• This record comes from PubMed

Characterization of porcine oocytes stained with Lissamine Green B and their developmental potential in vitro

. 2020 Nov 24 ; 17 (4) : e20200533. [epub] 20201124

Status PubMed-not-MEDLINE Language English Country Brazil Media electronic

Document type Journal Article

Traditional methods for the evaluation of oocyte quality are based on morphological classification of the follicle, cumulus-oocyte complex, polar body and meiotic spindle. This study is focused on the differences between the morphological assessment of oocyte quality, the assessment based on Lissamine Green B (LB) staining and the analysis of oocytes using a proteomic approach. We evaluated the effectiveness of electrochemical and chemical parthenogenetic activation under our laboratory conditions and evaluated the applicability of Lissamine Green B staining of cumulus-oocyte complexes (COCs) as a non-invasive method for predicting the maturational and developmental competence of porcine oocytes cultured in vitro. We determined that chemical parthenogenetic activation using ionomycin and 6-dimethylaminopurine was slightly more effective than electrochemical activation. After oocyte selection according to LB staining, we found significant differences (P<0.05) between the LB- group and LB+ group and the control group in their maturation, cleavage rate and rate of blastocysts. Proteomic analyses identified a selection of proteins that were differentially expressed in each group of analysed oocytes. Oocytes of the LB- group exhibited an increased variability of proteins involved in transcription regulation, proteosynthesis and the protein folding crucial for oocyte maturation and further embryonic development. These results found a better competence of LB- oocytes in maturation, cleavage and ability to reach the blastocyst stage.

See more in PubMed

Alberio R, Zakhartchenko V, Motlik J, Wolf E. Mammalian oocyte activation: lessons from the sperm and implications for nuclear transfer. Int J Dev Biol. 2001;45(7):797–709. doi: 10.1292/jvms.15-0658. PubMed DOI

Bing Y, Nagai T, Rodrìguez-Martinez H. Effects of cysteamine, fsh and estradiol-17beta on in vitro maturation of porcine oocytes. Theriogenology. 2001;55(4):867–876. doi: 10.1016/S0093-691X(01)00449-6. PubMed DOI

Che L, Lalonde A, Bordignon V. Chemical activation of parthenogenetic and nuclear transfer porcine oocytes using ionomycin and strontium chloride. Theriogenology. 2007;67(7):1297–1304. doi: 10.1016/j.theriogenology.2007.02.006. PubMed DOI

Combelles CM, Racowsky C. Assessment and optimization of oocyte quality during assisted reproductive technology treatment. Semin Reprod Med. 2005;23(3):277–284. doi: 10.1055/s-2005-872456. PubMed DOI

Coticchio G, Sereni E, Serrao L, Mazzone S, Iadarola I, Borini A. What criteria for the definition of oocyte quality? Ann N Y Acad Sci. 2004;1034(1):132–144. doi: 10.1196/annals.1335.016. PubMed DOI

Dutta R, Li S, Fischer K, Kind A, Flisikowska T, Flisikowski K, Rottmann O, Schnieke A. Non-invasive assessment of porcine oocyte quality by supravital staining of cumulus.oocyte complexes with lissamine green B. Zygote. 2016;24(3):418–427. doi: 10.1017/S0967199415000349. PubMed DOI

Egerszegi I, Alm H, Ratky J, Heleil B, Brussow KP, Torner H. Meiotic progression, mitochondrial features and fertilization characteristics of porcine oocytes with different G6PDH activities. Reprod Fertil Dev. 2010;22(5):830–838. doi: 10.1071/RD09140. PubMed DOI

Ellederova Z, Halada P, Man P, Kubelka M, Motlik J, Kovarova H. Protein patterns of pig oocytes during in vitro maturation. Biol Reprod. 2004;71(5):1533–1539. doi: 10.1095/biolreprod.104.030304. PubMed DOI

Goto K, Kajihara Y, Kosaka S, Koba M, Nakanishi Y, Ogawa K. Pregnancies after co-culture of cumulus cells with bovine embryos derived from in vitro fertilization of in vitro matured follicular oocytes. J Reprod Fertil. 1988;83(2):753–758. doi: 10.1530/jrf.0.0830753. PubMed DOI

Hoshino Y. Updating the markers for oocyte quality evaluation: intracellular temperature as a new index. Reprod Med Biol. 2018;17(4):434–441. doi: 10.1002/rmb2.12245. PubMed DOI PMC

Kim TJ, Laufer LR, Hong SW. Vitrification of oocytes produces high pregnancy rates when carried out in fertile women. Fertil Steril. 2009;83(2):753–758. doi: 10.1016/j.fertnstert.2008.12.094. PubMed DOI

Krisher RL. The effect of oocyte quality on development. J Anim Sci. 2004;82:E14–23. doi: 10.2527/2004.8213_supplE14x. PubMed DOI

Lane M, Maybach JM, Gardner DK. Addition of ascorbate during cryoperservation stimules subsequent embryo development. Hum Reprod. 2002;17(10):2686–2693. doi: 10.1093/humrep/17.10.2686. PubMed DOI

Lasienë K, Vitkus A, Valanèiûtë A, Lasys V. Morphological criteria of oocyte quality. Medicina (Kaunas) 2009;45(7):509–515. doi: 10.3390/medicina45070067. PubMed DOI

Laurincik J, Rath D, Niemann H. Differences in pronucleus formation and first cleavage following in vitro fertilization between pig oocytes matured in vivo and in vitro . J Reprod Fertil. 1994;102(2):277–284. doi: 10.1530/jrf.0.1020277. PubMed DOI

Macháty Z, Prather RS. Strategies for activating nuclear transfer oocytes. Reprod Fertil Dev. 1998;10(7-8):599–613. doi: 10.1071/RD98048. PubMed DOI

Mtango NR, Potireddy S, Latham KE. Oocyte quality and maternal control of development. Int Rev Cell Mol Biol. 2008;268:223–290. doi: 10.1016/S1937-6448(08)00807-1. PubMed DOI

Murin M, Strejcek F, Bartkova A, Morovic M, Benc M, Prochazka R, Lucas-Hahn A, Pendovski L, Laurincik J. Intranuclear characteristics of pig oocytes stained with brilliant cresyl blue and nucleologenesis of resulting embryos. Zygote. 2019;27(4):232–240. doi: 10.1017/S0967199419000352. PubMed DOI

Procházka R, Petlach M, Nagyova E, Nemcova L. Effect of epidermal growth factor-like peptides on pig cumulus cell expansion, oocyte maturation, and acquisition of developmental competence in vitro: comparison with gonadotropins. Reprod. 2011;141(4):425–435. doi: 10.1530/REP-10-0418. PubMed DOI

Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006;65(1):126–136. doi: 10.1016/j.theriogenology.2005.09.020. PubMed DOI

Sun QY, Nagai T. Molecular mechanisms underlying pig oocyte maturation and fertilization. J Reprod Dev. 2003;49(5):347–359. doi: 10.1262/jrd.49.347. PubMed DOI

Sun XS, Liu Y, Yue KZ, Ma SF, Tan JH. Changes in germinal vesicle (GV) chromatin configurations during growth and maturation of porcine oocytes. Mol Reprod Dev. 2004;69(2):228–234. doi: 10.1002/mrd.20123. PubMed DOI

Vassena R, Mapletoft RJ, Allodi S, Singh J, Adams GP. Morphology and developmental competence of bovine oocytes relative to follicular status. Theriogenology. 2003;60(5):923–932. doi: 10.1016/S0093-691X(03)00101-8. PubMed DOI

Virant-Klun I, Leicht S, Hughes C, Krijgsveld J. Identification of maturation-specific proteins by single-cell proteomics of human oocytes. Mol Cell Proteomics. 2016;15(8):2616–2627. doi: 10.1074/mcp.M115.056887. PubMed DOI PMC

Vitale AM, Calvert MEK, Mallavarapu M, Yurttas P, Perlin J, Herr J, Coonrod S. Proteomic profiling of murine oocyte maturation. Mol Reprod Dev. 2007;74(5):608–616. doi: 10.1002/mrd.20648. PubMed DOI

Wang Q, Sun QY. Evaluation of oocyte quality: morphological, cellular and molecular predictors. Reprod Fertil Dev. 2007;19(1):1–12. doi: 10.1071/RD06103. PubMed DOI

Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–362. doi: 10.1038/nmeth.1322. PubMed DOI

Yin XJ, Tani T, Yonemura I, Kawakami M, Miyamoto K, Hasegawa R, Kato Y, Tsunoda Y. Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol Reprod. 2002;67(2):442–446. doi: 10.1095/biolreprod67.2.442. PubMed DOI

Yoshioka K, Suzuki C, Tanaka A, Anas IMK, Iwamura S. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol Reprod. 2002;66(1):112–119. doi: 10.1095/biolreprod66.1.112. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...