Mimicking Tumor Cell Heterogeneity of Colorectal Cancer in a Patient-derived Organoid-Fibroblast Model

. 2023 ; 15 (6) : 1391-1419. [epub] 20230302

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36868311

Grantová podpora
DOC 59 Austrian Science Fund FWF - Austria

Odkazy

PubMed 36868311
PubMed Central PMC10141529
DOI 10.1016/j.jcmgh.2023.02.014
PII: S2352-345X(23)00036-X
Knihovny.cz E-zdroje

BACKGROUND & AIMS: Patient-derived organoid cancer models are generated from epithelial tumor cells and reflect tumor characteristics. However, they lack the complexity of the tumor microenvironment, which is a key driver of tumorigenesis and therapy response. Here, we developed a colorectal cancer organoid model that incorporates matched epithelial cells and stromal fibroblasts. METHODS: Primary fibroblasts and tumor cells were isolated from colorectal cancer specimens. Fibroblasts were characterized for their proteome, secretome, and gene expression signatures. Fibroblast/organoid co-cultures were analyzed by immunohistochemistry and compared with their tissue of origin, as well as on gene expression levels compared with standard organoid models. Bioinformatics deconvolution was used to calculate cellular proportions of cell subsets in organoids based on single-cell RNA sequencing data. RESULTS: Normal primary fibroblasts, isolated from tumor adjacent tissue, and cancer associated fibroblasts retained their molecular characteristics in vitro, including higher motility of cancer associated compared with normal fibroblasts. Importantly, both cancer-associated fibroblasts and normal fibroblasts supported cancer cell proliferation in 3D co-cultures, without the addition of classical niche factors. Organoids grown together with fibroblasts displayed a larger cellular heterogeneity of tumor cells compared with mono-cultures and closely resembled the in vivo tumor morphology. Additionally, we observed a mutual crosstalk between tumor cells and fibroblasts in the co-cultures. This was manifested by considerably deregulated pathways such as cell-cell communication and extracellular matrix remodeling in the organoids. Thrombospondin-1 was identified as a critical factor for fibroblast invasiveness. CONCLUSION: We developed a physiological tumor/stroma model, which will be vital as a personalized tumor model to study disease mechanisms and therapy response in colorectal cancer.

CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic

Department of Biochemistry and Cell Biology Max Perutz Labs Vienna BioCenter University of Vienna Vienna Austria; Mass Spectrometry Facility Max Perutz Labs Vienna BioCenter University of Vienna Vienna Austria

Department of Pathology Medical University of Vienna Vienna Austria

Eberhard Karls University of Tübingen Faculty of Mathematics and Natural Sciences Tübingen Germany

Institute of Medical Genetics Medical University of Vienna Vienna Austria

Ludwig Boltzmann Institute Applied Diagnostics Vienna Austria

Ludwig Boltzmann Institute Applied Diagnostics Vienna Austria; Clinic of General Surgery Medical University of Vienna Vienna Austria

Ludwig Boltzmann Institute Applied Diagnostics Vienna Austria; Clinic of General Surgery Medical University of Vienna Vienna Austria; Comprehensive Cancer Center Medical University of Vienna Vienna Austria

Ludwig Boltzmann Institute Applied Diagnostics Vienna Austria; Department of Pathology Medical University of Vienna Vienna Austria

Ludwig Boltzmann Institute Applied Diagnostics Vienna Austria; Department of Pathology Medical University of Vienna Vienna Austria; Comprehensive Cancer Center Medical University of Vienna Vienna Austria

Ludwig Boltzmann Institute Applied Diagnostics Vienna Austria; Institute of Medical Genetics Medical University of Vienna Vienna Austria

Max Planck Institute for Intelligent Systems Tübingen Germany; Division of Computational Biology School of Life Sciences University of Dundee Dundee United Kingdom

Zobrazit více v PubMed

Arnold M., Sierra M.S., Laversanne M., et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683–691. PubMed

Marin J.J.G., Macias R.I.R., Monte M.J., et al. Cellular mechanisms accounting for the refractoriness of colorectal carcinoma to pharmacological treatment. Cancers (Basel) 2020;12:2605. PubMed PMC

Verduin M., Hoeben A., De Ruysscher D., et al. Patient-derived cancer organoids as predictors of treatment response. Front Oncol. 2021;11 PubMed PMC

Ooft S.N., Weeber F., Dijkstra K.K., et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med. 2019;11 PubMed

Narasimhan V., Wright J.A., Churchill M., et al. Medium-throughput drug screening of patient-derived organoids from colorectal peritoneal metastases to direct personalized therapy. Clin Cancer Res. 2020;26:3662–3670. PubMed PMC

Huijbers A., Tollenaar R.A., v Pelt G.W., et al. The proportion of tumor-stroma as a strong prognosticator for stage II and III colon cancer patients: validation in the VICTOR trial. Ann Oncol. 2013;24:179–185. PubMed

Ko Y.C., Lai T.Y., Hsu S.C., et al. Index of cancer-associated fibroblasts is superior to the epithelial-mesenchymal transition score in prognosis prediction. Cancers (Basel) 2020;12:1718. PubMed PMC

Guinney J., Dienstmann R., Wang X., et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–1356. PubMed PMC

Orimo A., Gupta P.B., Sgroi D.C., et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–348. PubMed

Polanska U.M., Orimo A. Carcinoma-associated fibroblasts: non-neoplastic tumour-promoting mesenchymal cells. J Cell Physiol. 2013;228:1651–1657. PubMed

Sahai E., Astsaturov I., Cukierman E., et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–186. PubMed PMC

Lee H.O., Hong Y., Etlioglu H.E., et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat Genet. 2020;52:594–603. PubMed

Li H., Courtois E.T., Sengupta D., et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet. 2017;49:708–718. PubMed

Calon A., Lonardo E., Berenguer-Llergo A., et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47:320–329. PubMed

Isella C., Terrasi A., Bellomo S.E., et al. Stromal contribution to the colorectal cancer transcriptome. Nat Genet. 2015;47:312–319. PubMed

Yamashita M., Ogawa T., Zhang X., et al. Role of stromal myofibroblasts in invasive breast cancer: stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer. 2012;19:170–176. PubMed

Fujita H., Ohuchida K., Mizumoto K., et al. alpha-Smooth muscle actin expressing stroma promotes an aggressive tumor biology in pancreatic ductal adenocarcinoma. Pancreas. 2010;39:1254–1262. PubMed

Barnas J.L., Simpson-Abelson M.R., Yokota S.J., et al. T cells and stromal fibroblasts in human tumor microenvironments represent potential therapeutic targets. Cancer Microenviron. 2010;3:29–47. PubMed PMC

Takahashi H., Sakakura K., Kawabata-Iwakawa R., et al. Immunosuppressive activity of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Cancer Immunol Immunother. 2015;64:1407–1417. PubMed PMC

Barcellos-Hoff M.H., Ravani S.A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000;60:1254–1260. PubMed

Krtolica A., Parrinello S., Lockett S., et al. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A. 2001;98:12072–12077. PubMed PMC

Ohuchida K., Mizumoto K., Murakami M., et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res. 2004;64:3215–3222. PubMed

Olumi A.F., Grossfeld G.D., Hayward S.W., et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999;59:5002–5011. PubMed PMC

Nicolas A.M., Pesic M., Engel E., et al. Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer. Cancer Cell. 2022;40:168–184.e13. PubMed

Chen S., McLean S., Carter D.E., et al. The gene expression profile induced by Wnt 3a in NIH 3T3 fibroblasts. J Cell Commun Signal. 2007;1:175–183. PubMed PMC

Sobel K., Tham M., Stark H.J., et al. Wnt-3a-activated human fibroblasts promote human keratinocyte proliferation and matrix destruction. Int J Cancer. 2015;136:2786–2798. PubMed

Sato T., Stange D.E., Ferrante M., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–1772. PubMed

Qian B.Z., Li J., Zhang H., et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–225. PubMed PMC

Stadler M., Pudelko K., Biermeier A., et al. Stromal fibroblasts shape the myeloid phenotype in normal colon and colorectal cancer and induce CD163 and CCL2 expression in macrophages. Cancer Lett. 2021;520:184–200. PubMed

Brown L.F., Guidi A.J., Schnitt S.J., et al. Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res. 1999;5:1041–1056. PubMed

Liu Z., Sun B., Qi L., et al. Dickkopf-1 expression is down-regulated during the colorectal adenoma-carcinoma sequence and correlates with reduced microvessel density and VEGF expression. Histopathology. 2015;67:158–166. PubMed

Bonavita E., Mantovani A., Garlanda C. PTX3 acts as an extrinsic oncosuppressor. Oncotarget. 2015;6:32309–32310. PubMed PMC

Unger C., Kramer N., Unterleuthner D., et al. Stromal-derived IGF2 promotes colon cancer progression via paracrine and autocrine mechanisms. Oncogene. 2017;36:5341–5355. PubMed

Carthy J.M., Garmaroudi F.S., Luo Z., et al. Wnt3a induces myofibroblast differentiation by upregulating TGF-beta signaling through SMAD2 in a beta-catenin-dependent manner. PLoS One. 2011;6 PubMed PMC

Carthy J.M., Luo Z., McManus B.M. WNT3A induces a contractile and secretory phenotype in cultured vascular smooth muscle cells that is associated with increased gap junction communication. Lab Invest. 2012;92:246–255. PubMed

Ono K., Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000;12:1–13. PubMed

van de Wetering M., Francies H.E., Francis J.M., et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–945. PubMed PMC

Kerjaschki D., Bago-Horvath Z., Rudas M., et al. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J Clin Invest. 2011;121:2000–2012. PubMed PMC

Bauer M., Su G., Casper C., et al. Heterogeneity of gene expression in stromal fibroblasts of human breast carcinomas and normal breast. Oncogene. 2010;29:1732–1740. PubMed PMC

Unterleuthner D., Neuhold P., Schwarz K., et al. Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer. Angiogenesis. 2020;23:159–177. PubMed PMC

Zhou Z., Zhou Q., Wu X., et al. VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. Cancer Lett. 2020;473:62–73. PubMed

Lebensohn A.M., Rohatgi R. R-spondins can potentiate WNT signaling without LGRs. Elife. 2018;7 PubMed PMC

Tran P.V., Georgieff M.K., Engeland W.C. Sodium depletion increases sympathetic neurite outgrowth and expression of a novel TMEM35 gene-derived protein (TUF1) in the rat adrenal zona glomerulosa. Endocrinology. 2010;151:4852–4860. PubMed PMC

Ying L., Zhang F., Pan X., et al. Complement component 7 (C7), a potential tumor suppressor, is correlated with tumor progression and prognosis. Oncotarget. 2016;7:86536–86546. PubMed PMC

Hirashima T., Karasawa H., Aizawa T., et al. Wnt5a in cancer-associated fibroblasts promotes colorectal cancer progression. Biochem Biophys Res Commun. 2021;568:37–42. PubMed

Qian J., Olbrecht S., Boeckx B., et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 2020;30:745–762. PubMed PMC

Chowdhury S., Hofree M., Lin K., et al. Implications of intratumor heterogeneity on consensus molecular subtype (CMS) in colorectal cancer. Cancers (Basel) 2021;13:4923. PubMed PMC

Joanito I., Wirapati P., Zhao N., et al. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat Genet. 2022;54:963–975. PubMed PMC

Khaliq A.M., Erdogan C., Kurt Z., et al. Refining colorectal cancer classification and clinical stratification through a single-cell atlas. Genome Biol. 2022;23:113. PubMed PMC

Kwon C.H., Park H.J., Choi J.H., et al. Snail and serpinA1 promote tumor progression and predict prognosis in colorectal cancer. Oncotarget. 2015;6:20312–20326. PubMed PMC

Liu Z., Gu S., Lu T., et al. IFI6 depletion inhibits esophageal squamous cell carcinoma progression through reactive oxygen species accumulation via mitochondrial dysfunction and endoplasmic reticulum stress. J Exp Clin Cancer Res. 2020;39:144. PubMed PMC

Xu J., Qian J., Zhang W., et al. LYPD8 regulates the proliferation and migration of colorectal cancer cells through inhibiting the secretion of IL6 and TNFalpha. Oncol Rep. 2019;41:2389–2395. PubMed

Przygodzka P., Sochacka E., Soboska K., et al. Neuromedin U induces an invasive phenotype in CRC cells expressing the NMUR2 receptor. J Exp Clin Cancer Res. 2021;40:283. PubMed PMC

Sunaga N., Kaira K., Imai H., et al. Oncogenic KRAS-induced epiregulin overexpression contributes to aggressive phenotype and is a promising therapeutic target in non-small-cell lung cancer. Oncogene. 2013;32:4034–4042. PubMed PMC

Cai P., Wu M., Zhang B., et al. Long noncoding RNA SNHG12 regulates cell proliferation, invasion and migration in endometrial cancer by targeting miR4429. Mol Med Rep. 2020;22:2842–2850. PubMed PMC

Efremova M., Vento-Tormo M., Teichmann S.A., et al. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 2020;15:1484–1506. PubMed

Botti G., Di Bonito M., Cantile M. Organoid biobanks as a new tool for pre-clinical validation of candidate drug efficacy and safety. Int J Physiol Pathophysiol Pharmacol. 2021;13:17–21. PubMed PMC

Nuciforo S., Fofana I., Matter M.S., et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 2018;24:1363–1376. PubMed PMC

Goncalves-Ribeiro S., Diaz-Maroto N.G., Berdiel-Acer M., et al. Carcinoma-associated fibroblasts affect sensitivity to oxaliplatin and 5FU in colorectal cancer cells. Oncotarget. 2016;7:59766–59780. PubMed PMC

Toussaint O., Remacle J., Dierick J.F., et al. From the Hayflick mosaic to the mosaics of ageing. Role of stress-induced premature senescence in human ageing. Int J Biochem Cell Biol. 2002;34:1415–1429. PubMed

Tsai K.K., Chuang E.Y., Little J.B., et al. Cellular mechanisms for low-dose ionizing radiation-induced perturbation of the breast tissue microenvironment. Cancer Res. 2005;65:6734–6744. PubMed

Yang N., Lode K., Berzaghi R., et al. Irradiated tumor fibroblasts avoid immune recognition and retain immunosuppressive functions over natural killer cells. Front Immunol. 2020;11 PubMed PMC

Fischer H., Salahshor S., Stenling R., et al. COL11A1 in FAP polyps and in sporadic colorectal tumors. BMC Cancer. 2001;1:17. PubMed PMC

Pennica D., Swanson T.A., Welsh J.W., et al. WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci U S A. 1998;95:14717–14722. PubMed PMC

Zhang X., Dong Y., Zhao M., et al. ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics. 2020;10:12044–12059. PubMed PMC

Bonan S., Albrengues J., Grasset E., et al. Membrane-bound ICAM-1 contributes to the onset of proinvasive tumor stroma by controlling acto-myosin contractility in carcinoma-associated fibroblasts. Oncotarget. 2017;8:1304–1320. PubMed PMC

Fullar A., Dudas J., Olah L., et al. Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression. BMC Cancer. 2015;15:256. PubMed PMC

Eble J.A., Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis. 2019;36:171–198. PubMed

Greicius G., Virshup D.M. Stromal control of intestinal development and the stem cell niche. Differentiation. 2019;108:8–16. PubMed

Miyoshi H., Stappenbeck T.S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat Protoc. 2013;8:2471–2482. PubMed PMC

Krepela E., Vanickova Z., Hrabal P., et al. Regulation of fibroblast activation protein by transforming growth factor beta-1 in glioblastoma microenvironment. Int J Mol Sci. 2021;22:1046. PubMed PMC

Pham L.K., Liang M., Adisetiyo H.A., et al. Contextual effect of repression of bone morphogenetic protein activity in prostate cancer. Endocr Relat Cancer. 2013;20:861–874. PubMed PMC

Lewis M.P., Lygoe K.A., Nystrom M.L., et al. Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer. 2004;90:822–832. PubMed PMC

Ootani Y., Satoh K., Nakayama A., et al. Ab initio molecular dynamics simulation of photoisomerization in azobenzene in the n pi∗ state. J Chem Phys. 2009;131 PubMed

Usui T., Sakurai M., Enjoji S., et al. Establishment of a novel model for anticancer drug resistance in three-dimensional primary culture of tumor microenvironment. Stem Cells Int. 2016;2016 PubMed PMC

Yokobori T., Suzuki S., Miyazaki T., et al. Intestinal epithelial culture under an air-liquid interface: a tool for studying human and mouse esophagi. Dis Esophagus. 2016;29:843–847. PubMed

Wu X., Tao P., Zhou Q., et al. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget. 2017;8:20741–20750. PubMed PMC

Rosette C., Roth R.B., Oeth P., et al. Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis. 2005;26:943–950. PubMed

Ghislin S., Obino D., Middendorp S., et al. LFA-1 and ICAM-1 expression induced during melanoma-endothelial cell co-culture favors the transendothelial migration of melanoma cell lines in vitro. BMC Cancer. 2012;12:455. PubMed PMC

Roland C.L., Harken A.H., Sarr M.G., et al. ICAM-1 expression determines malignant potential of cancer. Surgery. 2007;141:705–707. PubMed

Zeng J., Yang X., Cheng L., et al. Chemokine CXCL14 is associated with prognosis in patients with colorectal carcinoma after curative resection. J Transl Med. 2013;11:6. PubMed PMC

Li X., Zhao L., Meng T. Upregulated CXCL14 is associated with poor survival outcomes and promotes ovarian cancer cells proliferation. Cell Biochem Funct. 2020;38:613–620. PubMed

Wente M.N., Mayer C., Gaida M.M., et al. CXCL14 expression and potential function in pancreatic cancer. Cancer Lett. 2008;259:209–217. PubMed

Allinen M., Beroukhim R., Cai L., et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6:17–32. PubMed

Sjoberg E., Augsten M., Bergh J., et al. Expression of the chemokine CXCL14 in the tumour stroma is an independent marker of survival in breast cancer. Br J Cancer. 2016;114:1117–1124. PubMed PMC

Jain P., Mondal S.K., Sinha S.K., et al. Diagnostic and prognostic significance of different mucin expression, preoperative CEA, and CA-125 in colorectal carcinoma: a clinicopathological study. J Nat Sci Biol Med. 2014;5:404–408. PubMed PMC

Fujita H., Chiba H., Yokozaki H., et al. Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. J Histochem Cytochem. 2006;54:933–944. PubMed

West A.B., Isaac C.A., Carboni J.M., et al. Localization of villin, a cytoskeletal protein specific to microvilli, in human ileum and colon and in colonic neoplasms. Gastroenterology. 1988;94:343–352. PubMed

Wildi S., Kleeff J., Maruyama H., et al. Characterization of cytokeratin 20 expression in pancreatic and colorectal cancer. Clin Cancer Res. 1999;5:2840–2847. PubMed

Juric D., Castel P., Griffith M., et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature. 2015;518:240–244. PubMed PMC

Kwak E.L., Ahronian L.G., Siravegna G., et al. Molecular heterogeneity and receptor coamplification drive resistance to targeted therapy in MET-amplified esophagogastric cancer. Cancer Discov. 2015;5:1271–1281. PubMed PMC

Russo M., Siravegna G., Blaszkowsky L.S., et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov. 2016;6:147–153. PubMed PMC

Dolznig H., Rupp C., Puri C., et al. Modeling colon adenocarcinomas in vitro a 3D co-culture system induces cancer-relevant pathways upon tumor cell and stromal fibroblast interaction. Am J Pathol. 2011;179:487–501. PubMed PMC

Pape J., Magdeldin T., Stamati K., et al. Cancer-associated fibroblasts mediate cancer progression and remodel the tumouroid stroma. Br J Cancer. 2020;123:1178–1190. PubMed PMC

Rupp C., Scherzer M., Rudisch A., et al. IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction. Oncogene. 2015;34:815–825. PubMed

Kaur S., Bronson S.M., Pal-Nath D., et al. Functions of thrombospondin-1 in the tumor microenvironment. Int J Mol Sci. 2021;22:4570. PubMed PMC

Zhang X., Huang T., Li Y., et al. Upregulation of THBS1 is related to immunity and chemotherapy resistance in gastric cancer. Int J Gen Med. 2021;14:4945–4957. PubMed PMC

Daubon T., Leon C., Clarke K., et al. Deciphering the complex role of thrombospondin-1 in glioblastoma development. Nat Commun. 2019;10:1146. PubMed PMC

Pal S.K., Nguyen C.T., Morita K.I., et al. THBS1 is induced by TGFB1 in the cancer stroma and promotes invasion of oral squamous cell carcinoma. J Oral Pathol Med. 2016;45:730–739. PubMed

Crowe A.R., Yue W. Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: an integrated protocol. Bio Protoc. 2019;9 PubMed PMC

Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC

Dobin A., Davis C.A., Schlesinger F., et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. PubMed PMC

Wang L., Wang S., Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28:2184–2185. PubMed

Okonechnikov K., Conesa A., Garcia-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–294. PubMed PMC

Chu J., Sadeghi S., Raymond A., et al. BioBloom tools: fast, accurate and memory-efficient host species sequence screening using bloom filters. Bioinformatics. 2014;30:3402–3404. PubMed PMC

Li B., Dewey C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. PubMed PMC

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. PubMed PMC

Kolde R., Vilo J. GOsummaries: an R package for visual functional annotation of experimental data. F1000Res. 2015;4:574. PubMed PMC

Wu T., Hu E., Xu S., et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2021;2 PubMed PMC

Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2:1896–1906. PubMed

Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11:2301–2319. PubMed

Zhang X., Smits A.H., van Tilburg G.B., et al. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat Protoc. 2018;13:530–550. PubMed

Huber W., von Heydebreck A., Sultmann H., et al. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 2002;18(Suppl 1):S96–104. PubMed

Lazar C., Gatto L., Ferro M., et al. Accounting for the multiple natures of missing values in label-free quantitative proteomics data sets to compare imputation strategies. J Proteome Res. 2016;15:1116–1125. PubMed

Ulgen E., Ozisik O., Sezerman O.U. pathfindR: an R package for comprehensive identification of enriched pathways in omics data through active subnetworks. Front Genet. 2019;10:858. PubMed PMC

Szklarczyk D., Gable A.L., Lyon D., et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. PubMed PMC

Dong M., Thennavan A., Urrutia E., et al. SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references. Brief Bioinform. 2021;22:416–427. PubMed PMC

Perez-Riverol Y., Bai J., Bandla C., et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. PubMed PMC

Edgar R., Domrachev M., Lash A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...