MicroRNAs: From Female Fertility, Germ Cells, and Stem Cells to Cancer in Humans

. 2016 ; 2016 () : 3984937. [epub] 20151109

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid26664407

MicroRNAs are a family of naturally occurring small noncoding RNA molecules that play an important regulatory role in gene expression. They are suggested to regulate a large proportion of protein encoding genes by mediating the translational suppression and posttranscriptional control of gene expression. Recent findings show that microRNAs are emerging as important regulators of cellular differentiation and dedifferentiation, and are deeply involved in developmental processes including human preimplantation development. They keep a balance between pluripotency and differentiation in the embryo and embryonic stem cells. Moreover, it became evident that dysregulation of microRNA expression may play a fundamental role in progression and dissemination of different cancers including ovarian cancer. The interest is still increased by the discovery of exosomes, that is, cell-derived vesicles, which can carry different proteins but also microRNAs between different cells and are involved in cell-to-cell communication. MicroRNAs, together with exosomes, have a great potential to be used for prognosis, therapy, and biomarkers of different diseases including infertility. The aim of this review paper is to summarize the existent knowledge on microRNAs related to female fertility and cancer: from primordial germ cells and ovarian function, germinal stem cells, oocytes, and embryos to embryonic stem cells.

Zobrazit více v PubMed

Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–355. doi: 10.1038/nature02871. PubMed DOI

Bartel D. P. microRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297. doi: 10.1016/s0092-8674(04)00045-5. PubMed DOI

Kedde M., Agami R. Interplay between microRNAs and RNA-binding proteins determines developmental processes. Cell Cycle. 2008;7(7):899–903. doi: 10.4161/cc.7.7.5644. PubMed DOI

Lewis B. P., Burge C. B., Bartel D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. doi: 10.1016/j.cell.2004.12.035. PubMed DOI

Booth A. M., Fang Y., Fallon J. K., et al. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. The Journal of Cell Biology. 2006;172(6):923–935. doi: 10.1083/jcb.200508014. PubMed DOI PMC

Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J. J., Lötvall J. O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology. 2007;9(6):654–659. doi: 10.1038/ncb1596. PubMed DOI

van der Pol E., Böing A. N., Harrison P., Sturk A., Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacological Reviews. 2012;64(3):676–705. PubMed

Sendler E., Johnson G. D., Mao S., et al. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Research. 2013;41(7):4104–4117. doi: 10.1093/nar/gkt132. PubMed DOI PMC

Johnson M. H., Everitt B. J. Essential Reproduction. 5th. Oxford, UK: Blackwell Science; 2000. Adult ovarian function; pp. 69–87.

Staton A. A., Knaut H., Giraldez A. J. miRNA regulation of Sdf1 chemokine signaling provides genetic robustness to germ cell migration. Nature Genetics. 2011;43(3):204–211. doi: 10.1038/ng.758. PubMed DOI PMC

Childs A. J., Kinnell H. L., He J., Anderson R. A. LIN28 is selectively expressed by primordial and pre-meiotic germ cells in the human fetal ovary. Stem Cells and Development. 2012;21(13):2343–2349. doi: 10.1089/scd.2011.0730. PubMed DOI PMC

Takada S., Berezikov E., Choi Y. L., Yamashita Y., Mano H. Potential role of miR-29b in modulation of Dnmt3a and Dnmt3b expression in primordial germ cells of female mouse embryos. RNA. 2009;15(8):1507–1514. doi: 10.1261/rna.1418309. PubMed DOI PMC

Rengaraj D., Lee B. R., Lee S. I., Seo H. W., Han J. Y. Expression patterns and miRNA regulation of DNA methyltransferases in chicken primordial germ cells. PLoS ONE. 2011;6(5) doi: 10.1371/journal.pone.0019524.e19524 PubMed DOI PMC

Mei J., Yue H.-M., Li Z., et al. C1q-like factor, a target of miR-430, regulates primordial germ cell development in early embryos of Carassius auratus . International Journal of Biological Sciences. 2013;10(1):15–24. doi: 10.7150/ijbs.7490. PubMed DOI PMC

Takeda Y., Mishima Y., Fujiwara T., Sakamoto H., Inoue K. DAZL relieves miRNA-mediated repression of germline mRNAs by controlling poly(A) tail length in zebrafish. PLoS ONE. 2009;4(10) doi: 10.1371/journal.pone.0007513.e7513 PubMed DOI PMC

Tani S., Kusakabe R., Naruse K., Sakamoto H., Inoue K. Genomic organization and embryonic expression of miR-430 in medaka (Oryzias latipes): insights into the post-transcriptional gene regulation in early development. Gene. 2010;457(1-2):41–49. Erratum in Gene, vol. 475, no. 1-2, pp. 50–51, 2010. PubMed

Yamaguchi T., Kataoka K., Watanabe K., Orii H. Restriction of the Xenopus DEADSouth mRNA to the primordial germ cells is ensured by multiple mechanisms. Mechanisms of Development. 2014;131(1):15–23. doi: 10.1016/j.mod.2013.11.002. PubMed DOI

Lee S. I., Lee B. R., Hwang Y. S., et al. MicroRNA-mediated posttranscriptional regulation is required for maintaining undifferentiated properties of blastoderm and primordial germ cells in chickens. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(26):10426–10431. doi: 10.1073/pnas.1106141108. PubMed DOI PMC

Kugler J. M., Chen Y. W., Weng R., Cohen S. M. Maternal loss of miRNAs leads to increased variance in primordial germ cell numbers in Drosophila melanogaster . G3. 2013;3(9):1573–1576. doi: 10.1534/g3.113.007591. PubMed DOI PMC

Li Y., Maines J. Z., Tastan Ö. Y., McKearin D. M., Buszczak M. Mei-P26 regulates the maintenance of ovarian germline stem cells by promoting BMP signaling. Development. 2012;139(9):1547–1556. doi: 10.1242/dev.077412. PubMed DOI PMC

Park J. K., Liu X., Strauss T. J., McKearin D. M., Liu Q. The miRNA pathway intrinsically controls self-renewal of Drosophila germline stem cells. Current Biology. 2007;17(6):533–538. doi: 10.1016/j.cub.2007.01.060. PubMed DOI

Neumüller R. A., Betschinger J., Fischer A., et al. Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage. Nature. 2008;454(7201):241–245. doi: 10.1038/nature07014. PubMed DOI PMC

Jin Z., Xie T. Dcr-1 maintains Drosophila ovarian stem cells. Current Biology. 2007;17(6):539–544. doi: 10.1016/j.cub.2007.01.050. PubMed DOI

Kraggerud S. M., Hoei-Hansen C. E., Alagaratnam S., et al. Molecular characteristics of malignant ovarian germ cell tumors and comparison with testicular counterparts: implications for pathogenesis. Endocrine Reviews. 2013;34(3):339–376. doi: 10.1210/er.2012-1045. PubMed DOI PMC

Eini R., Dorssers L. C., Looijenga L. H. Role of stem cell proteins and microRNAs in embryogenesis and germ cell cancer. International Journal of Developmental Biology. 2013;57(2–4):319–332. doi: 10.1387/ijdb.130020re. PubMed DOI

Murray M. J., Nicholson J. C., Coleman N. Biology of childhood germ cell tumours, focussing on the significance of microRNAs. Andrology. 2015;3(1):129–139. doi: 10.1111/andr.277. PubMed DOI PMC

Palmer R. D., Murray M. J., Saini H. K., et al. Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Research. 2010;70(7):2911–2923. doi: 10.1158/0008-5472.can-09-3301. PubMed DOI PMC

Xu Y.-W., Wang B., Ding C.-H., Li T., Gu F., Zhou C. Differentially expressed micoRNAs in human oocytes. Journal of Assisted Reproduction and Genetics. 2011;28(6):559–566. doi: 10.1007/s10815-011-9590-0. PubMed DOI PMC

Assou S., Al-Edani T., Haouzi D., et al. MicroRNAs: new candidates for the regulation of the human cumulus-oocyte complex. Human Reproduction. 2013;28(11):3038–3049. doi: 10.1093/humrep/det321. PubMed DOI

Zhang H., Jiang X., Zhang Y., et al. MicroRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries. Reproduction. 2014;148(1):43–54. doi: 10.1530/REP-13-0508. PubMed DOI

Donadeu F. X., Schauer S. N., Sontakke S. D. Involvement of miRNAs in ovarian follicular and luteal development. Journal of Endocrinology. 2012;215(3):323–334. doi: 10.1530/JOE-12-0252. PubMed DOI

Lei L., Jin S., Gonzalez G., Behringer R. R., Woodruff T. K. The regulatory role of Dicer in folliculogenesis in mice. Molecular and Cellular Endocrinology. 2010;315(1-2):63–73. doi: 10.1016/j.mce.2009.09.021. PubMed DOI PMC

Hawkins S. M., Matzuk M. M. Oocyte-somatic cell communication and microRNA function in the ovary. Annales d'Endocrinologie. 2010;71(3):144–148. doi: 10.1016/j.ando.2010.02.020. PubMed DOI PMC

Sun S.-C., Kim N.-H. Molecular mechanisms of asymmetric division in oocytes. Microscopy and Microanalysis. 2013;19(4):883–897. doi: 10.1017/S1431927613001566. PubMed DOI

Tesfaye D., Worku D., Rings F., et al. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Molecular Reproduction and Development. 2009;76(7):665–677. doi: 10.1002/mrd.21005. PubMed DOI

Abd El Naby W. S., Hagos T. H., Hossain M. M., et al. Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos. Zygote. 2013;21(1):31–51. doi: 10.1017/S0967199411000566. PubMed DOI

Tripurani S. K., Wee G., Lee K.-B., Smith G. W., Wang L., Yao J. MicroRNA-212 post-transcriptionally regulates oocyte-specific basic-helix-loop-helix transcription factor, factor in the germline alpha (FIGLA), during bovine early embryogenesis. PLoS ONE. 2013;8(9) doi: 10.1371/journal.pone.0076114.e76114 PubMed DOI PMC

Flemr M., Moravec M., Libova V., Sedlacek R., Svoboda P. Lin28a is dormant, functional, and dispensable during mouse oocyte-to-embryo transition. Biology of Reproduction. 2014;90(6, article 131) doi: 10.1095/biolreprod.114.118703. PubMed DOI

Suh N., Baehner L., Moltzahn F., et al. MicroRNA function is globally suppressed in mouse oocytes and early embryos. Current Biology. 2010;20(3):271–277. doi: 10.1016/j.cub.2009.12.044. PubMed DOI PMC

Mase Y., Ishibashi O., Ishikawa T., et al. MiR-21 is enriched in the RNA-induced silencing complex and targets COL4A1 in human granulosa cell lines. Reproductive Sciences. 2012;19(10):1030–1040. doi: 10.1177/1933719112442245. PubMed DOI

Al-Edani T., Assou S., Ferrières A., et al. Female aging alters expression of human cumulus cells genes that are essential for oocyte quality. BioMed Research International. 2014;2014:10. doi: 10.1155/2014/964614.964614 PubMed DOI PMC

Tong X.-H., Xu B., Zhang Y.-W., Liu Y.-S., Ma C.-H. Research resources: comparative microRNA profiles in human corona radiata cells and cumulus oophorus cells detected by next-generation small RNA sequencing. PLoS ONE. 2014;9(9) doi: 10.1371/journal.pone.0106706.e106706 PubMed DOI PMC

Velthut-Meikas A., Simm J., Tuuri T., Tapanainen J. S., Metsis M., Salumets A. Research resource: small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes. Molecular Endocrinology. 2013;27(7):1128–1141. doi: 10.1210/me.2013-1058. PubMed DOI PMC

Sirotkin A. V., Ovcharenko D., Grossmann R., Lauková M., Mlynček M. Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. Journal of Cellular Physiology. 2009;219(2):415–420. doi: 10.1002/jcp.21689. PubMed DOI

Dai A., Sun H., Fang T., et al. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Letters. 2013;587(15):2474–2482. doi: 10.1016/j.febslet.2013.06.023. PubMed DOI

Troppmann B., Kossack N., Nordhoff V., Schüring A. N., Gromoll J. MicroRNA miR-513a-3p acts as a co-regulator of luteinizing hormone/chorionic gonadotropin receptor gene expression in human granulosa cells. Molecular and Cellular Endocrinology. 2014;390(1-2):65–72. doi: 10.1016/j.mce.2014.04.003. PubMed DOI

Sirotkin A. V., Lauková M., Ovcharenko D., Brenaut P., Mlynček M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. Journal of Cellular Physiology. 2010;223(1):49–56. doi: 10.1002/jcp.21999. PubMed DOI

Santonocito M., Vento M., Guglielmino M. R., et al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertility and Sterility. 2014;102(6):1751–1761. doi: 10.1016/j.fertnstert.2014.08.005. PubMed DOI

Diez-Fraile A., Lammens T., Tilleman K., et al. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Human Fertility. 2014;17(2):90–98. doi: 10.3109/14647273.2014.897006. PubMed DOI

Ecklund L. C., Usadi R. S. Endocrine and reproductive effects of polycystic ovarian syndrome. Obstetrics and Gynecology Clinics of North America. 2015;42(1):55–65. doi: 10.1016/j.ogc.2014.09.003. PubMed DOI

Roth L. W., McCallie B., Alvero R., Schoolcraft W. B., Minjarez D., Katz-Jaffe M. G. Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. Journal of Assisted Reproduction and Genetics. 2014;31(3):355–362. doi: 10.1007/s10815-013-0161-4. PubMed DOI PMC

Sang Q., Yao Z., Wang H., et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. Journal of Clinical Endocrinology and Metabolism. 2013;98(7):3068–3079. doi: 10.1210/jc.2013-1715. PubMed DOI

Yin M., Wang X., Yao G., et al. Transactivation of microRNA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. The Journal of Biological Chemistry. 2014;289(26):18239–18257. doi: 10.1074/jbc.m113.546044. PubMed DOI PMC

Xu B., Zhang Y. W., Tong X. H., Liu Y. S. Characterization of microRNA profile in human cumulus granulosa cells: identification of microRNAs that regulate Notch signaling and are associated with PCOS. Molecular and Cellular Endocrinology. 2015;404:26–36. doi: 10.1016/j.mce.2015.01.030. PubMed DOI

Woad K. J., Watkins W. J., Prendergast D., Shelling A. N. The genetic basis of premature ovarian failure. Australian and New Zealand Journal of Obstetrics and Gynaecology. 2006;46(3):242–244. doi: 10.1111/j.1479-828X.2006.00585.x. PubMed DOI

Zhou Y., Zhu Y. Z., Zhang S. H., Wang H. M., Wang S. Y., Yang X. K. MicroRNA expression profiles in premature ovarian failure patients and its potential regulate functions. Chinese Journal of Birth Health and Heredity. 2011;19:20–22.

Yang X., Zhou Y., Peng S., et al. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction. 2012;144(2):235–244. doi: 10.1530/rep-11-0371. PubMed DOI

Dang Y., Zhao S., Qin Y., Han T., Li W., Chen Z.-J. MicroRNA-22-3p is down-regulated in the plasma of Han Chinese patients with premature ovarian failure. Fertility and Sterility. 2015;103(3):802–807.e1. doi: 10.1016/j.fertnstert.2014.12.106. PubMed DOI

Ma X., Chen Y., Zhao X., Chen J., Shen C., Yang S. Association study of TGFBR2 and miR-518 gene polymorphisms with age at natural menopause, premature ovarian failure, and early menopause among Chinese Han women. Medicine. 2014;93(20):p. e93. doi: 10.1097/md.0000000000000093. PubMed DOI PMC

Rah H., Jeon Y. J., Shim S. H., et al. Association of miR-146a>G, miR-196a2T>C, and miR-499A>G polymorphisms with risk of premature ovarian failure in Korean women. Reproductive Sciences. 2013;20(1):60–68. doi: 10.1177/1933719112450341. PubMed DOI

Carrell D. T. Contributions of spermatozoa to embryogenesis: assays to evaluate their genetic and epigenetic fitness. Reproductive BioMedicine Online. 2008;16(4):474–484. doi: 10.1016/s1472-6483(10)60454-3. PubMed DOI

Vassena R., Boué S., González-Roca E., et al. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development. 2011;138(17):3699–3709. doi: 10.1242/dev.064741. PubMed DOI PMC

Ostermeier G. C., Miller D., Huntriss J. D., Diamond M. P., Krawetz S. A. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature. 2004;429(6988):p. 154. PubMed

Sone Y., Ito M., Shirakawa H., et al. Nuclear translocation of phospholipase C-zeta, an egg-activating factor, during early embryonic development. Biochemical and Biophysical Research Communications. 2005;330(3):690–694. doi: 10.1016/j.bbrc.2005.03.032. PubMed DOI

Dadoune J. P. Spermatozoal RNAs: what about their functions? Microscopy Research and Technique. 2009;72(8):536–551. doi: 10.1002/jemt.20697. PubMed DOI

Kumar M., Kumar K., Jain S., Hassan T., Dada R. Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics. 2013;68(supplement 1):5–14. doi: 10.6061/clinics/2013(sup01)02. PubMed DOI PMC

Johnson G. D., Lalancette C., Linnemann A. K., Leduc F., Boissonneault G., Krawetz S. A. The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction. 2011;141(1):21–36. doi: 10.1530/rep-10-0322. PubMed DOI PMC

Khraiwesh B., Arif M. A., Seumel G. I., et al. Transcriptional control of gene expression by microRNAs. Cell. 2010;140(1):111–122. doi: 10.1016/j.cell.2009.12.023. PubMed DOI

Krawetz S. A., Kruger A., Lalancette C., et al. A survey of small RNAs in human sperm. Human Reproduction. 2011;26(12):3401–3412. doi: 10.1093/humrep/der329. PubMed DOI PMC

Amanai M., Brahmajosyula M., Perry A. C. A restricted role for sperm-borne microRNAs in mammalian fertilization. Biology of Reproduction. 2006;75(6):877–884. doi: 10.1095/biolreprod.106.056499. PubMed DOI

Abu-Halima M., Hammadeh M., Backes C., et al. Panel of five microRNAs as potential biomarkers for the diagnosis and assessment of male infertility. Fertility and Sterility. 2014;102(4):989.e1–997.e1. doi: 10.1016/j.fertnstert.2014.07.001. PubMed DOI

Rodgers A. B., Morgan C. P., Bronson S. L., Revello S., Bale T. L. Paternal stress exposure alters sperm MicroRNA content and reprograms offspring HPA stress axis regulation. Journal of Neuroscience. 2013;33(21):9003–9012. doi: 10.1523/JNEUROSCI.0914-13.2013. PubMed DOI PMC

Gapp K., Jawaid A., Sarkies P., et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience. 2014;17(5):667–669. doi: 10.1038/nn.3695. PubMed DOI PMC

Li Y., Li M., Liu Y., Song G., Liu N. A microarray for microRNA profiling in spermatozoa from adult men living in an environmentally polluted site. Bulletin of Environmental Contamination and Toxicology. 2012;89(6):1111–1114. doi: 10.1007/s00128-012-0827-0. PubMed DOI

García-López J., del Mazo J. Expression dynamics of microRNA biogenesis during preimplantation mouse development. Biochimica et Biophysica Acta. 2012;1819(8):847–854. doi: 10.1016/j.bbagrm.2012.03.007. PubMed DOI

Rosenbluth E. M., Shelton D. N., Sparks A. E., Devor E., Christenson L., Van Voorhis B. J. MicroRNA expression in the human blastocyst. Fertility and Sterility. 2013;99(3):855–861. doi: 10.1016/j.fertnstert.2012.11.001. PubMed DOI

Kropp J., Salih S. M., Khatib H. Expression of microRNAs in bovine and human pre-implantation embryo culture media. Frontiers in Genetics. 2014;5, article 91 doi: 10.3389/fgene.2014.00091. PubMed DOI PMC

Rosenbluth E. M., Shelton D. N., Wells L. M., Sparks A. E., Van Voorhis B. J. Human embryos secrete microRNAs into culture media—a potential biomarker for implantation. Fertility and Sterility. 2014;101(5):1493–1500. doi: 10.1016/j.fertnstert.2014.01.058. PubMed DOI

Revel A., Achache H., Stevens J., Smith Y., Reich R. MicroRNAs are associated with human embryo implantation defects. Human Reproduction. 2011;26(10):2830–2840. doi: 10.1093/humrep/der255. PubMed DOI

Chu B., Zhong L., Dou S., et al. miRNA-181 regulates embryo implantation in mice through targeting leukemia inhibitory factor. Journal of Molecular Cell Biology. 2015;7(1):12–22. doi: 10.1093/jmcb/mjv006. PubMed DOI

Lipchina I., Elkabetz Y., Hafner M., et al. Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes and Development. 2011;25(20):2173–2186. doi: 10.1101/gad.17221311. PubMed DOI PMC

Kapinas K., Kim H., Mandeville M., et al. microRNA-mediated survivin control of pluripotency. Journal of Cellular Physiology. 2015;230(1):63–70. doi: 10.1002/jcp.24681. PubMed DOI PMC

Huang H.-N., Chen S.-Y., Hwang S.-M., et al. miR-200c and GATA binding protein 4 regulate human embryonic stem cell renewal and differentiation. Stem Cell Research. 2014;12(2):338–353. doi: 10.1016/j.scr.2013.11.009. PubMed DOI

Barroso-delJesus A., Lucena-Aguilar G., Sanchez L., Ligero G., Gutierrez-Aranda I., Menendez P. The nodal inhibitor Lefty is negatively modulated by the microRNA miR-302 in human embryonic stem cells. The FASEB Journal. 2011;25(5):1497–1508. doi: 10.1096/fj.10-172221. PubMed DOI

Xu N., Papagiannakopoulos T., Pan G., Thomson J. A., Kosik K. S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009;137(4):647–658. doi: 10.1016/j.cell.2009.02.038. PubMed DOI

Card D. A., Hebbar P. B., Li L., et al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Molecular and Cellular Biology. 2008;28(20):6426–6438. doi: 10.1128/mcb.00359-08. PubMed DOI PMC

Rosa A., Brivanlou A. H. A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. The EMBO Journal. 2011;30(2):237–248. doi: 10.1038/emboj.2010.319. PubMed DOI PMC

Lin S., Cheung W. K., Chen S., et al. Computational identification and characterization of primate-specific microRNAs in human genome. Computational Biology and Chemistry. 2010;34(4):232–241. doi: 10.1016/j.compbiolchem.2010.08.001. PubMed DOI

Hinton A., Hunter S. E., Afrikanova I., et al. sRNA-seq analysis of human embryonic stem cells and definitive endoderm reveals differentially expressed microRNAs and novel IsomiRs with distinct targets. Stem Cells. 2014;32(9):2360–2372. doi: 10.1002/stem.1739. PubMed DOI

Rosa A., Papaioannou M. D., Krzyspiak J. E., Brivanlou A. H. MiR-373 is regulated by TGFβ signaling and promotes mesendoderm differentiation in human embryonic stem cells. Developmental Biology. 2014;391(1):81–88. doi: 10.1016/j.ydbio.2014.03.020. PubMed DOI PMC

Wang J., Park J. W., Drissi H., Wang X., Xu R.-H. Epigenetic regulation of miR-302 by JMJD1C inhibits neural differentiation of human embryonic stem cells. The Journal of Biological Chemistry. 2014;289(4):2384–2395. doi: 10.1074/jbc.m113.535799. PubMed DOI PMC

Fu J.-D., Rushing S. N., Lieu D. K., et al. Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS ONE. 2011;6(11) doi: 10.1371/journal.pone.0027417.e27417 PubMed DOI PMC

Kane N. M., Meloni M., Spencer H. L., et al. Derivation of endothelial cells from human embryonic stem cells by directed differentiation: analysis of microRNA and angiogenesis in vitro and in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010;30(7):1389–1397. doi: 10.1161/atvbaha.110.204800. PubMed DOI

Takasaki S. Roles of microRNAs in cancers and development. Methods in Molecular Biology. 2015;1218:375–413. doi: 10.1007/978-1-4939-1538-5_24. PubMed DOI

Kasiappan R., Shen Z., Tse A. K., et al. 1,25-Dihydroxyvitamin D3 suppresses telomerase expression and human cancer growth through microRNA-498. The Journal of Biological Chemistry. 2012;287(49):41297–41309. doi: 10.1074/jbc.m112.407189. PubMed DOI PMC

Zhong X., Li N., Liang S., Huang Q., Coukos G., Zhang L. Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. Journal of Biological Chemistry. 2010;285(53):41961–41971. doi: 10.1074/jbc.m110.169607. PubMed DOI PMC

Gurtan A. M., Lu V., Bhutkar A., Sharp P. A. In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs. RNA. 2012;18(6):1116–1122. doi: 10.1261/rna.032680.112. PubMed DOI PMC

Hong X., Luense L. J., McGinnis L. K., Nothnick W. B., Christenson L. K. Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology. 2008;149(12):6207–6212. doi: 10.1210/en.2008-0294. PubMed DOI PMC

Luense L. J., Carletti M. Z., Christenson L. K. Role of Dicer in female fertility. Trends in Endocrinology and Metabolism. 2009;20(6):265–272. doi: 10.1016/j.tem.2009.05.001. PubMed DOI PMC

Medeiros L. A., Dennis L. M., Gill M. E., et al. Mir-290–295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(34):14163–14168. doi: 10.1073/pnas.1111241108. PubMed DOI PMC

Kim Y. J., Ku S. Y., Rosenwaks Z., et al. MicroRNA expression profiles are altered by gonadotropins and vitamin C status during in vitro follicular growth. Reproductive Sciences. 2010;17(12):1081–1089. doi: 10.1177/1933719110377663. PubMed DOI

Kim Y. J., Ku S. Y., Kim Y. Y., et al. MicroRNAs transfected into granulosa cells may regulate oocyte meiotic competence during in vitro maturation of mouse follicles. Human Reproduction. 2013;28(11):3050–3061. doi: 10.1093/humrep/det338. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace