Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
project No. 19-05048S
Grant Agency of the Czech Republic,
Research of the Cancer Microenvironment Supporting Cancer Growth and Spread", No. CZ.02.1.01/0.0/0.0/16_019/0000785
Ministry of Education, Youth and Sports of the Czech Republic
PROGRES Q28
Charles University
PubMed
35055153
PubMed Central
PMC8778626
DOI
10.3390/ijms23020964
PII: ijms23020964
Knihovny.cz E-resources
- Keywords
- IL-6, cancer ecosystem, cancer microenvironment, cancer-associated fibroblast, exosome,
- MeSH
- Exosomes metabolism MeSH
- Cancer-Associated Fibroblasts metabolism MeSH
- Interleukin-6 metabolism MeSH
- Humans MeSH
- Tumor Microenvironment MeSH
- Neoplasms metabolism MeSH
- Paracrine Communication MeSH
- Cell Movement MeSH
- Cell Proliferation MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- IL6 protein, human MeSH Browser
- Interleukin-6 MeSH
Cancer-associated fibroblasts (CAFs) are an essential component of the tumour microenvironment. They represent a heterogeneous group of cells that are under the control of cancer cells and can reversely influence the cancer cell population. They affect the cancer cell differentiation status, and the migration and formation of metastases. This is achieved through the production of the extracellular matrix and numerous bioactive factors. IL-6 seems to play the central role in the communication of noncancerous and cancer cells in the tumour. This review outlines the role of exosomes in cancer cells and cancer-associated fibroblasts. Available data on the exosomal cargo, which can significantly intensify interactions in the tumour, are summarised. The role of exosomes as mediators of the dialogue between cancer cells and cancer-associated fibroblasts is discussed together with their therapeutic relevance. The functional unity of the paracrine- and exosome-mediated communication of cancer cells with the tumour microenvironment represented by CAFs is worthy of attention.
BIOCEV 1st Faculty of Medicine Charles University 252 50 Vestec Czech Republic
BIOCEV Faculty of Science Charles University 252 50 Vestec Czech Republic
Department of Cell Biology Faculty of Science Charles University 120 00 Prague 2 Czech Republic
Institute of Anatomy 1st Faculty of Medicine Charles University 120 00 Prague 2 Czech Republic
Institute of Molecular Genetics Czech Academy of Sciences 142 20 Prague 4 Czech Republic
See more in PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Bray F., Laversanne M., Weiderpass E., Soerjomataram I. The Ever-Increasing Importance of Cancer as a Leading Cause of Premature Death Worldwide. Cancer. 2021;127:3029–3030. doi: 10.1002/cncr.33587. PubMed DOI
Egeblad M., Nakasone E.S., Werb Z. Tumors as Organs: Complex Tissues That Interface with the Entire Organism. Dev. Cell. 2010;18:884–901. doi: 10.1016/j.devcel.2010.05.012. PubMed DOI PMC
Chia S.B., Degregori J. Cancer Cells Build a Bad Neighbourhood in the Gut. Nature. 2021;594:340–341. doi: 10.1038/d41586-021-01379-z. PubMed DOI
Campisi J. Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors. Cell. 2005;120:513–522. doi: 10.1016/j.cell.2005.02.003. PubMed DOI
Krtolica A., Parrinello S., Lockett S., Desprez P.Y., Campisi J. Senescent Fibroblasts Promote Epithelial Cell Growth and Tumorigenesis: A Link between Cancer and Aging. Proc. Natl. Acad. Sci. USA. 2001;98:12072–12077. doi: 10.1073/pnas.211053698. PubMed DOI PMC
Fadiel A., Eichenbaum K.D., Xia Y. Cell Interactome: Good Neighbors or Bad Neighbors. Biosci. Hypotheses. 2008;1:255. doi: 10.1016/j.bihy.2008.06.008. PubMed DOI PMC
Mintz B., Illmensee K. Normal Genetically Mosaic Mice Produced from Malignant Teratocarcinoma Cells. Proc. Natl. Acad. Sci. USA. 1975;72:3585–3589. doi: 10.1073/pnas.72.9.3585. PubMed DOI PMC
Lacina L., Plzak J., Kodet O., Szabo P., Chovanec M., Dvorankova B., Smetana K., Jr. Cancer Microenvironment: What Can We Learn from the Stem Cell Niche. Int. J. Mol. Sci. 2015;16:24094–24110. doi: 10.3390/ijms161024094. PubMed DOI PMC
Kodet O., Kučera J., Strnadová K., Dvořánková B., Štork J., Lacina L., Smetana K. Cutaneous Melanoma Dissemination Is Dependent on the Malignant Cell Properties and Factors of Intercellular Crosstalk in the Cancer Microenvironment (Review) Int. J. Oncol. 2020;57:619–630. doi: 10.3892/ijo.2020.5090. PubMed DOI PMC
Kalluri R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer. 2016;16:582–598. doi: 10.1038/nrc.2016.73. PubMed DOI
Firestein S.G., Budd R.C., Gabriel S.E., McInnes I.B., O’Dell J.R. Firestein: Kelley’s Textbook of Rheumatology. 8th ed. Elsevier; Amsterdam, The Netherlands: 2021.
Mikkola M.L. Genetic Basis of Skin Appendage Development. Semin. Cell Dev. Biol. 2007;18:225–236. doi: 10.1016/j.semcdb.2007.01.007. PubMed DOI
Avagliano A., Fiume G., Ruocco M.R., Martucci N., Vecchio E., Insabato L., Russo D., Accurso A., Masone S., Montagnani S., et al. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers. 2020;12:1697. doi: 10.3390/cancers12061697. PubMed DOI PMC
Macias H., Hinck L. Mammary Gland Development. Wiley Interdiscip. Rev. Dev. Biol. 2012;1:533–557. doi: 10.1002/wdev.35. PubMed DOI PMC
Schittny J.C. Development of the Lung. Cell Tissue Res. 2017;367:427–444. doi: 10.1007/s00441-016-2545-0. PubMed DOI PMC
Duncan S.A. Mechanisms Controlling Early Development of the Liver. Mech. Dev. 2003;120:19–33. doi: 10.1016/S0925-4773(02)00328-3. PubMed DOI
Jørgensen M.C., Ahnfelt-Rønne J., Hald J., Madsen O.D., Serup P., Hecksher-Sørensen J. An Illustrated Review of Early Pancreas Development in the Mouse. Endocr. Rev. 2007;28:685–705. doi: 10.1210/er.2007-0016. PubMed DOI
Gittes G.K. Developmental Biology of the Pancreas: A Comprehensive Review. Dev. Biol. 2009;326:4–35. doi: 10.1016/j.ydbio.2008.10.024. PubMed DOI
Driskell R.R. Distinct Fibroblast Lineages Determine Dermal Architecture in Skin Development and Repair. Nature. 2013;504:277–281. doi: 10.1038/nature12783. PubMed DOI PMC
Driskell R.R., Watt F.M. Understanding Fibroblast Heterogeneity in the Skin. Trends Cell Biol. 2015;25:92–99. doi: 10.1016/j.tcb.2014.10.001. PubMed DOI
Driskell R.R., Clavel C., Rendl M., Watt F.M. Hair Follicle Dermal Papilla Cells at a Glance. J. Cell Sci. 2011;124:1179–1182. doi: 10.1242/jcs.082446. PubMed DOI PMC
Haydont V., Neiveyans V., Perez P., Busson É., Lataillade J.J., Asselineau D., Fortunel N.O. Fibroblasts from the Human Skin Dermo-Hypodermal Junction Are Distinct from Dermal Papillary and Reticular Fibroblasts and from Mesenchymal Stem Cells and Exhibit a Specific Molecular Profile Related to Extracellular Matrix Organization and Modeling. Cells. 2020;9:368. doi: 10.3390/cells9020368. PubMed DOI PMC
Philippeos C., Telerman S.B., Oulès B., Pisco A.O., Shaw T.J., Elgueta R., Lombardi G., Driskell R.R., Soldin M., Lynch M.D., et al. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations. J. Investig. Dermatol. 2018;138:811–825. doi: 10.1016/j.jid.2018.01.016. PubMed DOI PMC
Novotný J., Strnadová K., Dvořánková B., Kocourková Š., Jakša R., Dundr P., Pačes V., Smetana K., Kolář M., Lacina L. Single-Cell RNA Sequencing Unravels Heterogeneity of the Stromal Niche in Cutaneous Melanoma Heterogeneous Spheroids. Cancers. 2020;12:3324. doi: 10.3390/cancers12113324. PubMed DOI PMC
Kareva I. What Can Ecology Teach Us about Cancer? Transl. Oncol. 2011;4:266–270. doi: 10.1593/tlo.11154. PubMed DOI PMC
Hirata E., Girotti M.R., Viros A., Hooper S., Spencer-Dene B., Matsuda M., Larkin J., Marais R., Sahai E. Intravital Imaging Reveals How BRAF Inhibition Generates Drug-Tolerant Microenvironments with High Integrin Β1/FAK Signaling. Cancer Cell. 2015;27:574–588. doi: 10.1016/j.ccell.2015.03.008. PubMed DOI PMC
Beacham E.C.D.A. Stromagenesis: The Changing Face of Fibroblastic Microenvironments during Tumor Progression. Semin. Cancer Biol. 2005;15:329–341. doi: 10.1016/j.semcancer.2005.05.003. PubMed DOI
Rodrigues P., Vanharanta S. Circulating Tumor Cells: Come Together, Right Now, over Metastasis. Cancer Discov. 2019;9:22. doi: 10.1158/2159-8290.CD-18-1285. PubMed DOI PMC
Paget S. THE DISTRIBUTION OF SECONDARY GROWTHS IN CANCER OF THE BREAST. Lancet. 1889;133:571–573. doi: 10.1016/S0140-6736(00)49915-0. PubMed DOI
Dillekås H., Rogers M.S., Straume O. Are 90% of Deaths from Cancer Caused by Metastases? Cancer Med. 2019;8:5574. doi: 10.1002/cam4.2474. PubMed DOI PMC
Thompson A.M., Steel C.M., Chetty U., Carter D.C. Evidence for the Multistep Theory of Carcinogenesis in Human Breast Cancer. Breast. 1992;1:29–34. doi: 10.1016/0960-9776(92)90009-Q. DOI
Lacina L., Čoma M., Dvořánková B., Kodet O., Melegová N., Gál P., Smetana K. Evolution of Cancer Progression in the Context of Darwinism. Anticancer. Res. 2019;39:1–16. doi: 10.21873/anticanres.13074. PubMed DOI
Lacina L., Kodet O., Dvořánková B., Szabo P., Smetana K. Ecology of Melanoma Cell. Histol. Histopathol. 2018;33:247–254. doi: 10.14670/HH-11-926. PubMed DOI
Josson S., Matsuoka Y., Chung L.W.K., Zhau H.E., Wang R. Tumor-Stroma Co-Evolution in Prostate Cancer Progression and Metastasis. Semin. Cell Dev. Biol. 2010;21:26–32. doi: 10.1016/j.semcdb.2009.11.016. PubMed DOI PMC
Dujon A.M., Aktipis A., Alix-Panabières C., Amend S.R., Boddy A.M., Brown J.S., Capp J.P., DeGregori J., Ewald P., Gatenby R., et al. Identifying Key Questions in the Ecology and Evolution of Cancer. Evol. Appl. 2021;14:877–892. doi: 10.1111/eva.13190. PubMed DOI PMC
Papkou A., Gokhale C.S., Traulsen A., Schulenburg H. Host–Parasite Coevolution: Why Changing Population Size Matters. Zoology. 2016;119:330–338. doi: 10.1016/j.zool.2016.02.001. PubMed DOI
Becht E., Giraldo N.A., Lacroix L., Buttard B., Elarouci N., Petitprez F., Selves J., Laurent-Puig P., Sautès-Fridman C., Fridman W.H., et al. Estimating the Population Abundance of Tissue-Infiltrating Immune and Stromal Cell Populations Using Gene Expression. Genome Biol. 2016;17:218. doi: 10.1186/s13059-016-1070-5. PubMed DOI PMC
Novák Š., Kolář M., Szabó A., Vernerová Z., Lacina L., Strnad H., Šáchová J., Hradilová M., Havránek J., Španko M., et al. Desmoplastic Crosstalk in Pancreatic Ductal Adenocarcinoma Is Reflected by Different Responses of Panc-1, MIAPaCa-2, PaTu-8902, and CAPAN-2 Cell Lines to Cancer-Associated/Normal Fibroblasts. Cancer Genom. Proteom. 2021;18:221–243. doi: 10.21873/cgp.20254. PubMed DOI PMC
Norton J., Foster D., Chinta M., Titan A., Longaker M. Pancreatic Cancer Associated Fibroblasts (CAF): Under-Explored Target for Pancreatic Cancer Treatment. Cancers. 2020;12:1347. doi: 10.3390/cancers12051347. PubMed DOI PMC
Balaziova E., Vymola P., Hrabal P., Mateu R., Zubal M., Tomas R., Netuka D., Kramar F., Zemanova Z., Svobodova K., et al. Fibroblast Activation Protein Expressing Mesenchymal Cells Promote Glioblastoma Angiogenesis. Cancers. 2021;13:3304. doi: 10.3390/cancers13133304. PubMed DOI PMC
Pachva M.C., Lai H., Jia A., Rouleau M., Sorensen P.H. Extracellular Vesicles in Reprogramming of the Ewing Sarcoma Tumor Microenvironment. Front. Cell Dev. Biol. 2021;9:726205. doi: 10.3389/fcell.2021.726205. PubMed DOI PMC
Song Y.J., Xu Y., Deng C., Zhu X., Fu J., Chen H., Lu J., Xu H., Song G., Tang Q., et al. Gene Expression Classifier Reveals Prognostic Osteosarcoma Microenvironment Molecular Subtypes. Front. Immunol. 2021;12:12. doi: 10.3389/fimmu.2021.623762. PubMed DOI PMC
Raffaghello L., Vacca A., Pistoia V., Ribatti D. Cancer Associated Fibroblasts in Hematological Malignancies. Oncotarget. 2015;6:2589–2603. doi: 10.18632/oncotarget.2661. PubMed DOI PMC
Blentic A., Tandon P., Payton S., Walshe J., Carney T., Kelsh R.N., Mason I., Graham A. The Emergence of Ectomesenchyme. Dev. Dyn. 2008;237:592–601. doi: 10.1002/dvdy.21439. PubMed DOI PMC
LeBleu V.S., Neilson E.G. Origin and Functional Heterogeneity of Fibroblasts. FASEB J. 2020;34:3519–3536. doi: 10.1096/fj.201903188R. PubMed DOI
Živicová V., Lacina L., Mateu R., Smetana K., Kavková R., Krejcí E.D., Grim M., Kvasilová A., Borský J., Strnad H., et al. Analysis of Dermal Fibroblasts Isolated from Neonatal and Child Cleft Lip and Adult Skin: Developmental Implications on Reconstructive Surgery. Int. J. Mol. Med. 2017;40:1323–1334. doi: 10.3892/ijmm.2017.3128. PubMed DOI PMC
Wu F., Yang J., Liu J., Wang Y., Mu J., Zeng Q., Deng S., Zhou H. Signaling Pathways in Cancer-Associated Fibroblasts and Targeted Therapy for Cancer. Signal Transduct. Target. Ther. 2021;6:218. doi: 10.1038/s41392-021-00641-0. PubMed DOI PMC
Bukkuri A., Adler F.R. Viewing Cancer through the Lens of Corruption: Using Behavioral Ecology to Understand Cancer. Front. Ecol. Evol. 2021:9. doi: 10.3389/fevo.2021.678533. DOI
Lee Y.T., Tan Y.J., Falasca M., Oon C.E. Cancer-Associated Fibroblasts: Epigenetic Regulation and Therapeutic Intervention in Breast Cancer. Cancers. 2020;12:2949. doi: 10.3390/cancers12102949. PubMed DOI PMC
Lacina L., Brábek J., Král V., Kodet O., Smetana K. Interleukin-6: A Molecule with Complex Biological Impact in Cancer. Histol. Histopathol. 2019;34:125–136. doi: 10.14670/HH-18-033. PubMed DOI
Thiery J.P., Acloque H., Huang R.Y.J., Nieto M.A. Epithelial-Mesenchymal Transitions in Development and Disease. Cell. 2009;139:871–890. doi: 10.1016/j.cell.2009.11.007. PubMed DOI
Petersen O.W., Nielsen H.L., Gudjonsson T., Villadsen R., Rank F., Niebuhr E., Bissell M.J., Rønnov-Jessen L. Epithelial to Mesenchymal Transition in Human Breast Cancer Can Provide a Nonmalignant Stroma. Am. J. Pathol. 2003;162:391–402. doi: 10.1016/S0002-9440(10)63834-5. PubMed DOI PMC
Kopantzev E.P., Vayshlya N.A., Kopantseva M.R., Egorov V.I., Pikunov M., Zinovyeva M.V., Vinogradova T.V., Zborovskaya I.B., Sverdlov E.D. Cellular and Molecular Phenotypes of Proliferating Stromal Cells from Human Carcinomas. Br. J. Cancer. 2010;102:1533–1540. doi: 10.1038/sj.bjc.6605652. PubMed DOI PMC
Polyak K., Haviv I., Campbell I.G. Co-Evolution of Tumor Cells and Their Microenvironment. Trends Genet. 2009;25:30–38. doi: 10.1016/j.tig.2008.10.012. PubMed DOI
Haviv I., Polyak K., Qiu W., Hu M., Campbell I. Origin of Carcinoma Associated Fibroblasts. Cell Cycle (Georget. Tex.) 2009;8:589–595. doi: 10.4161/cc.8.4.7669. PubMed DOI
Kodet O., Dvořánková B., Bendlová B., Sýkorová V., Krajsová I., Štork J., Kučera J., Szabo P., Strnad H., Kolář M., et al. Microenvironment-Driven Resistance to B-Raf Inhibition in a Melanoma Patient Is Accompanied by Broad Changes of Gene Methylation and Expression in Distal Fibroblasts. Int. J. Mol. Med. 2018;41:2687–2703. doi: 10.3892/ijmm.2018.3448. PubMed DOI PMC
Dvořánková B., Smetana K., Říhová B., Kučera J., Mateu R., Szabo P. Cancer-Associated Fibroblasts Are Not Formed from Cancer Cells by Epithelial-to-Mesenchymal Transition in Nu/Nu Mice. Histochem. Cell Biol. 2015;143:463–469. doi: 10.1007/s00418-014-1293-z. PubMed DOI
Gunaydin G., Kesikli S.A., Guc D. Cancer Associated Fibroblasts Have Phenotypic and Functional Characteristics Similar to the Fibrocytes That Represent a Novel MDSC Subset. Oncoimmunology. 2015;4:1–9. doi: 10.1080/2162402X.2015.1034918. PubMed DOI PMC
Pérez L., Muñoz-Durango N., Riedel C.A., Echeverría C., Kalergis A.M., Cabello-Verrugio C., Simon F. Endothelial-to-Mesenchymal Transition: Cytokine-Mediated Pathways That Determine Endothelial Fibrosis under Inflammatory Conditions. Cytokine Growth Factor Rev. 2017;33:41–54. doi: 10.1016/j.cytogfr.2016.09.002. PubMed DOI
Ganguly D., Chandra R., Karalis J., Teke M., Aguilera T., Maddipati R., Wachsmann M.B., Ghersi D., Siravegna G., Zeh H.J., et al. Cancer-Associated Fibroblasts: Versatile Players in the Tumor Microenvironment. Cancers. 2020;12:2652. doi: 10.3390/cancers12092652. PubMed DOI PMC
Iyoshi S., Yoshihara M., Nakamura K., Sugiyama M., Koya Y., Kitami K., Uno K., Mogi K., Tano S., Tomita H., et al. Pro-Tumoral Behavior of Omental Adipocyte-Derived Fibroblasts in Tumor Microenvironment at the Metastatic Site of Ovarian Cancer. Int. J. Cancer. 2021;149:1961–1972. doi: 10.1002/ijc.33770. PubMed DOI
Louault K., Li R.R., De Clerck Y.A. Cancer-Associated Fibroblasts: Understanding Their Heterogeneity. Cancers. 2020;12:3108. doi: 10.3390/cancers12113108. PubMed DOI PMC
Manoukian P., Bijlsma M., van Laarhoven H. The Cellular Origins of Cancer-Associated Fibroblasts and Their Opposing Contributions to Pancreatic Cancer Growth. Front. Cell Dev. Biol. 2021;9:9. doi: 10.3389/fcell.2021.743907. PubMed DOI PMC
Pan C., Fang Q., Liu P., Ma D., Cao S., Zhang L., Chen Q., Hu T., Wang J. Mesenchymal Stem Cells With Cancer-Associated Fibroblast-Like Phenotype Stimulate SDF-1/CXCR4 Axis to Enhance the Growth and Invasion of B-Cell Acute Lymphoblastic Leukemia Cells Through Cell-to-Cell Communication. Front. Cell Dev. Biol. 2021;9:9. doi: 10.3389/fcell.2021.708513. PubMed DOI PMC
Dvořánková B., Szabo P., Lacina L., Gal P., Uhrova J., Zima T., Kaltner H., André S., Gabius H.J., Sykova E., et al. Human Galectins Induce Conversion of Dermal Fibroblasts into Myofibroblasts and Production of Extracellular Matrix: Potential Application in Tissue Engineering and Wound Repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI
Ali S., Xia Q., Muhammad T., Liu L., Meng X., Bars-Cortina D., Khan A.A., Huang Y., Dong L. Glioblastoma Therapy: Rationale for a Mesenchymal Stem Cell-Based Vehicle to Carry Recombinant Viruses. Stem Cell Rev. Rep. 2021:1–21. doi: 10.1007/s12015-021-10207-w. PubMed DOI
Moreno R. Mesenchymal Stem Cells and Oncolytic Viruses: Joining Forces against Cancer. J. ImmunoTherapy Cancer. 2021;9:e001684. doi: 10.1136/jitc-2020-001684. PubMed DOI PMC
Tai Y., Woods E.L., Dally J., Kong D., Steadman R., Moseley R., Midgley A.C. Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules. 2021;11:1095. doi: 10.3390/biom11081095. PubMed DOI PMC
Mifková A., Kodet O., Szabo P., Kučera J., Dvořánková B., André S., Koripelly G., Gabius H.J., Lehn J.M., Smetana K. Synthetic Polyamine BPA-C8 Inhibits TGF-Β1-Mediated Conversion of Human Dermal Fibroblast to Myofibroblasts and Establishment of Galectin-1-Rich Extracellular Matrix in Vitro. ChemBioChem. 2014;15:1465–1470. doi: 10.1002/cbic.201402087. PubMed DOI
Han C., Liu T., Yin R. Biomarkers for Cancer-Associated Fibroblasts. Biomark. Res. 2020;8:64. doi: 10.1186/s40364-020-00245-w. PubMed DOI PMC
Boyd L.N.C., Andini K.D., Peters G.J., Kazemier G., Giovannetti E. Heterogeneity and Plasticity of Cancer-Associated Fibroblasts in the Pancreatic Tumor Microenvironment. Semin. Cancer Biol. 2021:S1044-579X(21)00056-0. doi: 10.1016/j.semcancer.2021.03.006. PubMed DOI
Chen X., Liu Y., Zhang Q., Liu B., Cheng Y., Zhang Y., Sun Y., Liu J. Exosomal MiR-590-3p Derived from Cancer-Associated Fibroblasts Confers Radioresistance in Colorectal Cancer. Mol. Ther.-Nucleic Acids. 2021;24:113–126. doi: 10.1016/j.omtn.2020.11.003. PubMed DOI PMC
Joshi R.S., Kanugula S.S., Sudhir S., Pereira M.P., Jain S., Aghi M.K. The Role of Cancer-Associated Fibroblasts in Tumor Progression. Cancers. 2021;13:1399. doi: 10.3390/cancers13061399. PubMed DOI PMC
Busek P., Mateu R., Zubal M., Kotackova L., Sedo A. Targeting Fibroblast Activation Protein in Cancer-Prospects and Caveats. Front. Biosci.-Landmark. 2018;23:1933–1968. PubMed
Šimková A., Bušek P., Šedo A., Konvalinka J. Molecular Recognition of Fibroblast Activation Protein for Diagnostic and Therapeutic Applications. Biochim. Biophys. Acta-Proteins Proteom. 2020;1868:140409. doi: 10.1016/j.bbapap.2020.140409. PubMed DOI
Irvine A.F., Waise S., Green E.W., Stuart B., Thomas G.J. Characterising Cancer-Associated Fibroblast Heterogeneity in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2021;11:1–15. doi: 10.1038/s41598-021-81796-2. PubMed DOI PMC
Miyashita N., Saito A. Organ Specificity and Heterogeneity of Cancer-Associated Fibroblasts in Colorectal Cancer. Int. J. Mol. Sci. 2021;22:10973. doi: 10.3390/ijms222010973. PubMed DOI PMC
Simon T., Salhia B. Cancer Associated Fibroblast Subpopulations with Diverse and Dynamic Roles in the Tumor Microenvironment. Mol. Cancer Res. 2021 doi: 10.1158/1541-7786.MCR-21-0282. PubMed DOI PMC
Watt D.M., Morton J.P. Heterogeneity in Pancreatic Cancer Fibroblasts—TGFβ as a Master Regulator? Cancers. 2021;13:4984. doi: 10.3390/cancers13194984. PubMed DOI PMC
Pradhan R.N., Krishnamurty A.T., Fletcher A.L., Turley S.J., Müller S. A Bird’s Eye View of Fibroblast Heterogeneity: A Pan-Disease, Pan-Cancer Perspective. Immunol. Rev. 2021;302:299–320. doi: 10.1111/imr.12990. PubMed DOI
Dvořánková B., Szabo P., Lacina L., Kodet O., Matouškové E., Smetana K., Matoušková E., Smetana K. Fibroblasts Prepared from Different Types of Malignant Tumors Stimulate Expression of Luminal Marker Keratin 8 in the EM-G3 Breast Cancer Cell Line. Histochem. Cell Biol. 2012;137:679–685. doi: 10.1007/s00418-012-0918-3. PubMed DOI
Geng X., Chen H., Zhao L., Hu J., Yang W., Li G., Cheng C., Zhao Z., Zhang T., Li L., et al. Cancer-Associated Fibroblast (CAF) Heterogeneity and Targeting Therapy of CAFs in Pancreatic Cancer. Front. Cell Dev. Biol. 2021;9:655152. doi: 10.3389/fcell.2021.655152. PubMed DOI PMC
Dvorak H.F. Tumors: Wounds That Do Not Heal. Cancer Immunol. Res. 2009;315:1650–1659. doi: 10.1158/2326-6066.CIR-14-0209. PubMed DOI PMC
Smetana K., Szabo P., Gál P., André S., Gabius H.J., Kodet O., Dvořánková B. Emerging Role of Tissue Lectins as Microenvironmental Effectors in Tumors and Wounds. Histol. Histopathol. 2015;30:293–309. doi: 10.14670/HH-30.293. PubMed DOI
Szabó P., Kolář M., Dvořánková B., Lacina L., Štork J., Vlček Č., Strnad H., Tvrdek M., Smetana K., Jr. Mouse 3T3 Fibroblasts under the Influence of Fibroblasts Isolated from Stroma of Human Basal Cell Carcinoma Acquire Properties of Multipotent Stem Cells. Biol. Cell. 2011;103:233–248. doi: 10.1042/BC20100113. PubMed DOI
Krejčí E., Dvořánková B., Szabo P., Naňka O., Strnad H., Kodet O., Lacina L., Kolář M., Smetana K. Fibroblasts as Drivers of Healing and Cancer Progression: From In Vitro Experiments to Clinics. CRC Press; Boca Raton, FL, USA: 2016.
Lacina L., Smetana K., Jr., Dvořánková B., Pytlík R., Kideryová L., Kučerová L., Plzáková Z., Štork J., Gabius H.-J., André S. Stromal Fibroblasts from Basal Cell Carcinoma Affect Phenotype of Normal Keratinocytes. Br. J. Dermatol. 2007;156:819–829. doi: 10.1111/j.1365-2133.2006.07728.x. PubMed DOI
Lacina L., Dvořánkova B., Smetana K., Jr., Chovanec M., Plzǎk J., Tachezy R., Kideryovǎ L., Kučerová L., Čada Z., Bouček J., et al. Marker Profiling of Normal Keratinocytes Identifies the Stroma from Squamous Cell Carcinoma of the Oral Cavity as a Modulatory Microenvironment in Co-Culture. Int. J. Radiat. Biol. 2007;83:837–848. doi: 10.1080/09553000701694343. PubMed DOI
Ishii T., Suzuki A., Kuwata T., Hisamitsu S., Hashimoto H., Ohara Y., Yanagihara K., Mitsunaga S., Yoshino T., Kinoshita T., et al. Drug-Exposed Cancer-Associated Fibroblasts Facilitate Gastric Cancer Cell Progression Following Chemotherapy. Gastric Cancer. 2021;24:810–822. doi: 10.1007/s10120-021-01174-9. PubMed DOI
Kučera J., Strnadová K., Dvořánková B., Lacina L., Krajsová I., Štork J., Kovářová H., Skalníková H.K., Vodička P., Motlík J., et al. Serum Proteomic Analysis of Melanoma Patients with Immunohistochemical Profiling of Primary Melanomas and Cultured Cells: Pilot Study. Oncol. Rep. 2019;42:1793–1804. doi: 10.3892/or.2019.7319. PubMed DOI PMC
Loumaye A., Thissen J.P. Biomarkers of Cancer Cachexia. Clin. Biochem. 2017;50:1281–1288. doi: 10.1016/j.clinbiochem.2017.07.011. PubMed DOI
Cehreli R., Yavuzsen T., Ates H., Akman T., Ellidokuz H., Oztop I. Can Inflammatory and Nutritional Serum Markers Predict Chemotherapy Outcomes and Survival in Advanced Stage Nonsmall Cell Lung Cancer Patients? BioMed Res. Int. 2019;2019:1–8. doi: 10.1155/2019/1648072. PubMed DOI PMC
Zivicova V., Gal P., Mifkova A., Novak S., Kaltner H., Kolar M., Strnad H., Sachova J., Hradilova M., Chovanec M., et al. Detection of Distinct Changes in Gene-Expression Profiles in Specimens of Tumors and Transition Zones of Tenascin-Positive/-Negative Head and Neck Squamous Cell Carcinoma. Anticancer. Res. 2018;38:1279–1290. doi: 10.21873/anticanres.12350. PubMed DOI
Libring S., Shinde A., Chanda M.K., Nuru M., George H., Saleh A.M., Abdullah A., Kinzer-Ursem T.L., Calve S., Wendt M.K., et al. The Dynamic Relationship of Breast Cancer Cells and Fibroblasts in Fibronectin Accumulation at Primary and Metastatic Tumor Sites. Cancers. 2020;12:1270. doi: 10.3390/cancers12051270. PubMed DOI PMC
Sapudom J., Müller C.D., Nguyen K.T., Martin S., Anderegg U., Pompe T. Matrix Remodeling and Hyaluronan Production by Myofibroblasts and Cancer-Associated Fibroblasts in 3d Collagen Matrices. Gels. 2020;6:33. doi: 10.3390/gels6040033. PubMed DOI PMC
Hashimoto M., Uesugi N., Osakabe M., Yanagawa N., Otsuka K., Kajiwara Y., Ueno H., Sasaki A., Sugai T. Expression Patterns of Microenvironmental Factors and Tenascin-C at the Invasive Front of Stage II and III Colorectal Cancer: Novel Tumor Prognostic Markers. Front. Oncol. 2021;11:690816. doi: 10.3389/fonc.2021.690816. PubMed DOI PMC
Kay E.J., Koulouras G., Zanivan S. Regulation of Extracellular Matrix Production in Activated Fibroblasts: Roles of Amino Acid Metabolism in Collagen Synthesis. Front. Oncol. 2021;11:719922. doi: 10.3389/fonc.2021.719922. PubMed DOI PMC
Lincoln V., Chao L., Woodley D.T., Murrell D., Kim M., O’Toole E.A., Ly A., Cogan J., Mosallaei D., Wysong A., et al. Over-Expression of Stromal Periostin Correlates with Poor Prognosis of Cutaneous Squamous Cell Carcinomas. Exp. Dermatol. 2021;30:698–704. doi: 10.1111/exd.14281. PubMed DOI
Schwörer S., Pavlova N.N., Cimino F.V., King B., Cai X., Sizemore G.M., Thompson C.B. Fibroblast Pyruvate Carboxylase Is Required for Collagen Production in the Tumour Microenvironment. Nat. Metab. 2021;3:1484–1499. doi: 10.1038/s42255-021-00480-x. PubMed DOI PMC
Sueyama T., Kajiwara Y., Mochizuki S., Shimazaki H., Shinto E., Hase K., Ueno H. Periostin as a Key Molecule Defining Desmoplastic Environment in Colorectal Cancer. Virchows Arch. 2021;478:865–874. doi: 10.1007/s00428-020-02965-8. PubMed DOI
Eiro N., Cid S., Fraile M., Cabrera J.R., Gonzalez L.O., Vizoso F.J. Analysis of the Gene Expression Profile of Stromal Pro-Tumor Factors in Cancer-Associated Fibroblasts from Luminal Breast Carcinomas. Diagnostics. 2020;10:865. doi: 10.3390/diagnostics10110865. PubMed DOI PMC
Miyazaki T., Akasu R., Miyazaki A. Calpain-Associated Proteolytic Regulation of the Stromal Microenvironment in Cancer. Curr. Pharm. Des. 2021;27:3128–3138. doi: 10.2174/1381612827666210311143053. PubMed DOI
Hassona Y., Cirillo N., Heesom K., Parkinson E.K., Prime S.S. Senescent Cancer-Associated Fibroblasts Secrete Active MMP-2 That Promotes Keratinocyte Dis-Cohesion and Invasion. Br. J. Cancer. 2014;111:1230–1237. doi: 10.1038/bjc.2014.438. PubMed DOI PMC
Chang J., Chaudhuri O. Beyond Proteases: Basement Membrane Mechanics and Cancer Invasion. J. Cell Biol. 2019;218:2456–2469. doi: 10.1083/jcb.201903066. PubMed DOI PMC
Conti S., Kato T., Park D., Sahai E., Trepat X., Labernadie A. Methods in Molecular Biology. Volume 2179. Springer; Berlin/Heidelberg, Germany: 2020. CAFs and Cancer Cells Co-Migration in 3D Spheroid Invasion Assay. PubMed DOI
Miyazaki K., Togo S., Okamoto R., Idiris A., Kumagai H., Miyagi Y. Collective Cancer Cell Invasion in Contact with Fibroblasts through Integrin-A5β1/Fibronectin Interaction in Collagen Matrix. Cancer Sci. 2020;111:4381–4392. doi: 10.1111/cas.14664. PubMed DOI PMC
Mishra P., Banerjee D., Ben-Baruch A. Chemokines at the Crossroads of Tumor-Fibroblast Interactions That Promote Malignancy. J. Leukoc. Biol. 2011;89:31–39. doi: 10.1189/jlb.0310182. PubMed DOI
Jobe N.P., Živicová V., Mifková A., Rösel D., Dvořánková B., Kodet O., Strnad H., Kolář M., Šedo A., Smetana K., et al. Fibroblasts Potentiate Melanoma Cells in Vitro Invasiveness Induced by UV-Irradiated Keratinocytes. Histochem. Cell Biol. 2018;149:503–516. doi: 10.1007/s00418-018-1650-4. PubMed DOI
Asokan S., Bandapalli O.R. Advances in Experimental Medicine and Biology. Volume 1302. Springer; Berlin/Heidelberg, Germany: 2021. CXCL8 Signaling in the Tumor Microenvironment. PubMed DOI
Španko M., Strnadová K., Pavlíček A.J., Szabo P., Kodet O., Valach J., Dvořánková B., Smetana K., Lacina L. Il-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int. J. Mol. Sci. 2021;22:1027. doi: 10.3390/ijms222011027. PubMed DOI PMC
Morikawa M., Derynck R., Miyazono K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb. Perspect. Biol. 2016;8:a021873. doi: 10.1101/cshperspect.a021873. PubMed DOI PMC
Brábek J., Jakubek M., Vellieux F., Novotný J., Kolář M., Lacina L., Szabo P., Strnadová K., Rösel D., Dvořánková B., et al. Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. Int. J. Mol. Sci. 2020;21:7937. doi: 10.3390/ijms21217937. PubMed DOI PMC
Shimura Y., Kurosawa H., Tsuchiya M., Sawa M., Kaneko H., Liu L., Makino Y., Nojiri H., Iwase Y., Kaneko K., et al. Serum Interleukin 6 Levels Are Associated with Depressive State of the Patients with Knee Osteoarthritis Irrespective of Disease Severity. Clin. Rheumatol. 2017;36:2781–2787. doi: 10.1007/s10067-017-3826-z. PubMed DOI
Coppé J.P., Desprez P.Y., Krtolica A., Campisi J. The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annu. Rev. Pathol. Mech. Dis. 2010;5:99–118. doi: 10.1146/annurev-pathol-121808-102144. PubMed DOI PMC
Strnadova K., Sandera V., Dvorankova B., Kodet O., Duskova M., Smetana K., Lacina L. Skin Aging: The Dermal Perspective. Clin. Dermatol. 2019;37 doi: 10.1016/j.clindermatol.2019.04.005. PubMed DOI
Rose-John S. Interleukin-6 Signalling in Health and Disease. F1000Research. 2020;9:1013. doi: 10.12688/f1000research.26058.1. PubMed DOI PMC
Rose-John S. Il-6 Trans-Signaling via the Soluble IL-6 Receptor: Importance for the Proinflammatory Activities of IL-6. Int. J. Biol. Sci. 2012;8:1237–1247. doi: 10.7150/ijbs.4989. PubMed DOI PMC
Shimamoto K., Ito T., Ozaki Y., Amuro H., Tanaka A., Nishizawa T., Son Y., Inaba M., Nomura S. Serum Interleukin 6 before and after Therapy with Tocilizumab Is a Principal Biomarker in Patients with Rheumatoid Arthritis. J. Rheumatol. 2013;40:1074–1081. doi: 10.3899/jrheum.121389. PubMed DOI
Plzák J., Bouček J., Bandúrová V., Kolář M., Hradilová M., Szabo P., Lacina L., Chovanec M., Smetana K. The Head and Neck Squamous Cell Carcinoma Microenvironment as a Potential Target for Cancer Therapy. Cancers. 2019;11:440. doi: 10.3390/cancers11040440. PubMed DOI PMC
Jobe N.P., Rösel D., Dvořánková B., Kodet O., Lacina L., Mateu R., Smetana K., Brábek J. Simultaneous Blocking of IL-6 and IL-8 Is Sufficient to Fully Inhibit CAF-Induced Human Melanoma Cell Invasiveness. Histochem. Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI
Ham I.H., Lee D., Hur H. Cancer-Associated Fibroblast-Induced Resistance to Chemotherapy and Radiotherapy in Gastrointestinal Cancers. Cancers. 2021;13:1172. doi: 10.3390/cancers13051172. PubMed DOI PMC
Fu H., Yang H., Zhang X., Xu W. The Emerging Roles of Exosomes in Tumor–Stroma Interaction. J. Cancer Res. Clin. Oncol. 2016;142:1897–1907. doi: 10.1007/s00432-016-2145-0. PubMed DOI
Steinbichler T.B., Dudás J., Riechelmann H., Skvortsova I.I. The Role of Exosomes in Cancer Metastasis. Semin. Cancer Biol. 2017;44:170–181. doi: 10.1016/j.semcancer.2017.02.006. PubMed DOI
Liu J., Ren L., Li S., Li W., Zheng X., Yang Y., Fu W., Yi J., Wang J., Du G. The Biology, Function, and Applications of Exosomes in Cancer. Acta Pharm. Sin. B. 2021;11:2783–2797. doi: 10.1016/j.apsb.2021.01.001. PubMed DOI PMC
Dror S., Sander L., Schwartz H., Sheinboim D., Barzilai A., Dishon Y., Apcher S., Golan T., Greenberger S., Barshack I., et al. Melanoma MiRNA Trafficking Controls Tumour Primary Niche Formation. Nat. Cell Biol. 2016;18:1006–1017. doi: 10.1038/ncb3399. PubMed DOI
Weidle U.H., Birzele F., Kollmorgen G., Rüger R. The Multiple Roles of Exosomes in Metastasis. Cancer Genom. Proteom. 2017;14:1–16. doi: 10.21873/cgp.20015. PubMed DOI PMC
Feng W., Dean D.C., Hornicek F.J., Shi H., Duan Z. Exosomes Promote Pre-Metastatic Niche Formation in Ovarian Cancer. Mol. Cancer. 2019;18:1–11. doi: 10.1186/s12943-019-1049-4. PubMed DOI PMC
Wortzel I., Dror S., Kenific C.M., Lyden D. Exosome-Mediated Metastasis: Communication from a Distance. Dev. Cell. 2019;49:347–360. doi: 10.1016/j.devcel.2019.04.011. PubMed DOI
Strnadová K., Pfeiferová L., Přikryl P., Dvořánková B., Vlčák E., Frýdlová J., Vokurka M., Novotný J., Šáchová J., Hradilová M., et al. Exosomes Produced by Melanoma Cells Significantly Influence the Biological Properties of Normal and Cancer-Associated Fibroblasts. Histochem. Cell Biol. 2021:1–20. doi: 10.1007/s00418-021-02052-2. PubMed DOI PMC
Lee J.S., Yoo J.E., Kim H., Rhee H., Koh M.J., Nahm J.H., Choi J.S., Lee K.H., Park Y.N. Tumor Stroma with Senescence-Associated Secretory Phenotype in Steatohepatitic Hepatocellular Carcinoma. PLoS ONE. 2017;12:e0171922. doi: 10.1371/journal.pone.0171922. PubMed DOI PMC
Yasuda T., Koiwa M., Yonemura A., Miyake K., Kariya R., Kubota S., Yokomizo-Nakano T., Yasuda-Yoshihara N., Uchihara T., Itoyama R., et al. Inflammation-Driven Senescence-Associated Secretory Phenotype in Cancer-Associated Fibroblasts Enhances Peritoneal Dissemination. Cell Rep. 2021;34:108779. doi: 10.1016/j.celrep.2021.108779. PubMed DOI
Kabir T.D., Leigh R.J., Tasena H., Mellone M., Coletta R.D., Parkinson E.K., Prime S.S., Thomas G.J., Paterson I.C., Zhou D., et al. A MiR-335/COX-2/PTEN Axis Regulates the Secretory Phenotype of Senescent Cancer-Associated Fibroblasts. Aging. 2016;8:1608–1635. doi: 10.18632/aging.100987. PubMed DOI PMC
Gener Lahav T., Adler O., Zait Y., Shani O., Amer M., Doron H., Abramovitz L., Yofe I., Cohen N., Erez N. Melanoma-Derived Extracellular Vesicles Instigate Proinflammatory Signaling in the Metastatic Microenvironment. Int. J. Cancer. 2019;145:2521–2534. doi: 10.1002/ijc.32521. PubMed DOI
Whiteside T.L. Exosome and Mesenchymal Stem Cell Cross-Talk in the Tumor Microenvironment. Semin. Immunol. 2018;35:69–79. doi: 10.1016/j.smim.2017.12.003. PubMed DOI PMC
Zhou X., Yan T., Huang C., Xu Z., Wang L., Jiang E., Wang H., Chen Y., Liu K., Shao Z., et al. Melanoma Cell-Secreted Exosomal MiR-155-5p Induce Proangiogenic Switch of Cancer-Associated Fibroblasts via SOCS1/JAK2/STAT3 Signaling Pathway. J. Exp. Clin. Cancer Res. 2018;37:242. doi: 10.1186/s13046-018-0911-3. PubMed DOI PMC
Hu T., Hu J. Melanoma-Derived Exosomes Induce Reprogramming Fibroblasts into Cancer-Associated Fibroblasts via Gm26809 Delivery. Cell Cycle. 2019;18:3085–3094. doi: 10.1080/15384101.2019.1669380. PubMed DOI PMC
Yang Y., Li J., Geng Y. Exosomes Derived from Chronic Lymphocytic Leukaemia Cells Transfer MiR-146a to Induce the Transition of Mesenchymal Stromal Cells into Cancer-Associated Fibroblasts. J. Biochem. 2020;168:491–498. doi: 10.1093/jb/mvaa064. PubMed DOI
Yang S.S., Ma S., Dou H., Liu F., Zhang S.Y., Jiang C., Xiao M., Huang Y.X. Breast Cancer-Derived Exosomes Regulate Cell Invasion and Metastasis in Breast Cancer via MiR-146a to Activate Cancer Associated Fibroblasts in Tumor Microenvironment. Exp. Cell Res. 2020;391:111983. doi: 10.1016/j.yexcr.2020.111983. PubMed DOI
Huang Q., Hsueh C.Y., Shen Y.J., Guo Y., Huang J.M., Zhang Y.F., Li J.Y., Gong H.L., Zhou L. Small Extracellular Vesicle-Packaged TGFβ1 Promotes the Reprogramming of Normal Fibroblasts into Cancer-Associated Fibroblasts by Regulating Fibronectin in Head and Neck Squamous Cell Carcinoma. Cancer Lett. 2021;517 doi: 10.1016/j.canlet.2021.05.017. PubMed DOI
Shelton M., Anene C.A., Nsengimana J., Roberts W., Newton-Bishop J., Boyne J.R. The Role of CAF Derived Exosomal MicroRNAs in the Tumour Microenvironment of Melanoma. Biochim. Biophys. Acta-Rev. Cancer. 2021;1875:188456. doi: 10.1016/j.bbcan.2020.188456. PubMed DOI
Shu S., Matsuzaki J., Want M.Y., Conway A., Benjamin-Davalos S., Allen C.L., Koroleva M., Battaglia S., Odunsi A., Minderman H., et al. An Immunosuppressive Effect of Melanoma-Derived Exosomes on NY-ESO-1 Antigen-Specific Human CD8+ T Cells Is Dependent on IL-10 and Independent of BRAFV600E Mutation in Melanoma Cell Lines. Immunol. Investig. 2020;49:744–757. doi: 10.1080/08820139.2020.1803353. PubMed DOI PMC
Wang C., Wang Y., Chang X., Ba X., Hu N., Liu Q., Fang L., Wang Z. Melanoma-Derived Exosomes Endow Fibroblasts with an Invasive Potential via Mir-21 Target Signaling Pathway. Cancer Manag. Res. 2020;12:12965–12974. doi: 10.2147/CMAR.S273718. PubMed DOI PMC
Yeon J.H., Jeong H.E., Seo H., Cho S., Kim K., Na D., Chung S., Park J., Choi N., Kang J.Y. Cancer-Derived Exosomes Trigger Endothelial to Mesenchymal Transition Followed by the Induction of Cancer-Associated Fibroblasts. Acta Biomater. 2018;76:146–153. doi: 10.1016/j.actbio.2018.07.001. PubMed DOI
Deep G., Panigrahia G.K. Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironmen. Crit. Rev. Oncog. 2015;20:419–434. doi: 10.1615/CritRevOncog.v20.i5-6.130. PubMed DOI PMC
Boussadia Z., Lamberti J., Mattei F., Pizzi E., Puglisi R., Zanetti C., Pasquini L., Fratini F., Fantozzi L., Felicetti F., et al. Acidic Microenvironment Plays a Key Role in Human Melanoma Progression through a Sustained Exosome Mediated Transfer of Clinically Relevant Metastatic Molecules. J. Exp. Clin. Cancer Res. 2018;37:245. doi: 10.1186/s13046-018-0915-z. PubMed DOI PMC
Xi L., Peng M., Liu S., Liu Y., Wan X., Hou Y., Qin Y., Yang L., Chen S., Zeng H., et al. Hypoxia-Stimulated ATM Activation Regulates Autophagy-Associated Exosome Release from Cancer-Associated Fibroblasts to Promote Cancer Cell Invasion. J. Extracell. Vesicles. 2021;10:e12146. doi: 10.1002/jev2.12146. PubMed DOI PMC
Melnik B.C. MiR-21: An Environmental Driver of Malignant Melanoma? J. Transl. Med. 2015;13:1–16. doi: 10.1186/s12967-015-0570-5. PubMed DOI PMC
Dou D., Ren X., Han M., Xu X., Ge X., Gu Y., Wang X. Cancer-Associated Fibroblasts-Derived Exosomes Suppress Immune Cell Function in Breast Cancer via the MiR-92/PD-L1 Pathway. Front. Immunol. 2020;11:2026. doi: 10.3389/fimmu.2020.02026. PubMed DOI PMC
Guo L., Li B., Yang J., Shen J., Ji J., Miao M. Fibroblast-Derived Exosomal MicroRNA-369 Potentiates Migration and Invasion of Lung Squamous Cell Carcinoma Cells via NF1-Mediated MAPK Signaling Pathway. Int. J. Mol. Med. 2020;46:595–608. doi: 10.3892/ijmm.2020.4614. PubMed DOI PMC
Shan G., Gu J., Zhou D., Li L., Cheng W., Wang Y., Tang T., Wang X. Cancer-Associated Fibroblast-Secreted Exosomal MiR-423-5p Promotes Chemotherapy Resistance in Prostate Cancer by Targeting GREM2 through the TGF-β Signaling Pathway. Exp. Mol. Med. 2020;52:1809–1822. doi: 10.1038/s12276-020-0431-z. PubMed DOI PMC
Chen P.Y., Wei W.F., Wu H.Z., Fan L.S., Wang W. Cancer-Associated Fibroblast Heterogeneity: A Factor That Cannot Be Ignored in Immune Microenvironment Remodeling. Front. Immunol. 2021;12:12. doi: 10.3389/fimmu.2021.671595. PubMed DOI PMC
Jiang Y., Wang K., Lu X., Wang Y., Chen J. Cancer-Associated Fibroblasts-Derived Exosomes Promote Lung Cancer Progression by OIP5-AS1/ MiR-142-5p/ PD-L1 Axis. Mol. Immunol. 2021;140:47–58. doi: 10.1016/j.molimm.2021.10.002. PubMed DOI
Kunou S., Shimada K., Takai M., Sakamoto A., Aoki T., Hikita T., Kagaya Y., Iwamoto E., Sanada M., Shimada S., et al. Exosomes Secreted from Cancer-Associated Fibroblasts Elicit Anti-Pyrimidine Drug Resistance through Modulation of Its Transporter in Malignant Lymphoma. Oncogene. 2021;40:3989–4003. doi: 10.1038/s41388-021-01829-y. PubMed DOI PMC
Luo G., Zhang Y., Wu Z., Zhang L., Liang C., Chen X. Exosomal LINC00355 Derived from Cancer-Associated Fibroblasts Promotes Bladder Cancer Cell Resistance to Cisplatin by Regulating MiR-34b-5p/ABCB1 Axis. Acta Biochim. Biophys. Sin. 2021;53:558–566. doi: 10.1093/abbs/gmab023. PubMed DOI
Yin H., Yu S., Xie Y., Dai X., Dong M., Sheng C., Hu J. Cancer-Associated Fibroblasts-Derived Exosomes Upregulate MicroRNA-135b-5p to Promote Colorectal Cancer Cell Growth and Angiogenesis by Inhibiting Thioredoxin-Interacting Protein. Cell. Signal. 2021;84:110029. doi: 10.1016/j.cellsig.2021.110029. PubMed DOI
Yugawa K., Yoshizumi T., Mano Y., Itoh S., Harada N., Ikegami T., Kohashi K., Oda Y., Mori M. Cancer-Associated Fibroblasts Promote Hepatocellular Carcinoma Progression through Downregulation of Exosomal MiR-150-3p. Eur. J. Surg. Oncol. 2021;47:384–393. doi: 10.1016/j.ejso.2020.08.002. PubMed DOI
Zhang H.W., Shi Y., Liu J.-B., Wang H.M., Wang P.Y., Wu Z.J., Li L., Gu L.P., Cao P.S., Wang G.R., et al. Cancer-Associated Fibroblast-Derived Exosomal MicroRNA-24-3p Enhances Colon Cancer Cell Resistance to MTX by down-Regulating CDX2/HEPH Axis. J. Cell. Mol. Med. 2021;25:3699–3713. doi: 10.1111/jcmm.15765. PubMed DOI PMC
Zhang T., Zhang P., Li H.X. CAFs-Derived Exosomal MiRNA-130a Confers Cisplatin Resistance of NSCLC Cells through PUM2-Dependent Packaging. Int. J. Nanomed. 2021;16:561–577. doi: 10.2147/IJN.S271976. PubMed DOI PMC
Zhan Y., Du J., Min Z., Ma L., Zhang W., Zhu W., Liu Y. Carcinoma-Associated Fibroblasts Derived Exosomes Modulate Breast Cancer Cell Stemness through Exonic CircHIF1A by MiR-580-5p in Hypoxic Stress. Cell Death Discov. 2021;7:1–15. doi: 10.1038/s41420-021-00506-z. PubMed DOI PMC
White J.P. IL-6, Cancer and Cachexia: Metabolic Dysfunction Creates the Perfect Storm. Transl. Cancer Res. 2017;6:S280–S285. doi: 10.21037/tcr.2017.03.52. PubMed DOI PMC
Yamagata A.S., Freire P.P. Are Cachexia-Associated Tumors TransmitTERS of ER Stress. Biochem. Soc. Trans. 2021;49:1841–1853. doi: 10.1042/BST20210496. PubMed DOI
Kottorou A., Dimitrakopoulos F.I., Tsezou A. Non-Coding RNAs in Cancer-Associated Cachexia: Clinical Implications and Future Perspectives. Transl. Oncol. 2021;14:101101. doi: 10.1016/j.tranon.2021.101101. PubMed DOI PMC
Miao C., Zhang W., Feng L., Gu X., Shen Q., Lu S., Fan M., Li Y., Guo X., Ma Y., et al. Cancer-Derived Exosome MiRNAs Induce Skeletal Muscle Wasting by Bcl-2-Mediated Apoptosis in Colon Cancer Cachexia. Mol. Ther.-Nucleic Acids. 2021;24:923–938. doi: 10.1016/j.omtn.2021.04.015. PubMed DOI PMC
Di W., Zhang W., Zhu B., Li X., Tang Q., Zhou Y. Colorectal Cancer Prompted Adipose Tissue Browning and Cancer Cachexia through Transferring Exosomal MiR-146b-5p. J. Cell. Physiol. 2021;236:5399–5410. doi: 10.1002/jcp.30245. PubMed DOI
Aoyagi T., Terracina K.P., Raza A., Matsubara H., Takabe K. Cancer Cachexia, Mechanism and Treatment. World J. Gastrointest. Oncol. 2015;7:17–29. doi: 10.4251/wjgo.v7.i4.17. PubMed DOI PMC
The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities
Advances in Cancer Metabolism and Tumour Microenvironment