Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria

. 2019 Dec 09 ; 9 (1) : 18618. [epub] 20191209

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31819112
Odkazy

PubMed 31819112
PubMed Central PMC6901588
DOI 10.1038/s41598-019-55049-2
PII: 10.1038/s41598-019-55049-2
Knihovny.cz E-zdroje

Despite the development of several cultivation methods, the rate of discovery of microorganisms that are yet-to-be cultivated outpaces the rate of isolating and cultivating novel species in the laboratory. Furthermore, no current cultivation technique is capable of selectively isolating and cultivating specific bacterial taxa or phylogenetic groups independently of morphological or physiological properties. Here, we developed a new method to isolate living bacteria solely based on their 16S rRNA gene sequence. We showed that bacteria can survive a modified version of the standard fluorescence in situ hybridization (FISH) procedure, in which fixation is omitted and other factors, such as centrifugation and buffers, are optimized. We also demonstrated that labelled DNA probes can be introduced into living bacterial cells by means of chemical transformation and that specific hybridization occurs. This new method, which we call live-FISH, was then combined with fluorescence-activated cell sorting (FACS) to sort specific taxonomic groups of bacteria from a mock and natural bacterial communities and subsequently culture them. Live-FISH represents the first attempt to systematically optimize conditions known to affect cell viability during FISH and then to sort bacterial cells surviving the procedure. No sophisticated probe design is required, making live-FISH a straightforward method to be potentially used in combination with other single-cell techniques and for the isolation and cultivation of new microorganisms.

Zobrazit více v PubMed

Sipkema D, et al. Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp. Appl. Environ. Microbiol. 2011;77:2130–2140. doi: 10.1128/AEM.01203-10. PubMed DOI PMC

Esteves AI, Hardoim CC, Xavier JR, Goncalves JM, Costa R. Molecular richness and biotechnological potential of bacteria cultured from Irciniidae sponges in the north-east Atlantic. FEMS. Microbiol Ecol. 2013;85:519–536. doi: 10.1111/1574-6941.12140. PubMed DOI

Dupont S, Carre-Mlouka A, Domart-Coulon I, Vacelet J, Bourguet-Kondracki M-L. Exploring cultivable Bacteria from the prokaryotic community associated with the carnivorous sponge Asbestopluma hypogea. FEMS Microbiol. Ecol. 2014;88:160–174. doi: 10.1111/1574-6941.12279. PubMed DOI

Pham VH, Kim J. Cultivation of unculturable soil bacteria. Trends Biotechnol. 2012;30:475–484. doi: 10.1016/j.tibtech.2012.05.007. PubMed DOI

Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Mirobiol. 2002;68:3878–3885. doi: 10.1128/AEM.68.8.3878-3885.2002. PubMed DOI PMC

Fröhlich J, König H. New techniques for isolation of single prokaryotic cells. FEMS Microbiol. Rev. 2000;24:567–572. doi: 10.1111/j.1574-6976.2000.tb00558.x. PubMed DOI

Zhang H, Liu K-K. Optical tweezers for single cells. J. Royal Soc. Interface. 2008;5:671–690. doi: 10.1098/rsif.2008.0052. PubMed DOI PMC

Ferrari BC, Gillings MR. Cultivation of fastidious bacteria by viability staining and micromanipulation in a soil substrate membrane system. Appl. Environ. Microbiol. 2009;75:3352–3354. doi: 10.1128/AEM.02407-08. PubMed DOI PMC

Huber R, et al. Isolation of a hyperthermophilic archaeum predicted by. in situ RNA analysis. Nature. 1995;376:57. PubMed

Zengler K, et al. Cultivating the uncultured. Proc. Nat. Acad. Sci. 2002;99:15681–15686. doi: 10.1073/pnas.252630999. PubMed DOI PMC

Akselband Y, Cabral C, Castor T, Chikarmane H, McGrath P. Enrichment of slow-growing marine microorganisms from mixed cultures using gel microdrop (GMD) growth assay and fluorescence-activated cell sorting. J. Experim. Mar. Biol. Ecol. 2006;329:196–205. doi: 10.1016/j.jembe.2005.08.018. DOI

Cellamare M, Rolland A, Jacquet S. Flow cytometry sorting of freshwater phytoplankton. J. Appl. Phycol. 2010;22:87–100. doi: 10.1007/s10811-009-9439-4. DOI

Pernthaler J, Glöckner F-O, Schönhuber W, Amann R. Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Meth. Microbiol. 2001;30:207–226. doi: 10.1016/S0580-9517(01)30046-6. DOI

Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 2002;68:3094–3101. doi: 10.1128/AEM.68.6.3094-3101.2002. PubMed DOI PMC

Davey HM, Kell DB. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev. 1996;60:641–696. PubMed PMC

Amann R, Snaidr J, Wagner M, Ludwig W, Schleifer K-H. In situ visualization of high genetic diversity in a natural microbial community. J, Bacteriol. 1996;178:3496–3500. doi: 10.1128/jb.178.12.3496-3500.1996. PubMed DOI PMC

Matthiesen SH, Hansen CM. Fast and non-toxic in situ hybridization without blocking of repetitive sequences. PLoS One. 2012;7:e40675. doi: 10.1371/journal.pone.0040675. PubMed DOI PMC

Yilmaz, S., Haroon, M. F., Rabkin, B. A., Tyson, G. W. & Hugenholtz, P. Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations. ISME J. 4 (2010). PubMed

Haroon MF, et al. In-solution fluorescence in situ hybridization and fluorescence-activated cell sorting for single cell and population genome recovery. Meth. Enzymol. 2013;531:3–19. doi: 10.1016/B978-0-12-407863-5.00001-0. PubMed DOI

Aune TEV, Aachmann FL. Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed. Appl. Microbiol. Biotechnol. 2010;85:1301–1313. doi: 10.1007/s00253-009-2349-1. PubMed DOI

Silverman AP, Kool ET. Quenched autoligation probes allow discrimination of live bacterial species by single nucleotide differences in rRNA. Nucleic Acids Res. 2005;33:4978–498. doi: 10.1093/nar/gki814. PubMed DOI PMC

Czechowska K, Johnson DR, van der Meer JR. Use of flow cytometric methods for single-cell analysis in environmental microbiology. Curr. Opin. Microbiol. 2008;11:205–212. doi: 10.1016/j.mib.2008.04.006. PubMed DOI

Amann R, Fuchs BM. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 2008;6:339. doi: 10.1038/nrmicro1888. PubMed DOI

Bao G, Rhee WJ, Tsourkas A. Fluorescent probes for live-cell RNA detection. Ann. Rev. Biomed. Eng. 2009;11:25–47. doi: 10.1146/annurev-bioeng-061008-124920. PubMed DOI PMC

Esteves AI, Amer N, Nguyen M, Thomas T. Sample Processing Impacts the Viability and Cultivability of the Sponge Microbiome. Front. Microbiol. 2016;7:499. doi: 10.3389/fmicb.2016.00499. PubMed DOI PMC

Hentschel U, et al. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol. Ecol. 2001;35:305–312. doi: 10.1111/j.1574-6941.2001.tb00816.x. PubMed DOI

Gärtner A, Wiese J, Imhoff JF. Amphritea atlantica gen. nov., sp. nov., a gammaproteobacterium from the Logatchev hydrothermal vent field. Int. J. Syst. Evol. Microbiol. 2008;58:34–39. doi: 10.1099/ijs.0.65234-0. PubMed DOI

Goyal SM, Gerba CP. Simple method for concentration of bacteria from large volumes of tap water. Appl. Environ. Microbiol. 1980;40:912–916. PubMed PMC

Yilmaz LS, Parnerkar S, Noguera D. R. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl Environ. Microbiol. 2011;77:1118–1122. doi: 10.1128/AEM.01733-10. PubMed DOI PMC

Greuter D, Loy A, Horn M, Rattei T. probeBase–an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016. Nucleic Acids Res. 2016;44:D586–589. doi: 10.1093/nar/gkv1232. PubMed DOI PMC

Froger, A. & Hall, J. E. Transformation of plasmid DNA into E. coli using the heat shock method. J. Vis. Exp. 253 (2007). PubMed PMC

Hanahan D. Studies on transformation of Escherichia coli with plasmids. J. Molec. Biol. 1983;166:557–580. doi: 10.1016/S0022-2836(83)80284-8. PubMed DOI

Hanahan, D. & Bloom, F. R. Mechanisms of DNA transformation. Escherichia coli and Salmonella typhimurium. Cell. Molec. Biol. ASM Press, Washington, DC, 2449–2459 (1996).

Weston A, Brown M, Perkins H, Saunders J, Humphreys G. Transformation of Escherichia coli with plasmid deoxyribonucleic acid: calcium-induced binding of deoxyribonucleic acid to whole cells and to isolated membrane fractions. J. Bacteriol. 1981;145:780–787. PubMed PMC

Crowley, L. C. et al. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry. Cold Spring Harb. Protoc. (2016). PubMed

Stocks SM. Mechanism and use of the commercially available viability stain, BacLight. Cytometry A. 2004;61:189–195. doi: 10.1002/cyto.a.20069. PubMed DOI

Costa, G. L. & Weiner, M. P. Colony PCR. Cold Spring Harb. Protoc. (2006). PubMed

Frank JA, et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 2008;74:2461–2470. doi: 10.1128/AEM.02272-07. PubMed DOI PMC

Herlemann DP, et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–1579. doi: 10.1038/ismej.2011.41. PubMed DOI PMC

Roller C, Wagner M, Amann R, Ludwig W, Schleifer K-H. In situ probing of Gram-positive bacteria with high DNA G+ C content using 23S rRNAtargeted oligonucleotides. Microbiology. 1994;140:2849–2858. doi: 10.1099/00221287-140-10-2849. PubMed DOI

Pembrey RS, Marshall KC, Schneider RP. Cell surface analysis techniques: what do cell preparation protocols do to cell surface properties? Appl. Environ. Microbiol. 1999;65:2877–2894. PubMed PMC

Peterson BW, Sharma PK, van der Mei HC, Busscher HJ. Bacterial cell surface damage due to centrifugal compaction. Appl. Environ. Microbiol. 2012;78:120–125. doi: 10.1128/AEM.06780-11. PubMed DOI PMC

Lenaerts J, Lappin-Scott HM, Porter J. Improved fluorescent in situ hybridization method for detection of bacteria from activated sludge and river water by using DNA molecular beacons and flow cytometry. Appl. Environ. Microbiol. 2007;73:2020–2023. doi: 10.1128/AEM.01718-06. PubMed DOI PMC

Santos RS, Guimarães N, Madureira P, Azevedo NF. Optimization of a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the detection of bacteria and disclosure of a formamide effect. J. Biotechnol. 2014;187:16–24. doi: 10.1016/j.jbiotec.2014.06.023. PubMed DOI

Denyer SP, Stewart G. Mechanisms of action of disinfectants. Int. Biodeter. Biodegrad. 1998;41:261–268. doi: 10.1016/S0964-8305(98)00023-7. DOI

Avery SV. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 2006;4:577. doi: 10.1038/nrmicro1460. PubMed DOI

Simoes M, Simoes LC, Pereira MO, Vieira MJ. Sodium dodecyl sulfate allows the persistence and recovery of biofilms of Pseudomonas fluorescens formed under different hydrodynamic conditions. Biofouling. 2008;24:35–44. doi: 10.1080/08927010701730311. PubMed DOI

Haagensen JA, et al. Differentiation and distribution of colistin-and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J. Bacteriol. 2007;189:28–37. doi: 10.1128/JB.00720-06. PubMed DOI PMC

Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA‐targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry Part A. 1993;14:136–143. doi: 10.1002/cyto.990140205. PubMed DOI

Peng X-H, et al. Real-time detection of gene expression in cancer cells using molecular beacon imaging: new strategies for cancer research. Cancer Res. 2005;65:1909–1917. doi: 10.1158/0008-5472.CAN-04-3196. PubMed DOI

Özkanca R, et al. Resuscitation and quantification of stressed Escherichia coli K12 NCTC8797 in water samples. Microbiol. Res. 2009;164:212–220. doi: 10.1016/j.micres.2006.11.014. PubMed DOI

Lederberg EM, Cohen SN. Transformation of Salmonella typhimurium by plasmid deoxyribonucleic acid. J. Bacteriol. 1974;119:1072–1074. PubMed PMC

Alatyrev A, et al. Identification of the new protein participating in the archaea motility regulation. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology. 2010;4:104–114. doi: 10.1134/S1990747810010162. DOI

Mirończuk AM, Kovács ÁT, Kuipers OP. Induction of natural competence in Bacillus cereus ATCC14579. Microbial Biotech. 2008;1:226–235. doi: 10.1111/j.1751-7915.2008.00023.x. PubMed DOI PMC

van Gijtenbeek LA, Kok J. Illuminating Messengers: An Update and Outlook on RNA Visualization in Bacteria. Front. Microbiol. 2017;8:1161. doi: 10.3389/fmicb.2017.01161. PubMed DOI PMC

Majlessi M, Nelson NC, Becker MM. Advantages of 2′-O-methyl oligoribonucleotide probes for detecting RNA targets. Nucleic Acids Res. 1998;26:2224–2229. doi: 10.1093/nar/26.9.2224. PubMed DOI PMC

Eun, H.-M. Enzymology primer for recombinant DNA technology. (Elsevier, 1996).

Ban N, et al. Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit. Nature. 1999;400:841. doi: 10.1038/23641. PubMed DOI

Clemons WM, Jr., et al. Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution. Nature. 1999;400:833. doi: 10.1038/23631. PubMed DOI

Dennis PP, Ehrenberg M, Bremer H. Control of rRNA synthesis in Escherichia coli: a systems biology approach. Microbiol. Molec. Biol. Rev. 2004;68:639–668. doi: 10.1128/MMBR.68.4.639-668.2004. PubMed DOI PMC

Skinner SO, Sepúlveda LA, Xu H, Golding I. Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nature Protoc. 2013;8:1100. doi: 10.1038/nprot.2013.066. PubMed DOI PMC

Wile BM, Ban K, Yoon Y-S, Bao G. Molecular beacon–enabled purification of living cells by targeting cell type–specific mRNAs. Nature Protoc. 2014;9:2411. doi: 10.1038/nprot.2014.154. PubMed DOI PMC

Jha R, et al. Molecular beacon-based detection and isolation of working-type cardiomyocytes derived from human pluripotent stem cells. Biomaterials. 2015;50:176–185. doi: 10.1016/j.biomaterials.2015.01.043. PubMed DOI PMC

Burke KS, Antilla KA, Tirrell DA. A fluorescence in situ hybridization method to quantify mRNA translation by visualizing ribosome–mRNA interactions in single cells. ACS Central Sci. 2017;3:425–433. doi: 10.1021/acscentsci.7b00048. PubMed DOI PMC

Zhang P, et al. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal. Chem. 2015;87:2282–2289. doi: 10.1021/ac503974e. PubMed DOI

Zhang Q, et al. Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms. Sci. Rep. 2017;7:41192. doi: 10.1038/srep41192. PubMed DOI PMC

de Macedo Lemos EG, Alves LMC, Campanharo JC. Genomics-based design of defined growth media for the plant pathogen Xylella fastidiosa. FEMS Microbiol. Lett. 2003;219:39–45. doi: 10.1016/S0378-1097(02)01189-8. PubMed DOI

Renesto P, et al. Genome-based design of a cell-free culture medium for Tropheryma whipplei. The Lancet. 2003;362:447–449. doi: 10.1016/S0140-6736(03)14071-8. PubMed DOI

Omsland A, et al. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc. Nat. Acad. Sci. 2009;106:4430–4434. doi: 10.1073/pnas.0812074106. PubMed DOI PMC

Bomar L, Maltz M, Colston S, Graf J. Directed culturing of microorganisms using metatranscriptomics. MBio. 2011;2:e00012–00011. doi: 10.1128/mBio.00012-11. PubMed DOI PMC

Cossarizza A, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur. J. Immun. 2017;47:1584–1797. doi: 10.1002/eji.201646632. PubMed DOI PMC

Rodrigues OR, Monard S. A rapid method to verify single‐cell deposition setup for cell sorters. Cytometry Part A. 2016;89:594–600. doi: 10.1002/cyto.a.22865. PubMed DOI

Sekar R, Fuchs BM, Amann R, Pernthaler J. Flow sorting of marine bacterioplankton after fluorescence in situ hybridization. Appl. Environ. Microbiol. 2004;70:6210–6219. doi: 10.1128/AEM.70.10.6210-6219.2004. PubMed DOI PMC

Lay C, Doré J, Rigottier-Gois L. Separation of bacteria of the Clostridium leptum subgroup from the human colonic microbiota by fluorescenceactivated cell sorting or group-specific PCR using 16S rRNA gene oligonucleotides. FEMS Microbiol. Ecol. 2007;60:513–520. doi: 10.1111/j.1574-6941.2007.00312.x. PubMed DOI

Miyauchi R, Oki K, Aoi Y, Tsuneda S. Diversity of nitrite reductase genes in “Candidatus Accumulibacter phosphatis”-dominated cultures enriched by flow-cytometric sorting. Appl. Environ. Microbiol. 2007;73:5331–5337. doi: 10.1128/AEM.00175-07. PubMed DOI PMC

Müller S, Nebe-von-Caron G. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol. Rev. 2010;34:554–587. doi: 10.1111/j.1574-6976.2010.00214.x. PubMed DOI

Kalyuzhnaya MG, et al. Fluorescence in situ hybridization-flow cytometry-cell sorting-based method for separation and enrichment of type I and type II methanotroph populations. Appl. Environ. Microbiol. 2006;72:4293–4301. doi: 10.1128/AEM.00161-06. PubMed DOI PMC

Woyke T, et al. One bacterial cell, one complete genome. PLoS One. 2010;5:e10314. doi: 10.1371/journal.pone.0010314. PubMed DOI PMC

Riemann L, et al. The native bacterioplankton community in the central Baltic Sea is influenced by freshwater bacterial species. Appl. Environ. Microbiol. 2008;74:503–515. doi: 10.1128/AEM.01983-07. PubMed DOI PMC

Abraham W-R, Estrela AB, Nikitin DI, Smit J, Vancanneyt M. Brevundimonas halotolerans sp. nov., Brevundimonas poindexterae sp. nov. and Brevundimonas staleyi sp. nov., prosthecate bacteria from aquatic habitats. Int. J. Syst. Evol. Microbiol. 2010;60:1837–1843. doi: 10.1099/ijs.0.016832-0. PubMed DOI

Lavis LD, Raines RT. Bright ideas for chemical biology. ACS Chemical Biol. 2008;3:142–155. doi: 10.1021/cb700248m. PubMed DOI PMC

Escobedo JO, Rusin O, Lim S, Strongin RM. NIR dyes for bioimaging applications. Curr. Opin. Chemical Biol. 2010;14:64–70. doi: 10.1016/j.cbpa.2009.10.022. PubMed DOI PMC

Umezawa K, Citterio D, Suzuki K. New trends in near-infrared fluorophores for bioimaging. Anal. Sci. 2014;30:327–349. doi: 10.2116/analsci.30.327. PubMed DOI

Wagner M, Horn M, Daims H. Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr. Opin. Microbiol. 2003;6:302–309. doi: 10.1016/S1369-5274(03)00054-7. PubMed DOI

Behrens S, et al. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl. Environ. Microbiol. 2008;74:3143–3150. doi: 10.1128/AEM.00191-08. PubMed DOI PMC

Singh S, Singh P. Effect of temperature and light on the growth of algae species: a review. Renew. Sust. Energ. Rev. 2015;50:431–444. doi: 10.1016/j.rser.2015.05.024. DOI

Biegala IC, Not F, Vaulot D, Simon N. Quantitative assessment of picoeukaryotes in the natural environment by using taxon-specific oligonucleotide probes in association with tyramide signal amplification-fluorescence in situ hybridization and flow cytometry. Appl. Environ. Microbiol. 2003;69:5519–5529. doi: 10.1128/AEM.69.9.5519-5529.2003. PubMed DOI PMC

Amann R, Fuchs BM, Behrens S. The identification of microorganisms by fluorescence in situ hybridisation. Curr. Opin. Biotechn. 2001;12:231–236. doi: 10.1016/S0958-1669(00)00204-4. PubMed DOI

MacDonald R, Brözel V. Community analysis of bacterial biofilms in a simulated recirculating cooling-water system by fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes. Water Research. 2000;34:2439–2446. doi: 10.1016/S0043-1354(99)00409-1. DOI

Oda Y, Slagman S-J, Meijer WG, Forney LJ, Gottschal JC. Influence of growth rate and starvation on fluorescent in situ hybridization of Rhodopseudomonas palustris. FEMS Microbiol. Ecol. 2000;32:205–213. doi: 10.1111/j.1574-6941.2000.tb00713.x. PubMed DOI

Wagner M, Rath G, Amann R, Koops H-P, Schleifer K-H. In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 1995;18:251–264. doi: 10.1016/S0723-2020(11)80396-6. DOI

Morgenroth E, et al. Effect of long-term idle periods on the performance of sequencing batch reactors. Water Sci. Technol. 2000;41:105–113. doi: 10.2166/wst.2000.0018. DOI

Schmid M, Schmitz‐Esser S, Jetten M, Wagner M. 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ. Microbiol. 2001;3:450–459. doi: 10.1046/j.1462-2920.2001.00211.x. PubMed DOI

Pernthaler A, Pernthaler J, Schattenhofer M, Amann R. Identification of DNA-synthesizing bacterial cells in coastal North Sea plankton. Appl. Environ. Microbiol. 2002;68:5728–5736. doi: 10.1128/AEM.68.11.5728-5736.2002. PubMed DOI PMC

Schimak MP, et al. MiL-FISH: Multilabeled oligonucleotides for fluorescence in situ hybridization improve visualization of bacterial cells. Appl. Environ. Microbiol. 2015;82:62–70. doi: 10.1128/AEM.02776-15. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Prokaryotes of renowned Karlovy Vary (Carlsbad) thermal springs: phylogenetic and cultivation analysis

. 2022 Sep 11 ; 17 (1) : 48. [epub] 20220911

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace