Mimicking Tumor Cell Heterogeneity of Colorectal Cancer in a Patient-derived Organoid-Fibroblast Model
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
DOC 59
Austrian Science Fund FWF - Austria
PubMed
36868311
PubMed Central
PMC10141529
DOI
10.1016/j.jcmgh.2023.02.014
PII: S2352-345X(23)00036-X
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer, Co-cultures, Colorectal Cancer, Fibroblasts, Organoids,
- MeSH
- fibroblasty asociované s nádorem * metabolismus MeSH
- fibroblasty metabolismus MeSH
- kokultivační techniky MeSH
- kolorektální nádory * patologie MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- organoidy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND & AIMS: Patient-derived organoid cancer models are generated from epithelial tumor cells and reflect tumor characteristics. However, they lack the complexity of the tumor microenvironment, which is a key driver of tumorigenesis and therapy response. Here, we developed a colorectal cancer organoid model that incorporates matched epithelial cells and stromal fibroblasts. METHODS: Primary fibroblasts and tumor cells were isolated from colorectal cancer specimens. Fibroblasts were characterized for their proteome, secretome, and gene expression signatures. Fibroblast/organoid co-cultures were analyzed by immunohistochemistry and compared with their tissue of origin, as well as on gene expression levels compared with standard organoid models. Bioinformatics deconvolution was used to calculate cellular proportions of cell subsets in organoids based on single-cell RNA sequencing data. RESULTS: Normal primary fibroblasts, isolated from tumor adjacent tissue, and cancer associated fibroblasts retained their molecular characteristics in vitro, including higher motility of cancer associated compared with normal fibroblasts. Importantly, both cancer-associated fibroblasts and normal fibroblasts supported cancer cell proliferation in 3D co-cultures, without the addition of classical niche factors. Organoids grown together with fibroblasts displayed a larger cellular heterogeneity of tumor cells compared with mono-cultures and closely resembled the in vivo tumor morphology. Additionally, we observed a mutual crosstalk between tumor cells and fibroblasts in the co-cultures. This was manifested by considerably deregulated pathways such as cell-cell communication and extracellular matrix remodeling in the organoids. Thrombospondin-1 was identified as a critical factor for fibroblast invasiveness. CONCLUSION: We developed a physiological tumor/stroma model, which will be vital as a personalized tumor model to study disease mechanisms and therapy response in colorectal cancer.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Pathology Medical University of Vienna Vienna Austria
Eberhard Karls University of Tübingen Faculty of Mathematics and Natural Sciences Tübingen Germany
Institute of Medical Genetics Medical University of Vienna Vienna Austria
Ludwig Boltzmann Institute Applied Diagnostics Vienna Austria
Zobrazit více v PubMed
Arnold M., Sierra M.S., Laversanne M., et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683–691. PubMed
Marin J.J.G., Macias R.I.R., Monte M.J., et al. Cellular mechanisms accounting for the refractoriness of colorectal carcinoma to pharmacological treatment. Cancers (Basel) 2020;12:2605. PubMed PMC
Verduin M., Hoeben A., De Ruysscher D., et al. Patient-derived cancer organoids as predictors of treatment response. Front Oncol. 2021;11 PubMed PMC
Ooft S.N., Weeber F., Dijkstra K.K., et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med. 2019;11 PubMed
Narasimhan V., Wright J.A., Churchill M., et al. Medium-throughput drug screening of patient-derived organoids from colorectal peritoneal metastases to direct personalized therapy. Clin Cancer Res. 2020;26:3662–3670. PubMed PMC
Huijbers A., Tollenaar R.A., v Pelt G.W., et al. The proportion of tumor-stroma as a strong prognosticator for stage II and III colon cancer patients: validation in the VICTOR trial. Ann Oncol. 2013;24:179–185. PubMed
Ko Y.C., Lai T.Y., Hsu S.C., et al. Index of cancer-associated fibroblasts is superior to the epithelial-mesenchymal transition score in prognosis prediction. Cancers (Basel) 2020;12:1718. PubMed PMC
Guinney J., Dienstmann R., Wang X., et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–1356. PubMed PMC
Orimo A., Gupta P.B., Sgroi D.C., et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–348. PubMed
Polanska U.M., Orimo A. Carcinoma-associated fibroblasts: non-neoplastic tumour-promoting mesenchymal cells. J Cell Physiol. 2013;228:1651–1657. PubMed
Sahai E., Astsaturov I., Cukierman E., et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–186. PubMed PMC
Lee H.O., Hong Y., Etlioglu H.E., et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat Genet. 2020;52:594–603. PubMed
Li H., Courtois E.T., Sengupta D., et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet. 2017;49:708–718. PubMed
Calon A., Lonardo E., Berenguer-Llergo A., et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47:320–329. PubMed
Isella C., Terrasi A., Bellomo S.E., et al. Stromal contribution to the colorectal cancer transcriptome. Nat Genet. 2015;47:312–319. PubMed
Yamashita M., Ogawa T., Zhang X., et al. Role of stromal myofibroblasts in invasive breast cancer: stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer. 2012;19:170–176. PubMed
Fujita H., Ohuchida K., Mizumoto K., et al. alpha-Smooth muscle actin expressing stroma promotes an aggressive tumor biology in pancreatic ductal adenocarcinoma. Pancreas. 2010;39:1254–1262. PubMed
Barnas J.L., Simpson-Abelson M.R., Yokota S.J., et al. T cells and stromal fibroblasts in human tumor microenvironments represent potential therapeutic targets. Cancer Microenviron. 2010;3:29–47. PubMed PMC
Takahashi H., Sakakura K., Kawabata-Iwakawa R., et al. Immunosuppressive activity of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Cancer Immunol Immunother. 2015;64:1407–1417. PubMed PMC
Barcellos-Hoff M.H., Ravani S.A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000;60:1254–1260. PubMed
Krtolica A., Parrinello S., Lockett S., et al. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A. 2001;98:12072–12077. PubMed PMC
Ohuchida K., Mizumoto K., Murakami M., et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res. 2004;64:3215–3222. PubMed
Olumi A.F., Grossfeld G.D., Hayward S.W., et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999;59:5002–5011. PubMed PMC
Nicolas A.M., Pesic M., Engel E., et al. Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer. Cancer Cell. 2022;40:168–184.e13. PubMed
Chen S., McLean S., Carter D.E., et al. The gene expression profile induced by Wnt 3a in NIH 3T3 fibroblasts. J Cell Commun Signal. 2007;1:175–183. PubMed PMC
Sobel K., Tham M., Stark H.J., et al. Wnt-3a-activated human fibroblasts promote human keratinocyte proliferation and matrix destruction. Int J Cancer. 2015;136:2786–2798. PubMed
Sato T., Stange D.E., Ferrante M., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–1772. PubMed
Qian B.Z., Li J., Zhang H., et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–225. PubMed PMC
Stadler M., Pudelko K., Biermeier A., et al. Stromal fibroblasts shape the myeloid phenotype in normal colon and colorectal cancer and induce CD163 and CCL2 expression in macrophages. Cancer Lett. 2021;520:184–200. PubMed
Brown L.F., Guidi A.J., Schnitt S.J., et al. Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res. 1999;5:1041–1056. PubMed
Liu Z., Sun B., Qi L., et al. Dickkopf-1 expression is down-regulated during the colorectal adenoma-carcinoma sequence and correlates with reduced microvessel density and VEGF expression. Histopathology. 2015;67:158–166. PubMed
Bonavita E., Mantovani A., Garlanda C. PTX3 acts as an extrinsic oncosuppressor. Oncotarget. 2015;6:32309–32310. PubMed PMC
Unger C., Kramer N., Unterleuthner D., et al. Stromal-derived IGF2 promotes colon cancer progression via paracrine and autocrine mechanisms. Oncogene. 2017;36:5341–5355. PubMed
Carthy J.M., Garmaroudi F.S., Luo Z., et al. Wnt3a induces myofibroblast differentiation by upregulating TGF-beta signaling through SMAD2 in a beta-catenin-dependent manner. PLoS One. 2011;6 PubMed PMC
Carthy J.M., Luo Z., McManus B.M. WNT3A induces a contractile and secretory phenotype in cultured vascular smooth muscle cells that is associated with increased gap junction communication. Lab Invest. 2012;92:246–255. PubMed
Ono K., Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000;12:1–13. PubMed
van de Wetering M., Francies H.E., Francis J.M., et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–945. PubMed PMC
Kerjaschki D., Bago-Horvath Z., Rudas M., et al. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J Clin Invest. 2011;121:2000–2012. PubMed PMC
Bauer M., Su G., Casper C., et al. Heterogeneity of gene expression in stromal fibroblasts of human breast carcinomas and normal breast. Oncogene. 2010;29:1732–1740. PubMed PMC
Unterleuthner D., Neuhold P., Schwarz K., et al. Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer. Angiogenesis. 2020;23:159–177. PubMed PMC
Zhou Z., Zhou Q., Wu X., et al. VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. Cancer Lett. 2020;473:62–73. PubMed
Lebensohn A.M., Rohatgi R. R-spondins can potentiate WNT signaling without LGRs. Elife. 2018;7 PubMed PMC
Tran P.V., Georgieff M.K., Engeland W.C. Sodium depletion increases sympathetic neurite outgrowth and expression of a novel TMEM35 gene-derived protein (TUF1) in the rat adrenal zona glomerulosa. Endocrinology. 2010;151:4852–4860. PubMed PMC
Ying L., Zhang F., Pan X., et al. Complement component 7 (C7), a potential tumor suppressor, is correlated with tumor progression and prognosis. Oncotarget. 2016;7:86536–86546. PubMed PMC
Hirashima T., Karasawa H., Aizawa T., et al. Wnt5a in cancer-associated fibroblasts promotes colorectal cancer progression. Biochem Biophys Res Commun. 2021;568:37–42. PubMed
Qian J., Olbrecht S., Boeckx B., et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 2020;30:745–762. PubMed PMC
Chowdhury S., Hofree M., Lin K., et al. Implications of intratumor heterogeneity on consensus molecular subtype (CMS) in colorectal cancer. Cancers (Basel) 2021;13:4923. PubMed PMC
Joanito I., Wirapati P., Zhao N., et al. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat Genet. 2022;54:963–975. PubMed PMC
Khaliq A.M., Erdogan C., Kurt Z., et al. Refining colorectal cancer classification and clinical stratification through a single-cell atlas. Genome Biol. 2022;23:113. PubMed PMC
Kwon C.H., Park H.J., Choi J.H., et al. Snail and serpinA1 promote tumor progression and predict prognosis in colorectal cancer. Oncotarget. 2015;6:20312–20326. PubMed PMC
Liu Z., Gu S., Lu T., et al. IFI6 depletion inhibits esophageal squamous cell carcinoma progression through reactive oxygen species accumulation via mitochondrial dysfunction and endoplasmic reticulum stress. J Exp Clin Cancer Res. 2020;39:144. PubMed PMC
Xu J., Qian J., Zhang W., et al. LYPD8 regulates the proliferation and migration of colorectal cancer cells through inhibiting the secretion of IL6 and TNFalpha. Oncol Rep. 2019;41:2389–2395. PubMed
Przygodzka P., Sochacka E., Soboska K., et al. Neuromedin U induces an invasive phenotype in CRC cells expressing the NMUR2 receptor. J Exp Clin Cancer Res. 2021;40:283. PubMed PMC
Sunaga N., Kaira K., Imai H., et al. Oncogenic KRAS-induced epiregulin overexpression contributes to aggressive phenotype and is a promising therapeutic target in non-small-cell lung cancer. Oncogene. 2013;32:4034–4042. PubMed PMC
Cai P., Wu M., Zhang B., et al. Long noncoding RNA SNHG12 regulates cell proliferation, invasion and migration in endometrial cancer by targeting miR4429. Mol Med Rep. 2020;22:2842–2850. PubMed PMC
Efremova M., Vento-Tormo M., Teichmann S.A., et al. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 2020;15:1484–1506. PubMed
Botti G., Di Bonito M., Cantile M. Organoid biobanks as a new tool for pre-clinical validation of candidate drug efficacy and safety. Int J Physiol Pathophysiol Pharmacol. 2021;13:17–21. PubMed PMC
Nuciforo S., Fofana I., Matter M.S., et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 2018;24:1363–1376. PubMed PMC
Goncalves-Ribeiro S., Diaz-Maroto N.G., Berdiel-Acer M., et al. Carcinoma-associated fibroblasts affect sensitivity to oxaliplatin and 5FU in colorectal cancer cells. Oncotarget. 2016;7:59766–59780. PubMed PMC
Toussaint O., Remacle J., Dierick J.F., et al. From the Hayflick mosaic to the mosaics of ageing. Role of stress-induced premature senescence in human ageing. Int J Biochem Cell Biol. 2002;34:1415–1429. PubMed
Tsai K.K., Chuang E.Y., Little J.B., et al. Cellular mechanisms for low-dose ionizing radiation-induced perturbation of the breast tissue microenvironment. Cancer Res. 2005;65:6734–6744. PubMed
Yang N., Lode K., Berzaghi R., et al. Irradiated tumor fibroblasts avoid immune recognition and retain immunosuppressive functions over natural killer cells. Front Immunol. 2020;11 PubMed PMC
Fischer H., Salahshor S., Stenling R., et al. COL11A1 in FAP polyps and in sporadic colorectal tumors. BMC Cancer. 2001;1:17. PubMed PMC
Pennica D., Swanson T.A., Welsh J.W., et al. WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci U S A. 1998;95:14717–14722. PubMed PMC
Zhang X., Dong Y., Zhao M., et al. ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics. 2020;10:12044–12059. PubMed PMC
Bonan S., Albrengues J., Grasset E., et al. Membrane-bound ICAM-1 contributes to the onset of proinvasive tumor stroma by controlling acto-myosin contractility in carcinoma-associated fibroblasts. Oncotarget. 2017;8:1304–1320. PubMed PMC
Fullar A., Dudas J., Olah L., et al. Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression. BMC Cancer. 2015;15:256. PubMed PMC
Eble J.A., Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis. 2019;36:171–198. PubMed
Greicius G., Virshup D.M. Stromal control of intestinal development and the stem cell niche. Differentiation. 2019;108:8–16. PubMed
Miyoshi H., Stappenbeck T.S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat Protoc. 2013;8:2471–2482. PubMed PMC
Krepela E., Vanickova Z., Hrabal P., et al. Regulation of fibroblast activation protein by transforming growth factor beta-1 in glioblastoma microenvironment. Int J Mol Sci. 2021;22:1046. PubMed PMC
Pham L.K., Liang M., Adisetiyo H.A., et al. Contextual effect of repression of bone morphogenetic protein activity in prostate cancer. Endocr Relat Cancer. 2013;20:861–874. PubMed PMC
Lewis M.P., Lygoe K.A., Nystrom M.L., et al. Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer. 2004;90:822–832. PubMed PMC
Ootani Y., Satoh K., Nakayama A., et al. Ab initio molecular dynamics simulation of photoisomerization in azobenzene in the n pi∗ state. J Chem Phys. 2009;131 PubMed
Usui T., Sakurai M., Enjoji S., et al. Establishment of a novel model for anticancer drug resistance in three-dimensional primary culture of tumor microenvironment. Stem Cells Int. 2016;2016 PubMed PMC
Yokobori T., Suzuki S., Miyazaki T., et al. Intestinal epithelial culture under an air-liquid interface: a tool for studying human and mouse esophagi. Dis Esophagus. 2016;29:843–847. PubMed
Wu X., Tao P., Zhou Q., et al. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget. 2017;8:20741–20750. PubMed PMC
Rosette C., Roth R.B., Oeth P., et al. Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis. 2005;26:943–950. PubMed
Ghislin S., Obino D., Middendorp S., et al. LFA-1 and ICAM-1 expression induced during melanoma-endothelial cell co-culture favors the transendothelial migration of melanoma cell lines in vitro. BMC Cancer. 2012;12:455. PubMed PMC
Roland C.L., Harken A.H., Sarr M.G., et al. ICAM-1 expression determines malignant potential of cancer. Surgery. 2007;141:705–707. PubMed
Zeng J., Yang X., Cheng L., et al. Chemokine CXCL14 is associated with prognosis in patients with colorectal carcinoma after curative resection. J Transl Med. 2013;11:6. PubMed PMC
Li X., Zhao L., Meng T. Upregulated CXCL14 is associated with poor survival outcomes and promotes ovarian cancer cells proliferation. Cell Biochem Funct. 2020;38:613–620. PubMed
Wente M.N., Mayer C., Gaida M.M., et al. CXCL14 expression and potential function in pancreatic cancer. Cancer Lett. 2008;259:209–217. PubMed
Allinen M., Beroukhim R., Cai L., et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6:17–32. PubMed
Sjoberg E., Augsten M., Bergh J., et al. Expression of the chemokine CXCL14 in the tumour stroma is an independent marker of survival in breast cancer. Br J Cancer. 2016;114:1117–1124. PubMed PMC
Jain P., Mondal S.K., Sinha S.K., et al. Diagnostic and prognostic significance of different mucin expression, preoperative CEA, and CA-125 in colorectal carcinoma: a clinicopathological study. J Nat Sci Biol Med. 2014;5:404–408. PubMed PMC
Fujita H., Chiba H., Yokozaki H., et al. Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. J Histochem Cytochem. 2006;54:933–944. PubMed
West A.B., Isaac C.A., Carboni J.M., et al. Localization of villin, a cytoskeletal protein specific to microvilli, in human ileum and colon and in colonic neoplasms. Gastroenterology. 1988;94:343–352. PubMed
Wildi S., Kleeff J., Maruyama H., et al. Characterization of cytokeratin 20 expression in pancreatic and colorectal cancer. Clin Cancer Res. 1999;5:2840–2847. PubMed
Juric D., Castel P., Griffith M., et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature. 2015;518:240–244. PubMed PMC
Kwak E.L., Ahronian L.G., Siravegna G., et al. Molecular heterogeneity and receptor coamplification drive resistance to targeted therapy in MET-amplified esophagogastric cancer. Cancer Discov. 2015;5:1271–1281. PubMed PMC
Russo M., Siravegna G., Blaszkowsky L.S., et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov. 2016;6:147–153. PubMed PMC
Dolznig H., Rupp C., Puri C., et al. Modeling colon adenocarcinomas in vitro a 3D co-culture system induces cancer-relevant pathways upon tumor cell and stromal fibroblast interaction. Am J Pathol. 2011;179:487–501. PubMed PMC
Pape J., Magdeldin T., Stamati K., et al. Cancer-associated fibroblasts mediate cancer progression and remodel the tumouroid stroma. Br J Cancer. 2020;123:1178–1190. PubMed PMC
Rupp C., Scherzer M., Rudisch A., et al. IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction. Oncogene. 2015;34:815–825. PubMed
Kaur S., Bronson S.M., Pal-Nath D., et al. Functions of thrombospondin-1 in the tumor microenvironment. Int J Mol Sci. 2021;22:4570. PubMed PMC
Zhang X., Huang T., Li Y., et al. Upregulation of THBS1 is related to immunity and chemotherapy resistance in gastric cancer. Int J Gen Med. 2021;14:4945–4957. PubMed PMC
Daubon T., Leon C., Clarke K., et al. Deciphering the complex role of thrombospondin-1 in glioblastoma development. Nat Commun. 2019;10:1146. PubMed PMC
Pal S.K., Nguyen C.T., Morita K.I., et al. THBS1 is induced by TGFB1 in the cancer stroma and promotes invasion of oral squamous cell carcinoma. J Oral Pathol Med. 2016;45:730–739. PubMed
Crowe A.R., Yue W. Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: an integrated protocol. Bio Protoc. 2019;9 PubMed PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC
Dobin A., Davis C.A., Schlesinger F., et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. PubMed PMC
Wang L., Wang S., Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28:2184–2185. PubMed
Okonechnikov K., Conesa A., Garcia-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–294. PubMed PMC
Chu J., Sadeghi S., Raymond A., et al. BioBloom tools: fast, accurate and memory-efficient host species sequence screening using bloom filters. Bioinformatics. 2014;30:3402–3404. PubMed PMC
Li B., Dewey C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. PubMed PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. PubMed PMC
Kolde R., Vilo J. GOsummaries: an R package for visual functional annotation of experimental data. F1000Res. 2015;4:574. PubMed PMC
Wu T., Hu E., Xu S., et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2021;2 PubMed PMC
Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2:1896–1906. PubMed
Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11:2301–2319. PubMed
Zhang X., Smits A.H., van Tilburg G.B., et al. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat Protoc. 2018;13:530–550. PubMed
Huber W., von Heydebreck A., Sultmann H., et al. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 2002;18(Suppl 1):S96–104. PubMed
Lazar C., Gatto L., Ferro M., et al. Accounting for the multiple natures of missing values in label-free quantitative proteomics data sets to compare imputation strategies. J Proteome Res. 2016;15:1116–1125. PubMed
Ulgen E., Ozisik O., Sezerman O.U. pathfindR: an R package for comprehensive identification of enriched pathways in omics data through active subnetworks. Front Genet. 2019;10:858. PubMed PMC
Szklarczyk D., Gable A.L., Lyon D., et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. PubMed PMC
Dong M., Thennavan A., Urrutia E., et al. SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references. Brief Bioinform. 2021;22:416–427. PubMed PMC
Perez-Riverol Y., Bai J., Bandla C., et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. PubMed PMC
Edgar R., Domrachev M., Lash A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. PubMed PMC