Local-to-global signal transduction at the core of a Mn2+ sensing riboswitch
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
S10 RR029205
NCRR NIH HHS - United States
R01 GM118524
NIGMS NIH HHS - United States
R35 GM118174
NIGMS NIH HHS - United States
P30 GM124165
NIGMS NIH HHS - United States
R01 GM062357
NIGMS NIH HHS - United States
PubMed
31541094
PubMed Central
PMC6754395
DOI
10.1038/s41467-019-12230-5
PII: 10.1038/s41467-019-12230-5
Knihovny.cz E-zdroje
- MeSH
- bakteriální RNA chemie genetika metabolismus MeSH
- Escherichia coli genetika MeSH
- hořčík metabolismus MeSH
- konformace nukleové kyseliny MeSH
- krystalografie rentgenová MeSH
- Lactococcus lactis genetika metabolismus MeSH
- ligandy MeSH
- mangan metabolismus MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- mutace MeSH
- regulace genové exprese u bakterií MeSH
- riboswitch fyziologie MeSH
- signální transdukce * MeSH
- simulace molekulární dynamiky MeSH
- vazebná místa MeSH
- Xanthomonas metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- bakteriální RNA MeSH
- hořčík MeSH
- ligandy MeSH
- mangan MeSH
- riboswitch MeSH
The widespread Mn2+-sensing yybP-ykoY riboswitch controls the expression of bacterial Mn2+ homeostasis genes. Here, we first determine the crystal structure of the ligand-bound yybP-ykoY riboswitch aptamer from Xanthomonas oryzae at 2.96 Å resolution, revealing two conformations with docked four-way junction (4WJ) and incompletely coordinated metal ions. In >100 µs of MD simulations, we observe that loss of divalents from the core triggers local structural perturbations in the adjacent docking interface, laying the foundation for signal transduction to the regulatory switch helix. Using single-molecule FRET, we unveil a previously unobserved extended 4WJ conformation that samples transient docked states in the presence of Mg2+. Only upon adding sub-millimolar Mn2+, however, can the 4WJ dock stably, a feature lost upon mutation of an adenosine contacting Mn2+ in the core. These observations illuminate how subtly differing ligand preferences of competing metal ions become amplified by the coupling of local with global RNA dynamics.
Zobrazit více v PubMed
Mandal M, Breaker RR. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 2004;5:451–463. doi: 10.1038/nrm1403. PubMed DOI
Serganov A, Nudler E. A decade of riboswitches. Cell. 2013;152:17–24. doi: 10.1016/j.cell.2012.12.024. PubMed DOI PMC
McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR. Riboswitch diversity and distribution. RNA. 2017;23:995–1011. doi: 10.1261/rna.061234.117. PubMed DOI PMC
Grundy FJ, Henkin TM. The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram-positive bacteria. Mol. Microbiol. 1998;30:737–749. doi: 10.1046/j.1365-2958.1998.01105.x. PubMed DOI
Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. 2002;419:952–956. doi: 10.1038/nature01145. PubMed DOI
Smith KD, et al. Structural basis of ligand binding by a c-di-GMP riboswitch. Nat. Struct. Mol. Biol. 2009;16:1218–1223. doi: 10.1038/nsmb.1702. PubMed DOI PMC
Nelson JW, et al. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat. Chem. Biol. 2013;9:834–839. doi: 10.1038/nchembio.1363. PubMed DOI PMC
Sudarsan N, et al. Riboswitches in eubacteria sense the second messenger cyclic Di-GMP. Science. 2008;321:411–413. doi: 10.1126/science.1159519. PubMed DOI PMC
Green NJ, Grundy FJ, Henkin TM. The T box mechanism: tRNA as a regulatory molecule. FEBS Lett. 2010;584:318–324. doi: 10.1016/j.febslet.2009.11.056. PubMed DOI PMC
Dann CE, III, et al. Structure and mechanism of a metal-sensing regulatory RNA. Cell. 2007;130:878–892. doi: 10.1016/j.cell.2007.06.051. PubMed DOI
Wedekind JE, Dutta D, Belashov IA, Jenkins JL. Metalloriboswitches: RNA-based inorganic ion sensors that regulate genes. J. Biol. Chem. 2017;292:9441–9450. doi: 10.1074/jbc.R117.787713. PubMed DOI PMC
Price IR, Gaballa A, Ding F, Helmann JD, Ke A. Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches. Mol. Cell. 2015;57:1110–1123. doi: 10.1016/j.molcel.2015.02.016. PubMed DOI PMC
Suddala KC, Walter NG. Riboswitch structure and dynamics by smFRET microscopy. Methods Enzymol. 2014;549:343–373. doi: 10.1016/B978-0-12-801122-5.00015-5. PubMed DOI PMC
Jones CP, Ferre-D'Amare AR. Long-range interactions in riboswitch control of gene expression. Annu Rev. Biophys. 2017;46:455–481. doi: 10.1146/annurev-biophys-070816-034042. PubMed DOI PMC
Barrick JCK, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RR. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl Acad. Sci. USA. 2004;101:6421–6426. doi: 10.1073/pnas.0308014101. PubMed DOI PMC
Argaman L, et al. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol. 2001;11:941–950. doi: 10.1016/S0960-9822(01)00270-6. PubMed DOI
Breaker R. R. Riboswitches and the RNA World. Cold Spring Harbor Perspectives in Biology. 2010;4(2):a003566–a003566. PubMed PMC
Dambach M, et al. The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. Mol. Cell. 2015;57:1099–1109. doi: 10.1016/j.molcel.2015.01.035. PubMed DOI PMC
Bachas ST, Ferre-D'Amare AR. Convergent use of heptacoordination for cation selectivity by RNA and protein metalloregulators. Cell Chem. Biol. 2018;25:962–973, e5. doi: 10.1016/j.chembiol.2018.04.016. PubMed DOI PMC
Liang H, et al. Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae. BMC Genomics. 2011;12:87. doi: 10.1186/1471-2164-12-87. PubMed DOI PMC
Li C, Tao J, Mao D, He C. A novel manganese efflux system, YebN, is required for virulence by Xanthomonas oryzae pv. oryzae. PLoS One. 2011;6:e21983. doi: 10.1371/journal.pone.0021983. PubMed DOI PMC
Sponer J, et al. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem. Rev. 2018;118:4177–4338. doi: 10.1021/acs.chemrev.7b00427. PubMed DOI PMC
Ditzler MA, Otyepka M, Sponer J, Walter NG. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe. Acc. Chem. Res. 2010;43:40–47. doi: 10.1021/ar900093g. PubMed DOI PMC
Leontis NB, Stombaugh J, Westhof E. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 2002;30:3497–3531. doi: 10.1093/nar/gkf481. PubMed DOI PMC
Duarte CM, Wadley LM, Pyle AM. RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. Nucleic Acids Res. 2003;31:4755–4761. doi: 10.1093/nar/gkg682. PubMed DOI PMC
Blanco M, Walter NG. Analysis of complex single-molecule FRET time trajectories. Methods Enzymol. 2010;472:153–178. doi: 10.1016/S0076-6879(10)72011-5. PubMed DOI PMC
Zhuang X, et al. Correlating structural dynamics and function in single ribozyme molecules. Science. 2002;296:1473–1476. doi: 10.1126/science.1069013. PubMed DOI
Rueda D., Bokinsky G., Rhodes M. M., Rust M. J., Zhuang X., Walter N. G. Single-molecule enzymology of RNA: Essential functional groups impact catalysis from a distance. Proceedings of the National Academy of Sciences. 2004;101(27):10066–10071. doi: 10.1073/pnas.0403575101. PubMed DOI PMC
Okumus B, Wilson TJ, Lilley DM, Ha T. Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys. J. 2004;87:2798–2806. doi: 10.1529/biophysj.104.045971. PubMed DOI PMC
Ditzler MA, Rueda D, Mo J, Hakansson K, Walter NG. A rugged free energy landscape separates multiple functional RNA folds throughout denaturation. Nucleic acids Res. 2008;36:7088–7099. doi: 10.1093/nar/gkn871. PubMed DOI PMC
Fiore JL, Kraemer B, Koberling F, Edmann R, Nesbitt DJ. Enthalpy-driven RNA folding: single-molecule thermodynamics of tetraloop-receptor tertiary interaction. Biochemistry. 2009;48:2550–2558. doi: 10.1021/bi8019788. PubMed DOI PMC
Greenfeld M, Solomatin SV, Herschlag D. Removal of covalent heterogeneity reveals simple folding behavior for P4-P6 RNA. J. Biol. Chem. 2011;286:19872–19879. doi: 10.1074/jbc.M111.235465. PubMed DOI PMC
Solomatin SV, Greenfeld M, Herschlag D. Implications of molecular heterogeneity for the cooperativity of biological macromolecules. Nat. Struct. Mol. Biol. 2011;18:732–734. doi: 10.1038/nsmb.2052. PubMed DOI PMC
Solomatin SV, Greenfeld M, Chu S, Herschlag D. Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature. 2010;463:681–684. doi: 10.1038/nature08717. PubMed DOI PMC
Marek MS, Johnson-Buck A, Walter NG. The shape-shifting quasispecies of RNA: one sequence, many functional folds. Phys. Chem. Chem. Phys. 2011;13:11524–11537. doi: 10.1039/c1cp20576e. PubMed DOI PMC
Rinaldi AJ, Lund PE, Blanco MR, Walter NG. The Shine-Dalgarno sequence of riboswitch-regulated single mRNAs shows ligand-dependent accessibility bursts. Nat. Commun. 2016;7:8976. doi: 10.1038/ncomms9976. PubMed DOI PMC
Sung HL, Nesbitt DJ. Single-molecule FRET kinetics of the Mn(2+) riboswitch: evidence for allosteric Mg(2+) control of “Induced-Fit” vs “Conformational Selection” folding pathways. J. Phys. Chem. B. 2019;123:2005–2015. doi: 10.1021/acs.jpcb.8b11841. PubMed DOI
Furukawa K, et al. Bacterial riboswitches cooperatively bind Ni(2+) or Co(2+) ions and control expression of heavy metal transporters. Mol. Cell. 2015;57:1088–1098. doi: 10.1016/j.molcel.2015.02.009. PubMed DOI PMC
Wakeman CA, Ramesh A, Winkler WC. Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs. J. Mol. Biol. 2009;392:723–735. doi: 10.1016/j.jmb.2009.07.033. PubMed DOI PMC
Pleiss JA, Derrick ML, Uhlenbeck OC. T7 RNA polymerase produces 5' end heterogeneity during in vitro transcription from certain templates. RNA. 1988;4:1313–1317. doi: 10.1017/S135583829800106X. PubMed DOI PMC
Kabsch W. XDS. Acta Cryst. 2010;D66:125–132. PubMed PMC
Robertson MP, Chi Y-I, Scott WG. Solving novel RNA structures using only secondary structural fragments. Methods. 2010;52:168–172. doi: 10.1016/j.ymeth.2010.06.011. PubMed DOI PMC
Adams PD, et al. Acta Crystallogr. D Biol. Crystallogr. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution; pp. 213–221. PubMed PMC
Terwilliger TC, et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 2009;65:582–601. doi: 10.1107/S0907444909012098. PubMed DOI PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Afonine PV, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 2012;68:352–367. doi: 10.1107/S0907444912001308. PubMed DOI PMC
Salomon-Ferrer R, Gotz AW, Poole D, Le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald. J. Chem. Theory Comput. 2013;9:3878–3888. doi: 10.1021/ct400314y. PubMed DOI
Case DA, et al. AMBER 2016. San Francisco: University of California San Francisco; 2016.
Banáš P, et al. Performance of molecular mechanics force fields For RNA simulations: stability of UUCG and GNRA hairpins. J. Chem. Theory Comput. 2010;6:3836–3849. doi: 10.1021/ct100481h. PubMed DOI PMC
Perez A, et al. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 2007;92:3817–3829. doi: 10.1529/biophysj.106.097782. PubMed DOI PMC
Zgarbova M, et al. Refinement of the Cornell et al. Nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011;7:2886–2902. doi: 10.1021/ct200162x. PubMed DOI PMC
Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI
Joung IS, Cheatham TE., III Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112:9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC
Allnér O, Nilsson L, Villa A. Magnesium ion–water coordination and exchange in biomolecular simulations. J. Chem. Theory Comput. 2012;8:1493–1502. doi: 10.1021/ct3000734. PubMed DOI
Li P, Roberts BP, Chakravorty DK, Merz KM. Rational design of particle Mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent. J. Chem. Theory Comput. 2013;9:2733–2748. doi: 10.1021/ct400146w. PubMed DOI PMC
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Bottaro S, Di Palma F, Bussi G. The role of nucleobase interactions in RNA structure and dynamics. Nucleic Acids Res. 2014;42:13306–13314. doi: 10.1093/nar/gku972. PubMed DOI PMC
Michelotti N, de Silva C, Johnson-Buck AE, Manzo AJ, Walter NG. A bird's eye view tracking slow nanometer-scale movements of single molecular nano-assemblies. Methods Enzymol. 2010;475:121–148. doi: 10.1016/S0076-6879(10)75006-0. PubMed DOI PMC
Juette MF, et al. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods. 2016;13:341–344. doi: 10.1038/nmeth.3769. PubMed DOI PMC
Qin F, Li L. Model-based fitting of single-channel dwell-time distributions. Biophys. J. 2004;87:1657–1671. doi: 10.1529/biophysj.103.037531. PubMed DOI PMC
Liberman Joseph A., Suddala Krishna C., Aytenfisu Asaminew, Chan Dalen, Belashov Ivan A., Salim Mohammad, Mathews David H., Spitale Robert C., Walter Nils G., Wedekind Joseph E. Structural analysis of a class III preQ1riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics. Proceedings of the National Academy of Sciences. 2015;112(27):E3485–E3494. doi: 10.1073/pnas.1503955112. PubMed DOI PMC
Warhaut S, et al. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy. Nucleic Acids Res. 2017;45:5512–5522. doi: 10.1093/nar/gkx110. PubMed DOI PMC