD, et al. Acta Crystallogr. D Biol. Crystallogr. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution; pp. 213–221. PubMed PMC

Terwilliger TC, et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 2009;65:582–601. doi: 10.1107/S0907444909012098. PubMed DOI PMC

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC

Afonine PV, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 2012;68:352–367. doi: 10.1107/S0907444912001308. PubMed DOI PMC

Salomon-Ferrer R, Gotz AW, Poole D, Le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald. J. Chem. Theory Comput. 2013;9:3878–3888. doi: 10.1021/ct400314y. PubMed DOI

Case DA, et al. AMBER 2016. San Francisco: University of California San Francisco; 2016.

Banáš P, et al. Performance of molecular mechanics force fields For RNA simulations: stability of UUCG and GNRA hairpins. J. Chem. Theory Comput. 2010;6:3836–3849. doi: 10.1021/ct100481h. PubMed DOI PMC

Perez A, et al. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 2007;92:3817–3829. doi: 10.1529/biophysj.106.097782. PubMed DOI PMC

Zgarbova M, et al. Refinement of the Cornell et al. Nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011;7:2886–2902. doi: 10.1021/ct200162x. PubMed DOI PMC

Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI

Joung IS, Cheatham TE., III Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112:9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC

Allnér O, Nilsson L, Villa A. Magnesium ion–water coordination and exchange in biomolecular simulations. J. Chem. Theory Comput. 2012;8:1493–1502. doi: 10.1021/ct3000734. PubMed DOI

Li P, Roberts BP, Chakravorty DK, Merz KM. Rational design of particle Mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent. J. Chem. Theory Comput. 2013;9:2733–2748. doi: 10.1021/ct400146w. PubMed DOI PMC

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Bottaro S, Di Palma F, Bussi G. The role of nucleobase interactions in RNA structure and dynamics. Nucleic Acids Res. 2014;42:13306–13314. doi: 10.1093/nar/gku972. PubMed DOI PMC

Michelotti N, de Silva C, Johnson-Buck AE, Manzo AJ, Walter NG. A bird's eye view tracking slow nanometer-scale movements of single molecular nano-assemblies. Methods Enzymol. 2010;475:121–148. doi: 10.1016/S0076-6879(10)75006-0. PubMed DOI PMC

Juette MF, et al. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods. 2016;13:341–344. doi: 10.1038/nmeth.3769. PubMed DOI PMC

Qin F, Li L. Model-based fitting of single-channel dwell-time distributions. Biophys. J. 2004;87:1657–1671. doi: 10.1529/biophysj.103.037531. PubMed DOI PMC

Liberman Joseph A., Suddala Krishna C., Aytenfisu Asaminew, Chan Dalen, Belashov Ivan A., Salim Mohammad, Mathews David H., Spitale Robert C., Walter Nils G., Wedekind Joseph E. Structural analysis of a class III preQ1riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics. Proceedings of the National Academy of Sciences. 2015;112(27):E3485–E3494. doi: 10.1073/pnas.1503955112. PubMed DOI PMC

Warhaut S, et al. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy. Nucleic Acids Res. 2017;45:5512–5522. doi: 10.1093/nar/gkx110. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace