Acceleration of Molecular Simulations by Parametric Time-Lagged tSNE Metadynamics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38237064
PubMed Central
PMC10839826
DOI
10.1021/acs.jpcb.3c05669
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The potential of molecular simulations is limited by their computational costs. There is often a need to accelerate simulations using some of the enhanced sampling methods. Metadynamics applies a history-dependent bias potential that disfavors previously visited states. To apply metadynamics, it is necessary to select a few properties of the system─collective variables (CVs) that can be used to define the bias potential. Over the past few years, there have been emerging opportunities for machine learning and, in particular, artificial neural networks within this domain. In this broad context, a specific unsupervised machine learning method was utilized, namely, parametric time-lagged t-distributed stochastic neighbor embedding (ptltSNE) to design CVs. The approach was tested on a Trp-cage trajectory (tryptophan cage) from the literature. The trajectory was used to generate a map of conformations, distinguish fast conformational changes from slow ones, and design CVs. Then, metadynamic simulations were performed. To accelerate the formation of the α-helix, we added the α-RMSD collective variable. This simulation led to one folding event in a 350 ns metadynamics simulation. To accelerate degrees of freedom not addressed by CVs, we performed parallel tempering metadynamics. This simulation led to 10 folding events in a 200 ns simulation with 32 replicas.
Zobrazit více v PubMed
Bock L. V.; Gabrielli S.; Kolář M. H.; Grubmüller H. Simulation of Complex Biomolecular Systems: The Ribosome Challenge. Annu. Rev. Biophys. 2023, 52, 361–390. 10.1146/annurev-biophys-111622-091147. PubMed DOI
Šponer J.; Bussi G.; Krepl M.; Banáš P.; Bottaro S.; Cunha R. A.; Gil-Ley A.; Pinamonti G.; Poblete S.; Jurečka P.; et al. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 2018, 118, 4177–4338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC
Laio A.; Parrinello M. Escaping free-energy minima. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12562–12566. 10.1073/pnas.202427399. PubMed DOI PMC
Amadei A.; Linssen A. B. M.; Berendsen H. J. C. Essential dynamics of proteins. Proteins 1993, 17, 412–425. 10.1002/prot.340170408. PubMed DOI
Spiwok V.; Lipovová P.; Králová B. Metadynamics in Essential Coordinates: Free Energy Simulation of Conformational Changes. J. Phys. Chem. B 2007, 111, 3073–3076. 10.1021/jp068587c. PubMed DOI
Tribello G. A.; Ceriotti M.; Parrinello M. Using sketch-map coordinates to analyze and bias molecular dynamics simulations. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 5196–5201. 10.1073/pnas.1201152109. PubMed DOI PMC
Spiwok V.; Králová B. Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap. J. Chem. Phys. 2011, 135, 224504.10.1063/1.3660208. PubMed DOI
Sultan M.; Pande V. S. tICA-Metadynamics: Accelerating Metadynamics by Using Kinetically Selected Collective Variables. J. Chem. Theory Comput. 2017, 13, 2440–2447. 10.1021/acs.jctc.7b00182. PubMed DOI
Bonati L.; Piccini G.; Parrinello M. Deep learning the slow modes for rare events sampling. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e211353311810.1073/pnas.2113533118. PubMed DOI PMC
Glielmo A.; Husic B. E.; Rodriguez A.; Clementi C.; Noé F.; Laio A. Unsupervised Learning Methods for Molecular Simulation Data. Chem. Rev. 2021, 121, 9722–9758. 10.1021/acs.chemrev.0c01195. PubMed DOI PMC
Rydzewski J.; Chen M.; Valsson O. Manifold Learning in Atomistic Simulations: A Conceptual Review. Mach. learn.: sci. technol. 2023, 4, 031001.10.1088/2632-2153/ace81a. DOI
Hinton G. E.; Roweis S. In Advances in Neural Information Processing Systems; Becker S., Thrun S., Obermayer K., Eds.; MIT Press, 2002; Vol. 15; Chapter Stochastic Neighbor Embedding, pp 857–864.
van der Maaten L.; Hinton G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
Zhou H.; Wang F.; Tao P. t-Distributed Stochastic Neighbor Embedding Method with the Least Information Loss for Macromolecular Simulations. J. Chem. Theory Comput. 2018, 14, 5499–5510. 10.1021/acs.jctc.8b00652. PubMed DOI PMC
Tribello G. A.; Gasparotto P. Using Dimensionality Reduction to Analyze Protein Trajectories. Front. Mol. Biosci. 2019, 6, 46.10.3389/fmolb.2019.00046. PubMed DOI PMC
Spiwok V.; Kříž P. Time-Lagged t-Distributed Stochastic Neighbor Embedding (t-SNE) of Molecular Simulation Trajectories. Front. Mol. Biosci. 2020, 7, 132.10.3389/fmolb.2020.00132. PubMed DOI PMC
van der Maaten L. In Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics; van Dyk D., Welling M., Eds.; PMLR: Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 2009; Vol. 5; Chapter Learning a Parametric Embedding by Preserving Local Structure, pp 384–391.
Molgedey L.; Schuster H. G. Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett. 1994, 72, 3634–3637. 10.1103/PhysRevLett.72.3634. PubMed DOI
Naritomi Y.; Fuchigami S. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions. J. Chem. Phys. 2011, 134, 065101.10.1063/1.3554380. PubMed DOI
Chollet F.Keras, 2015. https://keras.io (accessed May 25 2019).
Abadi M.; Agarwal A.; Barham P.; Brevdo E.; Chen Z.; Citro C.; Corrado G. S.; Davis A.; Dean J.; Devin M.. et al.TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. https://www.tensorflow.org/(accessed May 25 2019).
Paszke A.; Gross S.; Massa F.; Lerer A.; Bradbury J.; Chanan G.; Killeen T.; Lin Z.; Gimelshein N.; Antiga L.; et al.Advances in Neural Information Processing Systems 32; Curran Associates, Inc., 2019, pp 8024–8035.
Hyvärinen A.; Karhunen J.; Oja E.. Independent Component Analysis; John Wiley & Sons, Ltd, 2001; Chapter 7, pp 145–164.
Lindorff-Larsen K.; Piana S.; Dror R. O.; Shaw D. E. How fast-folding proteins fold. Science 2011, 334, 517–520. 10.1126/science.1208351. PubMed DOI
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI
Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014, 185, 604–613. 10.1016/j.cpc.2013.09.018. DOI
Promoting transparency and reproducibility in enhanced molecular simulations. Nat. Methods 2019, 16, 670–673. 10.1038/s41592-019-0506-8. PubMed DOI
Bonati L.; Trizio E.; Rizzi A.; Parrinello M. A unified framework for machine learning collective variables for enhanced sampling simulations: mlcolvar. J. Chem. Phys. 2023, 159, 014801.10.1063/5.0156343. PubMed DOI
Neidigh J. W.; Fesinmeyer R. M.; Andersen N. H. Designing a 20-residue protein. Nat. Struct. Mol. Biol. 2002, 9, 425–430. 10.1038/nsb798. PubMed DOI
Barua B.; Lin J. C.; Williams V. D.; Kummler P.; Neidigh J. W.; Andersen N. H. The Trp-cage: optimizing the stability of a globular miniprotein. Protein Eng., Des. Sel. 2008, 21, 171–185. 10.1093/protein/gzm082. PubMed DOI PMC
Lindorff-Larsen K.; Piana S.; Palmo K.; Maragakis P.; Klepeis J. L.; Dror R. O.; Shaw D. E. Improved Side-Chain Torsion Potentials for the Amber ff99SB Protein Force Field. Proteins 2010, 78, 1950–1958. 10.1002/prot.22711. PubMed DOI PMC
Chatterjee S.; Debenedetti P. G.; Stillinger F. H.; Lynden-Bell R. M. A computational investigation of thermodynamics, structure, dynamics and solvation behavior in modified water models. J. Chem. Phys. 2008, 128, 124511.10.1063/1.2841127. PubMed DOI
Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical Sampling Through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI
Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI
Barducci A.; Bussi G.; Parrinello M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 2008, 100, 020603.10.1103/PhysRevLett.100.020603. PubMed DOI
Laio A.; Rodriguez-Fortea A.; Gervasio F. L.; Ceccarelli M.; Parrinello M. Assessing the Accuracy of Metadynamics. J. Phys. Chem. B 2005, 109, 6714–6721. 10.1021/jp045424k. PubMed DOI
Bussi G.; Gervasio F. L.; Laio A.; Parrinello M. Free-Energy Landscape for β Hairpin Folding from Combined Parallel Tempering and Metadynamics. J. Am. Chem. Soc. 2006, 128, 13435–13441. 10.1021/ja062463w. PubMed DOI
Trapl D.; Spiwok V. Analysis of the Results of Metadynamics Simulations by metadynminer and metadynminer3d. The R Journal 2022, 14, 46–58. 10.32614/RJ-2022-057. DOI
European Organization For Nuclear Research OpenAIRE, Zenodo. 2013; https://www.zenodo.org/.(accessed Aug 14 2023).
Pietrucci F.; Laio A. A Collective Variable for the Efficient Exploration of Protein Beta-Sheet Structures: Application to SH3 and GB1. J. Chem. Theory Comput. 2009, 5, 2197–2201. 10.1021/ct900202f. PubMed DOI
Sugita Y.; Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 1999, 314, 141–151. 10.1016/S0009-2614(99)01123-9. DOI
Dietschreit J. C. B.; Diestler D. J.; Ochsenfeld C. How to obtain reaction free energies from free-energy profiles. J. Chem. Phys. 2022, 156, 114105.10.1063/5.0083423. PubMed DOI
Torrie G.; Valleau J. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 1977, 23, 187–199. 10.1016/0021-9991(77)90121-8. DOI
Tiwary P.; Parrinello M. A Time-Independent Free Energy Estimator for Metadynamics. J. Phys. Chem. B 2015, 119, 736–742. 10.1021/jp504920s. PubMed DOI
Daura X.; Gademann K.; Jaun B.; Seebach D.; van Gunsteren W. F.; Mark A. E. Peptide Folding: When Simulation Meets Experiment. Angew. Chem. Int. Ed 1999, 38, 236–240. 10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M. DOI
Swope W. C.; Pitera J. W.; Suits F. Describing Protein Folding Kinetics by Molecular Dynamics Simulations. 1. Theory. J. Phys. Chem. B 2004, 108, 6571–6581. 10.1021/jp037421y. DOI
Noé F.; Schütte C.; Vanden-Eijnden E.; Reich L.; Weikl T. R. Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19011–19016. 10.1073/pnas.0905466106. PubMed DOI PMC
Sidky H.; Chen W.; Ferguson A. L. High-Resolution Markov State Models for the Dynamics of Trp-Cage Miniprotein Constructed Over Slow Folding Modes Identified by State-Free Reversible VAMPnets. J. Phys. Chem. B 2019, 123, 7999–8009. 10.1021/acs.jpcb.9b05578. PubMed DOI
Suárez E.; Wiewiora R. P.; Wehmeyer C.; Noé F.; Chodera J. D.; Zuckerman D. M. What Markov State Models Can and Cannot Do: Correlation versus Path-Based Observables in Protein-Folding Models. J. Chem. Theory Comput. 2021, 17, 3119–3133. 10.1021/acs.jctc.0c01154. PubMed DOI PMC
Rydzewski J. Spectral Map: Embedding Slow Kinetics in Collective Variables. J. Phys. Chem. Lett. 2023, 14, 5216–5220. 10.1021/acs.jpclett.3c01101. PubMed DOI PMC
Tsai S.-T.; Smith Z.; Tiwary P. SGOOP-d: Estimating Kinetic Distances and Reaction Coordinate Dimensionality for Rare Event Systems from Biased/Unbiased Simulations. J. Chem. Theory Comput. 2021, 17, 6757–6765. 10.1021/acs.jctc.1c00431. PubMed DOI
Mardt A.; Pasquali L.; Wu H.; Noé F. VAMPnets for deep learning of molecular kinetics. Nat. Commun. 2018, 9, 5.10.1038/s41467-017-02388-1. PubMed DOI PMC
Meshkin H.; Zhu F. Thermodynamics of Protein Folding Studied by Umbrella Sampling along a Reaction Coordinate of Native Contacts. J. Chem. Theory Comput. 2017, 13, 2086–2097. 10.1021/acs.jctc.6b01171. PubMed DOI
Rydzewski J.; Valsson O. Multiscale Reweighted Stochastic Embedding: Deep Learning of Collective Variables for Enhanced Sampling. J. Phys. Chem. A 2021, 125, 6286–6302. 10.1021/acs.jpca.1c02869. PubMed DOI PMC
Rydzewski J.; Chen M.; Ghosh T. K.; Valsson O. Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations. J. Chem. Theory Comput. 2022, 18, 7179–7192. 10.1021/acs.jctc.2c00873. PubMed DOI PMC
Rydzewski J. Selecting High-Dimensional Representations of Physical Systems by Reweighted Diffusion Maps. J. Phys. Chem. Lett. 2023, 14, 2778–2783. 10.1021/acs.jpclett.3c00265. PubMed DOI PMC
De S.; Bartók A. P.; Csányi G.; Ceriotti M. Comparing molecules and solids across structural and alchemical space. Phys. Chem. Chem. Phys. 2016, 18, 13754–13769. 10.1039/C6CP00415F. PubMed DOI
Jumper J.; Evans R.; Pritzel A.; Green T.; Figurnov M.; Ronneberger O.; Tunyasuvunakool K.; Bates R.; Žídek A.; Potapenko A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. 10.1038/s41586-021-03819-2. PubMed DOI PMC