Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, systematický přehled
PubMed
30927923
PubMed Central
PMC6441173
DOI
10.1186/s12943-019-0983-5
PII: 10.1186/s12943-019-0983-5
Knihovny.cz E-zdroje
- Klíčová slova
- Epithelial-mesenchymal transition, Head and neck cancer, Tumor metabolism, Tumor microenvironment,
- MeSH
- lidé MeSH
- nádorové mikroprostředí * MeSH
- nádory hlavy a krku patologie MeSH
- progrese nemoci MeSH
- spinocelulární karcinom patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- systematický přehled MeSH
The tumor microenvironment (TME) is comprised of many different cell populations, such as cancer-associated fibroblasts and various infiltrating immune cells, and non-cell components of extracellular matrix. These crucial parts of the surrounding stroma can function as both positive and negative regulators of all hallmarks of cancer development, including evasion of apoptosis, induction of angiogenesis, deregulation of the energy metabolism, resistance to the immune detection and destruction, and activation of invasion and metastasis. This review represents a summary of recent studies focusing on describing these effects of microenvironment on initiation and progression of the head and neck squamous cell carcinoma, focusing on oral squamous cell carcinoma, since it is becoming clear that an investigation of differences in stromal composition of the head and neck squamous cell carcinoma microenvironment and their impact on cancer development and progression may help better understand the mechanisms behind different responses to therapy and help define possible targets for clinical intervention.
Zobrazit více v PubMed
Vermorken JB, et al. Overview of the efficacy of cetuximab in recurrent and/or metastatic squamous cell carcinoma of the head and neck in patients who previously failed platinum-based therapies. Cancer. 2008;112(12):2710–2719. doi: 10.1002/cncr.23442. PubMed DOI
Filho MRM, et al. Quality of life of patients with head and neck cancer. Brazilian Journal of Otorhinolaryngology. 2013;79(1):82–88. doi: 10.5935/1808-8694.20130014. PubMed DOI PMC
Skvortsov S, et al. Rac1 as a potential therapeutic target for chemo-radioresistant head and neck squamous cell carcinomas (HNSCC) Br J Cancer. 2014;110(11):2677–2687. doi: 10.1038/bjc.2014.221. PubMed DOI PMC
Stewart BW, Wild CP. World Cancer Report 2014. 2014.
Parkin DM, et al. Global Cancer Statistics, 2002. A Cancer Journal for Clinicians. 2005;55(2):74–108. doi: 10.3322/canjclin.55.2.74. PubMed DOI
Chuang SC, et al. Risk of second primary cancer among patients with head and neck cancers: A pooled analysis of 13 cancer registries. Int J Cancer. 2008;123(10):2390–2396. doi: 10.1002/ijc.23798. PubMed DOI
Brockstein B, et al. Patterns of failure, prognostic factors and survival in locoregionally advanced head and neck cancer treated with concomitant chemoradiotherapy: a 9-year, 337-patient, multi-institutional experience. Ann Oncol. 2004;15(8):1179–1186. doi: 10.1093/annonc/mdh308. PubMed DOI
Castellsague X, et al. The role of type of tobacco and type of alcoholic beverage in oral carcinogenesis. Int J Cancer. 2004;108(5):741–749. doi: 10.1002/ijc.11627. PubMed DOI
Carlander AF, et al. Continuing rise in oropharyngeal cancer in a high HPV prevalence area: A Danish population-based study from 2011 to 2014. Eur J Cancer. 2017;70:75–82. doi: 10.1016/j.ejca.2016.10.015. PubMed DOI
Mork J, et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. The New England Journal of Medicine. 2001;344(15):1125–1131. doi: 10.1056/NEJM200104123441503. PubMed DOI
D’Souza G, et al. Case–Control Study of Human Papillomavirus and Oropharyngeal Cancer. The new engl and journal of medicine. 2007;356(19):1944–1956. doi: 10.1056/NEJMoa065497. PubMed DOI
Jia CC, et al. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One. 2013;8(5):e63243. doi: 10.1371/journal.pone.0063243. PubMed DOI PMC
Luker KE, et al. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene. 2012:1476–5594 (Electronic)). PubMed PMC
Augsten M, et al. Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling for their tumor-supporting properties. Cancer Res. 2014:1538–7445 (Electronic)). PubMed
Bello IO, et al. Cancer-associated fibroblasts, a parameter of the tumor microenvironment, overcomes carcinoma-associated parameters in the prognosis of patients with mobile tongue cancer. Oral Oncol. 2011;47:1879–0593. doi: 10.1016/j.oraloncology.2010.10.013. PubMed DOI
Wang X, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition through secreted cytokines in endometrial cancer cells. Oncology Letters. 2018;15(4):5694–5702. PubMed PMC
Jung D-W, et al. Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7. International Journal of Cancer. 2009;127(2):332–344. PubMed
Lotti F, et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. The Journal of Experimental Medicine. 2013;210(13):2851–2872. doi: 10.1084/jem.20131195. PubMed DOI PMC
Calon A, Tauriello DV, Batlle E. TGF-beta in CAF-mediated tumor growth and metastasis. Semin Cancer Biol. 2014:1096–3650 (Electronic)). PubMed
Glentis A, et al. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nature Communications. 2017;8(1):924. doi: 10.1038/s41467-017-00985-8. PubMed DOI PMC
Hawinkels LJ, et al. Interaction with colon cancer cells hyperactivates TGF-beta signaling in cancer-associated fibroblasts. Oncogene. 2014:1476–5594 (Electronic)). PubMed
Gaggioli C, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007:1465–7392 (Print)). PubMed
De Wever O, et al. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer. 2008;123(10):2229–2238. doi: 10.1002/ijc.23925. PubMed DOI
Council, L. Hameed O. Differential expression of immunohistochemical markers in bladder smooth muscle and myofibroblasts, and the potential utility of desmin, smoothelin, and vimentin in staging of bladder carcinoma. Mod Pathol. 2009;22(5):639–650. doi: 10.1038/modpathol.2009.9. PubMed DOI
Ohlund D, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214(3):579–596. PubMed PMC
Kim HM, Jung WH, Koo JS. Expression of cancer-associated fibroblast related proteins in metastatic breast cancer: an immunohistochemical analysis. J Transl Med. 2015;13:222. doi: 10.1186/s12967-015-0587-9. PubMed DOI PMC
Sandoval P, et al. Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis. J Pathol. 2013;231(4):517–531. doi: 10.1002/path.4281. PubMed DOI
Zeisberg EM, et al. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 2007;67(21):10123–10128. doi: 10.1158/0008-5472.CAN-07-3127. PubMed DOI
Iwano M, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. Journal of Clinical Investigation. 2002;110(3):341–350. doi: 10.1172/JCI0215518. PubMed DOI PMC
Jotzu C, et al. Adipose tissue-derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor-derived factors. Anal Cell Pathol (Amst) 2010;33(2):61–79. doi: 10.1155/2010/695162. PubMed DOI PMC
Quante M, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19(2):257–272. doi: 10.1016/j.ccr.2011.01.020. PubMed DOI PMC
Skalli O, et al. A Monoclonal Antibody against a-Smooth Muscle Actin: A New Probe for Smooth Muscle Differentiation. The Journal of Cell Biology. 1986;103(6):2787–2796. doi: 10.1083/jcb.103.6.2787. PubMed DOI PMC
Lim KP, et al. Fibroblast gene expression profile reflects the stage of tumour progression in oral squamous cell carcinoma. The Journal of Pathology. 2010;223(4):459–469. doi: 10.1002/path.2841. PubMed DOI
Park JE, et al. Fibroblast Activation Protein, a Dual Specificity Serine Protease Expressed in Reactive Human Tumor Stromal Fibroblasts. THE JOURNAL OF BIOLOGICAL CHEMISTRY. 1999;274(51):36505–36512. doi: 10.1074/jbc.274.51.36505. PubMed DOI
Wonganu B, Berger BW. A specific, transmembrane interface regulates fibroblast activation protein (FAP) homodimerization, trafficking and exopeptidase activity. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2016;1858(8):1876–1882. doi: 10.1016/j.bbamem.2016.05.001. PubMed DOI
Sukowati CHC, et al. The role of multipotent cancer associated fibroblasts in hepatocarcinogenesis. BMC Cancer. 2015;15:188. doi: 10.1186/s12885-015-1196-y. PubMed DOI PMC
Zhou B, et al. A role for cancer-associated fibroblasts in inducing the epithelial-to-mesenchymal transition in human tongue squamous cell carcinoma. Journal of Oral Pathology & Medicine. 2014;43(8):585–592. doi: 10.1111/jop.12172. PubMed DOI
Netea MG, Mantovani A. In: Adaptive Characteristics of Innate Immune Responses in Macrophages, in Macrophages: Biology and Role in the Pathology of Diseases. Biswas SK, Mantovani A, editors. New York: Springer New York; 2014. pp. 339–348.
Stout RD, et al. Macrophages Sequentially Change Their Functional Phenotype in Response to Changes in Microenvironmental Influences. The Journal of Immunology. 2005;175(1):342. doi: 10.4049/jimmunol.175.1.342. PubMed DOI
Murray PJ, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. doi: 10.1016/j.immuni.2014.06.008. PubMed DOI PMC
Melton DW, et al. Temporal Phenotypic Features Distinguish Polarized Macrophages In Vitro. Autoimmunity. 2015;48(3):161–176. doi: 10.3109/08916934.2015.1027816. PubMed DOI PMC
Stein M, et al. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. The Journal of Experimental Medicine. 1992;176(1):287. doi: 10.1084/jem.176.1.287. PubMed DOI PMC
Verreck FAW, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(13):4560–4565. doi: 10.1073/pnas.0400983101. PubMed DOI PMC
Duluc D, et al. Interferon-γ reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. International Journal of Cancer. 2009;125(2):367–373. doi: 10.1002/ijc.24401. PubMed DOI
Zhang S, et al. Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines. PLOS Neglected Tropical Diseases. 2010;4(3):e648. doi: 10.1371/journal.pntd.0000648. PubMed DOI PMC
Lacavé-Lapalun J-V, Benderitter M, Linard C. Flagellin or Lipopolysaccharide Treatment Modified Macrophage Populations after Colorectal Radiation of Rats. Journal of Pharmacology and Experimental Therapeutics. 2013;346(1):75. doi: 10.1124/jpet.113.204040. PubMed DOI
Weber M, et al. Small oral squamous cell carcinomas with nodal lymphogenic metastasis show increased infiltration of M2 polarized macrophages – An immunohistochemical analysis. Journal of Cranio-Maxillofacial Surgery. 2014;42(7):1087–1094. doi: 10.1016/j.jcms.2014.01.035. PubMed DOI
Kurahara H, et al. Significance of M2-Polarized Tumor-Associated Macrophage in Pancreatic Cancer. Journal of Surgical Research. 2011;167(2):e211–e219. doi: 10.1016/j.jss.2009.05.026. PubMed DOI
Mantovani A, et al. Macrophage plasticity and polarization in tissue repair and remodelling. The Journal of Pathology. 2013;229(2):176–185. doi: 10.1002/path.4133. PubMed DOI
Chunyan L, et al. Expression of M2-Polarized Macrophages is Associated with Poor Prognosis for Advanced Epithelial Ovarian Cancer. Technology in Cancer Research & Treatment. 2013;12(3):259–267. doi: 10.7785/tcrt.2012.500312. PubMed DOI
Makita N, et al. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. International Immunology. 2015;27(3):131–141. doi: 10.1093/intimm/dxu090. PubMed DOI
Müller U, et al. IL-13 Induces Disease-Promoting Type 2 Cytokines, Alternatively Activated Macrophages and Allergic Inflammation during Pulmonary Infection of Mice with Cryptococcus neoformans. The Journal of Immunology. 2007;179(8):5367. doi: 10.4049/jimmunol.179.8.5367. PubMed DOI
Awad F, et al. Impact of human monocyte and macrophage polarization on NLR expression and NLRP3 inflammasome activation. PLOS ONE. 2017;12(4):e0175336. doi: 10.1371/journal.pone.0175336. PubMed DOI PMC
Hu Y, et al. Tumor-associated macrophages correlate with the clinicopathological features and poor outcomes via inducing epithelial to mesenchymal transition in oral squamous cell carcinoma. J Exp Clin Cancer Res. 2016:1756–9966 (Electronic)). PubMed PMC
Li W, et al. TGFβ1 in fibroblasts-derived exosomes promotes epithelial-mesenchymal transition of ovarian cancer cells. Oncotarget. 2017;8(56):96035–96047. PubMed PMC
Seminerio I, et al. High infiltration of CD68+ macrophages is associated with poor prognoses of head and neck squamous cell carcinoma patients and is influenced by human papillomavirus. Oncotarget. 2018;9(13):11046–11059. doi: 10.18632/oncotarget.24306. PubMed DOI PMC
Liu C-Y, et al. M2-polarized tumor-associated macrophages promoted epithelial–mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Laboratory Investigation. 2013;93:844. doi: 10.1038/labinvest.2013.69. PubMed DOI
Rodriguez PC, et al. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. The Journal of Experimental Medicine. 2005;202(7):931. doi: 10.1084/jem.20050715. PubMed DOI PMC
Van Ginderachter JA, et al. Peroxisome proliferator-activated receptor γ (PPARγ) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood. 2006;108(2):525. doi: 10.1182/blood-2005-09-3777. PubMed DOI
Kratochvill F, et al. TNF Counterbalances the Emergence of M2 Tumor Macrophages. Cell Reports. 2015;12(11):1902–1914. doi: 10.1016/j.celrep.2015.08.033. PubMed DOI PMC
Zhou X, Qi Y. Larynx carcinoma regulates tumor-associated macrophages through PLGF signaling. Scientific Reports. 2015;5:10071. doi: 10.1038/srep10071. PubMed DOI PMC
Biswas SK, et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation) Blood. 2006;107(5):2112. doi: 10.1182/blood-2005-01-0428. PubMed DOI
Welch DR, et al. Tumor-elicited polymorphonuclear cells, in contrast to "normal" circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proceedings of the National Academy of Sciences. 1989;86(15):5859–5863. doi: 10.1073/pnas.86.15.5859. PubMed DOI PMC
Uhl B, et al. Aged neutrophils contribute to the first line of defense in the acute inflammatory response. Blood. 2016;128(19):2327–2337. doi: 10.1182/blood-2016-05-718999. PubMed DOI PMC
Tangye SG, Brink R. A helping hand from neutrophils in T cell–independent antibody responses? Nature Immunology. 2012;13:111. doi: 10.1038/ni.2214. PubMed DOI
Sandilands GP, et al. Cross-linking of neutrophil CD11b results in rapid cell surface expression of molecules required for antigen presentation and T-cell activation. Immunology. 2005;114(3):354–368. doi: 10.1111/j.1365-2567.2004.02114.x. PubMed DOI PMC
Beauvillain C, et al. Neutrophils efficiently cross-prime naive T cells in vivo. Blood. 2007;110(8):2965. doi: 10.1182/blood-2006-12-063826. PubMed DOI
Brinkmann V, et al. Neutrophil Extracellular Traps Kill Bacteria. Science. 2004;303(5663):1532. doi: 10.1126/science.1092385. PubMed DOI
Fuchs TA, et al. Novel cell death program leads to neutrophil extracellular traps. The Journal of Cell Biology. 2007;176(2):231. doi: 10.1083/jcb.200606027. PubMed DOI PMC
Yipp BG, et al. Dynamic NETosis is Carried Out by Live Neutrophils in Human and Mouse Bacterial Abscesses and During Severe Gram-Positive Infection. Nature medicine. 2012;18(9):1386–1393. doi: 10.1038/nm.2847. PubMed DOI PMC
Fuchs TA, et al. Extracellular DNA traps promote thrombosis. Proceedings of the National Academy of Sciences. 2010;107(36):15880. doi: 10.1073/pnas.1005743107. PubMed DOI PMC
Demers M, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proceedings of the National Academy of Sciences. 2012;109(32):13076. doi: 10.1073/pnas.1200419109. PubMed DOI PMC
Paneesha S, et al. Frequency, demographics and risk (according to tumour type or site) of cancer-associated thrombosis among patients seen at outpatient DVT clinics. Thrombosis and Haemostasis. 2010;103(2):338–343. doi: 10.1160/TH09-06-0397. PubMed DOI
Pillay J, et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. The Journal of Clinical Investigation. 2012;122(1):327–336. doi: 10.1172/JCI57990. PubMed DOI PMC
Elghetany MT, et al. Flow cytometric study of neutrophilic granulopoiesis in normal bone marrow using an expanded panel of antibodies: Correlation with morphologic assessments. Journal of Clinical Laboratory Analysis. 2004;18(1):36–41. doi: 10.1002/jcla.20001. PubMed DOI PMC
Lakschevitz FS, et al. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Experimental Cell Research. 2016;342(2):200–209. doi: 10.1016/j.yexcr.2016.03.007. PubMed DOI
Fridlender ZG, et al. Polarization of Tumor-Associated Neutrophil Phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183–194. doi: 10.1016/j.ccr.2009.06.017. PubMed DOI PMC
Jablonska J, et al. Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model. The Journal of Clinical Investigation. 2010;120(4):1151–1164. doi: 10.1172/JCI37223. PubMed DOI PMC
Andzinski L, et al. Type IIFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. International Journal of Cancer. 2016;138(8):1982–1993. doi: 10.1002/ijc.29945. PubMed DOI
Youn JI, et al. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008:1550–6606 Electronic. PubMed PMC
Lechner MG, Liebertz DJ, Epstein AL. CHARACTERIZATION OF CYTOKINE-INDUCED MYELOID-DERIVED SUPPRESSOR CELLS FROM NORMAL HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS. Journal of immunology. 2010;185(4):2273–2284. doi: 10.4049/jimmunol.1000901. PubMed DOI PMC
Srivastava MK, et al. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010:1538–7445 Electronic. PubMed PMC
Marigo I, et al. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008:1600–065X Electronic. PubMed
Cimen Bozkus C, et al. Expression of Cationic Amino Acid Transporter 2 Is Required for Myeloid-Derived Suppressor Cell-Mediated Control of T Cell Immunity. J Immunol. 2015:1550–6606 Electronic. PubMed PMC
Raber PL, et al. Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int J Cancer. 2014:1097–0215 Electronic. PubMed PMC
Corzo CA, et al. Mechanism regulating reactive oxygen species in tumor induced myeloid-derived suppressor cells: MDSC and ROS in cancer. Journal of immunology. 2009;182(9):5693–5701. doi: 10.4049/jimmunol.0900092. PubMed DOI PMC
Zhang H, et al. Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator. Cancer Immunology, Immunotherapy. 2015;64(12):1587–1599. doi: 10.1007/s00262-015-1765-6. PubMed DOI PMC
Noman MZ, et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. The Journal of Experimental Medicine. 2014;211(5):781. doi: 10.1084/jem.20131916. PubMed DOI PMC
Huang B, et al. Gr-1+CD115+ Immature Myeloid Suppressor Cells Mediate the Development of Tumor-Induced T Regulatory Cells and T-Cell Anergy in Tumor-Bearing Host. Cancer Research. 2006;66(2):1123. doi: 10.1158/0008-5472.CAN-05-1299. PubMed DOI
Hoechst B, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009:1527–3350 Electronic. PubMed PMC
Pak AS, et al. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clinical Cancer Research. 1995;1(1):95. PubMed
Garrity T, et al. Increased presence of CD34+ cells in the peripheral blood of head and neck cancer patients and their differentiation into dendritic cells. International Journal of Cancer. 1998;73(5):663–669. doi: 10.1002/(SICI)1097-0215(19971127)73:5<663::AID-IJC9>3.0.CO;2-V. PubMed DOI
Young MRI, et al. Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. International Journal of Cancer. 1998;74(1):69–74. doi: 10.1002/(SICI)1097-0215(19970220)74:1<69::AID-IJC12>3.0.CO;2-D. PubMed DOI
Du R, et al. HIF1α Induces the Recruitment of Bone Marrow-Derived Vascular Modulatory Cells to Regulate Tumor Angiogenesis and Invasion. Cancer cell. 2008;13(3):206–220. doi: 10.1016/j.ccr.2008.01.034. PubMed DOI PMC
Grunewald M, et al. VEGF-Induced Adult Neovascularization: Recruitment, Retention, and Role of Accessory Cells. Cell. 2006;124(1):175–189. doi: 10.1016/j.cell.2005.10.036. PubMed DOI
Lahl K, et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med. 2007:0022–1007 Print. PubMed PMC
Sakaguchi S, et al. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010:1474–741 Electronic. PubMed
McHugh RS, et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 2002:1074–7613 Print. PubMed
Tang AL, et al. CTLA4 expression is an indicator and regulator of steady-state CD4+ FoxP3+ T cell homeostasis. J Immunol. 2008:1550–6606 Electronic. PubMed PMC
Mason GM, et al. Phenotypic Complexity of the Human Regulatory T Cell Compartment Revealed by Mass Cytometry. J Immunol. 2015:1550–6606 Electronic. PubMed
Zheng SG, et al. IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol. 2007:0022–1767 Print. PubMed
Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nature reviews. Immunology. 2008;8(7):523–532. doi: 10.1038/nri2343. PubMed DOI PMC
Shah BH, et al. Molecular mechanisms involved in human platelet aggregation by synergistic interaction of platelet-activating factor and 5-hydroxytryptamine. Experimental &Amp. Molecular Medicine. 2001;33:226. PubMed
Holmsen H, Weiss HJ. Secretable Storage Pools in Platelets. Annual Review of Medicine. 1979;30(1):119–134. doi: 10.1146/annurev.me.30.020179.001003. PubMed DOI
Youssefian T, et al. Platelet and Megakaryocyte Dense Granules Contain Glycoproteins Ib and IIb-IIIa. Blood. 1997;89(11):4047. PubMed
Ruiz FA, et al. Human Platelet Dense Granules Contain Polyphosphate and Are Similar to Acidocalcisomes of Bacteria and Unicellular Eukaryotes. Journal of Biological Chemistry. 2004;279(43):44250–44257. doi: 10.1074/jbc.M406261200. PubMed DOI
Israels SJ, et al. Platelet dense granule membranes contain both granulophysin and P- selectin (GMP-140) Blood. 1992;80(1):143. PubMed
Metzelaar MJ, et al. CD63 antigen. A novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells. Journal of Biological Chemistry. 1991;266(5):3239–3245. PubMed
Sander HJ, et al. Immunocytochemical localization of fibrinogen, platelet factor 4, and beta thromboglobulin in thin frozen sections of human blood platelets. The Journal of Clinical Investigation. 1983;72(4):1277–1287. doi: 10.1172/JCI111084. PubMed DOI PMC
Wencel-Drake JD, et al. Ultrastructural localization of human platelet thrombospondin, fibrinogen, fibronectin, and von Willebrand factor in frozen thin section. Blood. 1985;65(4):929. PubMed
Gleissner CA, von Hundelshausen P, Ley K. Platelet chemokines in vascular disease. Arteriosclerosis, thrombosis, and vascular biology. 2008;28(11):1920–1927. doi: 10.1161/ATVBAHA.108.169417. PubMed DOI PMC
King SM, Reed GL. Development of platelet secretory granules. Seminars in Cell & Developmental Biology. 2002;13(4):293–302. doi: 10.1016/S1084952102000599. PubMed DOI
Santos-Martínez MJ, et al. Role of metalloproteinases in platelet function. Thrombosis Research. 2008;121(4):535–542. doi: 10.1016/j.thromres.2007.06.002. PubMed DOI
Maynard DM, et al. Proteomic analysis of platelet α-granules using mass spectrometry. Journal of Thrombosis and Haemostasis. 2007;5(9):1945–1955. doi: 10.1111/j.1538-7836.2007.02690.x. PubMed DOI
Trikha M, et al. Multiple Roles for Platelet GPIIb/IIIa and αvβ3 Integrins in Tumor Growth, Angiogenesis, and Metastasis. Cancer Research. 2002;62(10):2824. PubMed
Suzuki H, et al. Intracellular localization of glycoprotein VI in human platelets and its surface expression upon activation. British Journal of Haematology. 2003;121(6):904–912. doi: 10.1046/j.1365-2141.2003.04373.x. PubMed DOI
Berger G, et al. Ultrastructural demonstration of CD36 in the alpha-granule membrane of human platelets and megakaryocytes. Blood. 1993;82(10):3034. PubMed
Larsen E, et al. PADGEM protein: A receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell. 1989;59(2):305–312. doi: 10.1016/0092-8674(89)90292-4. PubMed DOI
Farrell AM, et al. Signaling pathways activated in a unique mast cell line where interleukin-3 supports survival and stem cell factor is required for a proliferative response. Blood. 1996;87(9):3655. PubMed
Prussin C, Metcalfe DD. 4. IgE, mast cells, basophils, and eosinophils. Journal of Allergy and Clinical Immunology. 2003;111(2, Supplement 2):S486–S494. doi: 10.1067/mai.2003.120. PubMed DOI
Hugle T. Beyond allergy: the role of mast cells in fibrosis. Swiss Med Wkly. 2014:1424–3997 Electronic. PubMed
Dvorak M. A. Basophil and mast cell degranulation and recovery. 1991.
Norrby, KJ. Jakobsson A Fau-Sorbo, and J. Sorbo, Mast-cell secretion and angiogenesis, a quantitative study in rats and mice. Virchows Arch B Cell Pathol Incl Mol Pathol., 1989(0340-6075 (Print)). PubMed
Baram D, et al. Human Mast Cells Release Metalloproteinase-9 on Contact with Activated T Cells: Juxtacrine Regulation by TNF-α. The Journal of Immunology. 2001;167(7):4008. doi: 10.4049/jimmunol.167.7.4008. PubMed DOI
Stoyanov E, et al. Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells. Lung Cancer. 2012;75(1):38–44. doi: 10.1016/j.lungcan.2011.05.029. PubMed DOI
Saleem SJ, et al. Cutting edge: mast cells critically augment myeloid-derived suppressor cell activity. J Immunol. 2012:1550–6606 Electronic). PubMed PMC
Yang Z, et al. Mast Cells Mobilize Myeloid-Derived Suppressor Cells and Treg Cells in Tumor Microenvironment via IL-17 Pathway in Murine Hepatocarcinoma Model. PLOS ONE. 2010;5(1):e8922. doi: 10.1371/journal.pone.0008922. PubMed DOI PMC
Tanooka H, et al. Evidence for Involvement of Mast Cells in Tumor Suppression in Mice23. JNCI: Journal of the National Cancer Institute. 1982;69(6):1305–1309. PubMed
Gooch JL, Lee AV, Yee D. Interleukin 4 Inhibits Growth and Induces Apoptosis in Human Breast Cancer Cells. Cancer Research. 1998;58(18):4199. PubMed
Lätti S, et al. Mast cell-mediated apoptosis of endothelial cells in vitro: A paracrine mechanism involving TNF-α-mediated down-regulation of bcl-2 expression. Journal of Cellular Physiology. 2003;195(1):130–138. doi: 10.1002/jcp.10235. PubMed DOI
Lanier LL, et al. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. The Journal of Immunology. 1986;136(12):4480. PubMed
Cuturi MC, Sherman AIF, Loudon R, Clark SC, Perussia B, Trinchieri G. Production of hematopoietic colony-stimulating factors by human natural killer cells. The Journal of Experimental Medicine. 1989;169(2):569–583. doi: 10.1084/jem.169.2.569. PubMed DOI PMC
Smyth MJ, et al. IL-8 gene expression and production in human peripheral blood lymphocyte subsets. J Immunol. 1991:0022–1767 Print. PubMed
Warren HS, et al. Production of IL-5 by human NK cells and regulation of IL-5 secretion by IL-4, IL-10, and IL-12. J Immunol. 1995:0022–1767 Print. PubMed
Fauriat C, et al. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010;115(11):2167–2176. doi: 10.1182/blood-2009-08-238469. PubMed DOI PMC
Orr MT, Lanier LL. Natural Killer Cell Education and Tolerance. Cell. 2010;142(6):847–856. doi: 10.1016/j.cell.2010.08.031. PubMed DOI PMC
Chan CJ, Smyth MJ, Martinet L. Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death And Differentiation. 2013;21:5. doi: 10.1038/cdd.2013.26. PubMed DOI PMC
Eischen CM, Leibson PJ. Role for NK-cell-associated Fas ligand in cell-mediated cytotoxicity and apoptosis. Research in Immunology. 1997;148(3):164–169. doi: 10.1016/S0923-2494(97)84219-8. PubMed DOI
Zamai L, et al. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med. 1998:0022–1007 Print. PubMed PMC
Topham NJ, Hewitt EW. Natural killer cell cytotoxicity: how do they pull the trigger? Immunology. 2009;128(1):7–15. doi: 10.1111/j.1365-2567.2009.03123.x. PubMed DOI PMC
Wang W, et al. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Frontiers in Immunology. 2015;6:368. PubMed PMC
McEwen-Smith RM, Salio M, Cerundolo V. The regulatory role of invariant NKT cells in tumor immunity. Cancer immunology research. 2015;3(5):425–435. doi: 10.1158/2326-6066.CIR-15-0062. PubMed DOI PMC
Bendelac A, Fau-Teyton LSP, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007:0732–582 Print. PubMed
Shimizu K, et al. KLRG(+) invariant natural killer T cells are long-lived effectors. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(34):12474–12479. doi: 10.1073/pnas.1406240111. PubMed DOI PMC
O'Leary JG, et al. T cell– and B cell–independent adaptive immunity mediated by natural killer cells. Nature Immunology. 2006;7:507. doi: 10.1038/ni1332. PubMed DOI
Paust S, et al. Critical role for the chemokine receptor CXCR6 in NK cell–mediated antigen-specific memory of haptens and viruses. Nature Immunology. 2010;11:1127. doi: 10.1038/ni.1953. PubMed DOI PMC
RCG SF F-d B, et al. Circulating invariant natural killer T-cell numbers predict outcome in head and neck squamous cell carcinoma: updated analysis with 10-year follow-up. J Clin Oncol. 2012:1527–7755 Electronic. PubMed
Molling JW, et al. Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J Clin Oncol. 2007:1527–7755 Electronic. PubMed
Provenzano PP, et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Medicine. 2006;4(1):38. doi: 10.1186/1741-7015-4-38. PubMed DOI PMC
Levental KR, et al. Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling. Cell. 2009;139(5):891–906. doi: 10.1016/j.cell.2009.10.027. PubMed DOI PMC
Tallant C, Marrero A, Gomis-Rüth FX. Matrix metalloproteinases: Fold and function of their catalytic domains. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2010;1803(1):20–28. doi: 10.1016/j.bbamcr.2009.04.003. PubMed DOI
Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer. 2002;2:161. doi: 10.1038/nrc745. PubMed DOI
Chandler S, et al. Macrophage Metalloelastase Degrades Matrix and Myelin Proteins and Processes a Tumour Necrosis Factor-α Fusion Protein. Biochemical and Biophysical Research Communications. 1996;228(2):421–429. doi: 10.1006/bbrc.1996.1677. PubMed DOI
Black RA, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature. 1997;385:729. doi: 10.1038/385729a0. PubMed DOI
Suzuki M, et al. Matrix Metalloproteinase-3 Releases Active Heparin-binding EGF-like Growth Factor by Cleavage at a Specific Juxtamembrane Site. Journal of Biological Chemistry. 1997;272(50):31730–31737. doi: 10.1074/jbc.272.50.31730. PubMed DOI
Whitelock JM, et al. The Degradation of Human Endothelial Cell-derived Perlecan and Release of Bound Basic Fibroblast Growth Factor by Stromelysin, Collagenase, Plasmin, and Heparanases. Journal of Biological Chemistry. 1996;271(17):10079–10086. doi: 10.1074/jbc.271.17.10079. PubMed DOI
Bergers G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology. 2000;2:737. doi: 10.1038/35036374. PubMed DOI PMC
Tatti O, et al. MT1-MMP releases latent TGF-β1 from endothelial cell extracellular matrix via proteolytic processing of LTBP-1. Experimental Cell Research. 2008;314(13):2501–2514. doi: 10.1016/j.yexcr.2008.05.018. PubMed DOI
Rosenthal EL, et al. Expression of proteolytic enzymes in head and neck cancer–associated fibroblasts. Archives of Otolaryngology–Head & Neck Surgery. 2004;130(8):943–947. doi: 10.1001/archotol.130.8.943. PubMed DOI
Iwata H, et al. Production of Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Human Breast Carcinomas. Japanese Journal of Cancer Research. 1996;87(6):602–611. doi: 10.1111/j.1349-7006.1996.tb00266.x. PubMed DOI PMC
Acerbi I, et al. Human Breast Cancer Invasion and Aggression Correlates with ECM Stiffening and Immune Cell Infiltration. Integrative biology : quantitative biosciences from nano to macro. 2015;7(10):1120–1134. doi: 10.1039/c5ib00040h. PubMed DOI PMC
García-Palmero I, et al. Twist1-induced activation of human fibroblasts promotes matrix stiffness by upregulating palladin and collagen α1(VI) Oncogene. 2016;35:5224. doi: 10.1038/onc.2016.57. PubMed DOI
Chaudhuri O, et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nature Materials. 2014;13:970. doi: 10.1038/nmat4009. PubMed DOI
Mouw JK, et al. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nature Medicine. 2014;20:360. doi: 10.1038/nm.3497. PubMed DOI PMC
Calvo F, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15(6):637–646. doi: 10.1038/ncb2756. PubMed DOI PMC
Rozario T, DeSimone DW. The Extracellular Matrix In Development and Morphogenesis: A Dynamic View. Developmental biology. 2010;341(1):126–140. doi: 10.1016/j.ydbio.2009.10.026. PubMed DOI PMC
Jokinen J, et al. Integrin-mediated Cell Adhesion to Type I Collagen Fibrils. Journal of Biological Chemistry. 2004;279(30):31956–31963. doi: 10.1074/jbc.M401409200. PubMed DOI
Hill RC, et al. Quantification of Extracellular Matrix Proteins from a Rat Lung Scaffold to Provide a Molecular Readout for Tissue Engineering. Molecular & Cellular Proteomics. 2015;14(4):961–973. doi: 10.1074/mcp.M114.045260. PubMed DOI PMC
Schenke-Layland K, et al. Reprogrammed Mouse Fibroblasts Differentiate into Cells of the Cardiovascular and Hematopoietic Lineages. STEM CELLS. 2008;26(6):1537–1546. doi: 10.1634/stemcells.2008-0033. PubMed DOI PMC
Huang R, et al. Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing. Biomaterials. 2015;53(Supplement C):58–75. doi: 10.1016/j.biomaterials.2015.02.076. PubMed DOI
Peters JH, et al. Human endothelial cells synthesize, process, and secrete fibronectin molecules bearing an alternatively spliced type III homology (ED1) Blood. 1990;75(9):1801. PubMed
Adachi Y, et al. Fibronectin production by cultured human lung fibroblasts in three-dimensional collagen gel culture. In Vitro Cellular & Developmental Biology - Animal. 1998;34(3):203–210. doi: 10.1007/s11626-998-0125-7. PubMed DOI
Garciapardo A, Gold LI. Further Characterization of the Binding of Fibronectin to Gelatin Reveals the Presence of Different Binding Interactions. Archives of Biochemistry and Biophysics. 1993;304(1):181–188. doi: 10.1006/abbi.1993.1337. PubMed DOI
Garcia AJ, Boettiger D. Integrin–fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials. 1999;20(23):2427–2433. doi: 10.1016/S0142-9612(99)00170-2. PubMed DOI
Ingham KC, Brew SA, Erickson HP. Localization of a Cryptic Binding Site for Tenascin on Fibronectin. Journal of Biological Chemistry. 2004;279(27):28132–28135. doi: 10.1074/jbc.M312785200. PubMed DOI
Huang W, et al. Interference of Tenascin-C with Syndecan-4 Binding to Fibronectin Blocks Cell Adhesion and Stimulates Tumor Cell Proliferation. Cancer Research. 2001;61(23):8586. PubMed
Brown AC, et al. Integrin α3β1 binding to fibronectin is dependent on the 9th type III repeat. Journal of Biological Chemistry. 2015. PubMed PMC
Nam J-M, et al. Breast Cancer Cells in Three-dimensional Culture Display an Enhanced Radioresponse after Coordinate Targeting of Integrin α5β1 and Fibronectin. Cancer research. 2010;70(13):5238–5248. doi: 10.1158/0008-5472.CAN-09-2319. PubMed DOI PMC
Lou X, et al. SOX2 Targets Fibronectin 1 to Promote Cell Migration and Invasion in Ovarian Cancer: New Molecular Leads for Therapeutic Intervention. OMICS : a Journal of Integrative Biology. 2013;17(10):510–518. doi: 10.1089/omi.2013.0058. PubMed DOI PMC
Knowles LM, et al. Integrin αvβ3 and fibronectin upregulate Slug in cancer cells to promote clot invasion and metastasis. Cancer research. 2013;73(20):10.1158/0008–10.1158/5472. doi: 10.1158/0008-5472.CAN-13-0602. PubMed DOI PMC
Eke I, et al. Cetuximab Attenuates Its Cytotoxic and Radiosensitizing Potential by Inducing Fibronectin Biosynthesis. Cancer Research. 2013;73(19):5869. doi: 10.1158/0008-5472.CAN-13-0344. PubMed DOI
Pontiggia O, et al. The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through β1 integrin. Breast cancer research and treatment. 2012;133(2):459–471. doi: 10.1007/s10549-011-1766-x. PubMed DOI PMC
Erdogan B, et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. The Journal of Cell Biology. 2017;216(11):3799. doi: 10.1083/jcb.201704053. PubMed DOI PMC
Blouw B, et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell. 2003;4(2):133–146. doi: 10.1016/S1535-6108(03)00194-6. PubMed DOI
Rockwell S, et al. Hypoxia and radiation therapy: Past history, ongoing research, and future promise. Current molecular medicine. 2009;9(4):442–458. doi: 10.2174/156652409788167087. PubMed DOI PMC
Teicher, B.A., Hypoxia and drug resistance. Cancer Metastasis Rev. , 1994(0167-7659 (Print)). PubMed
Nam SY, et al. A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-κB promotes gastric tumour growth and angiogenesis. British Journal Of Cancer. 2010;104:166. doi: 10.1038/sj.bjc.6606020. PubMed DOI PMC
Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Current Opinion in Cell Biology. 2001;13(2):167–171. doi: 10.1016/S0955-0674(00)00194-0. PubMed DOI
Royds JA, et al. Response of tumour cells to hypoxia: role of p53 and NFkB. Mol Pathol. 1998; 1366-8714 (Print). PubMed PMC
Giatromanolaki A, Harris AL. Tumour hypoxia, hypoxia signaling pathways and hypoxia inducible factor expression in human cancer. Anticancer Research. 2001; 0250-7005 (Print). PubMed
Marin-Hernandez A, et al. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem. 2009; 1389-5575 (Print). PubMed
Warburg O. On respiratory impairment in cancer cells. Science. 1956; 0036-8075 (Print). PubMed
Wojtkowiak JW, et al. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Molecular pharmaceutics. 2011;8(6):2032–2038. doi: 10.1021/mp200292c. PubMed DOI PMC
Greijer AE, et al. Hypoxia-induced acidification causes mitoxantrone resistance not mediated by drug transporters in human breast cancer cells. Cell Oncol. 2005; 1570-5870 (Print). PubMed PMC
Estrella V, et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer research. 2013;73(5):1524–1535. doi: 10.1158/0008-5472.CAN-12-2796. PubMed DOI PMC
Colegio OR, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014; 1476-4687 (Electronic). PubMed PMC
Sonveaux P, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008; 0021-9738 (Print). PubMed PMC
Whitaker-Menezes D, et al. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle. 2011; 1551-4005 (Electronic). PubMed PMC
Halestrap AP. The monocarboxylate transporter family--Structure and functional characterization. IUBMB Life. 2012; 1521-6551 (Electronic). PubMed
Curry JM, et al. Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer. Cell Cycle. 2013; 1551-4005 (Electronic). PubMed PMC
Pinheiro C, et al. Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. J Biomed Biotechnol. 2010; 1110-7251 (Electronic). PubMed PMC
Zhu J, et al. Monocarboxylate transporter 4 facilitates cell proliferation and migration and is associated with poor prognosis in oral squamous cell carcinoma patients. PLoS One. 2014; 1932-6203 (Electronic). PubMed PMC
Simoes-Sousa S, et al. Prognostic significance of monocarboxylate transporter expression in oral cavity tumors. Cell Cycle. 2016; 1551-4005 (Electronic). PubMed PMC
Kumar DA, et al. Cancer-Associated Fibroblasts Drive Glycolysis in a Targetable Signaling Loop Implicated in Head and Neck Squamous Cell Carcinoma Progression. Cancer Res. 2018; 1538-7445 (Electronic). PubMed PMC
Stasikowska-Kanicka O, Wagrowska-Danilewicz M, Danilewicz M. CD8+ and CD163+ infiltrating cells and PD-L1 immunoexpression in oral leukoplakia and oral carcinoma. APMIS. 2018;126:732–738. doi: 10.1111/apm.12881. PubMed DOI
Mori K, et al. Tumor-associated macrophages in oral premalignant lesions coexpress CD163 and STAT1 in a Th1-dominated microenvironment. BMC Cancer. 2015;15(1):573. doi: 10.1186/s12885-015-1587-0. PubMed DOI PMC
Bondad-Palmario GG. Histological and immunochemical studies of oral leukoplakia: phenotype and distribution of immunocompetent cells. J Philipp Dent Assoc. 1995; 0031-7497 (Print). PubMed
De Costa AA-M, et al. Characterization of the evolution of immune phenotype during the development and progression of squamous cell carcinoma of the head and neck. Cancer immunology, immunotherapy : CII. 2012;61(6):927–939. doi: 10.1007/s00262-011-1154-8. PubMed DOI PMC
Woodford D, et al. An Inflammatory Cytokine Milieu is Prominent in Premalignant Oral Lesions, but Subsides when Lesions Progress to Squamous Cell Carcinoma. Journal of clinical & cellular immunology. 2014;5(3):230. doi: 10.4172/2155-9899.1000230. PubMed DOI PMC
Johnson SD, De Costa A-MA, Young MRI. Effect of the Premalignant and Tumor Microenvironment on Immune Cell Cytokine Production in Head and Neck Cancer. Cancers. 2014;6(2):756–770. doi: 10.3390/cancers6020756. PubMed DOI PMC
Juretic M, et al. Salivary levels of TNF-alpha and IL-6 in patients with oral premalignant and malignant lesions. Folia Biol. 2013; 0015-5500 (Print). PubMed
Rhodus NL, et al. The feasibility of monitoring NF-kappaB associated cytokines: TNF-alpha, IL-1alpha, IL-6, and IL-8 in whole saliva for the malignant transformation of oral lichen planus. Mol Carcinog. 2005; 0899-1987 (Print). PubMed
Rhodus NL, et al. NF-kappaB dependent cytokine levels in saliva of patients with oral preneoplastic lesions and oral squamous cell carcinoma. Cancer Detect Prev. 2005; 0361-090X (Print). PubMed
Michailidou EZ, Fau-Antoniades DZMA, Antoniades DZ. Mast cells and angiogenesis in oral malignant and premalignant lesions. Open Dent J. 2008; 1874-2106 (Electronic). PubMed PMC
Laishram D, et al. Mast cells and angiogenesis in malignant and premalignant oral lesions: An immunohistochemical study. J Oral Maxillofac Pathol. 2017; 0973-029X (Print). PubMed PMC
Jyothsna M, Rammanohar M, Kumar K. Histomorphometric Analysis of Angiogenesis using CD31 Immunomarker and Mast Cell Density in Oral Premalignant and Malignant Lesions: A Pilot Study. J Clin Diagn Res. 2017; 2249-782X (Print). PubMed PMC
Ingaleshwar PS, et al. Immunohistochemical analysis of angiogenesis by CD34 and mast cells by toluidine blue in different grades of oral squamous cell carcinoma. J Oral Maxillofac Pathol. 2016; 0973-029X (Print). PubMed PMC
Chaudhary M, et al. Comparison of myofibroblasts expression in oral squamous cell carcinoma, verrucous carcinoma, high risk epithelial dysplasia, low risk epithelial dysplasia and normal oral mucosa. Head Neck Pathol. 2012; 1936-0568 (Electronic). PubMed PMC
Kapse SC, et al. Quantitative assessment of myofibroblast in severe dysplasia, microinvasion and oral squamous cell carcinoma: an immunohistochemical study. J Contemp Dent Pract. 2013; 1526-3711 (Electronic). PubMed
Gupta K, Fau-Gupta JMR, Gupta J. Evaluation of stromal myofibroblasts in oral leukoplakia, oral submucous fibrosis, and oral squamous cell carcinoma--an immunohistochemical study. Journal of Cancer Research and Therapeutics. 2015; 1998-4138 (Electronic). PubMed
Nayak S, et al. Fibroblast Growth Factor (FGF-2) and Its Receptors FGFR-2 and FGFR-3 May Be Putative Biomarkers of Malignant Transformation of Potentially Malignant Oral Lesions into Oral Squamous Cell Carcinoma. PLoS One. 2015; 1932-6203 (Electronic). PubMed PMC
Mane DR, et al. Immunoexpression of tenascin as a predictor of the malignancy potential of oral leukoplakia associated with a tobacco habit. Biotech Histochem. 2015; 1473-7760 (Electronic). PubMed
Bajracharya D, et al. Immunohistochemical correlation of matrix metalloproteinase-2 and tissue inhibitors of metalloproteinase-2 in tobacco associated epithelial dysplasia. Disease Markers. 2014; 1875-8630 (Electronic). PubMed PMC
Fang J, et al. Prognostic significance of tumor infiltrating immune cells in oral squamous cell carcinoma. BMC cancer. 2017;17(1):375. doi: 10.1186/s12885-017-3317-2. PubMed DOI PMC
Nguyen N, et al. Tumor infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. Head & neck. 2016;38(7):1074–1084. doi: 10.1002/hed.24406. PubMed DOI PMC
De Meulenaere A, et al. Prognostic markers in oropharyngeal squamous cell carcinoma: focus on CD70 and tumour infiltrating lymphocytes. Pathology. 2017;49(4):397–404. doi: 10.1016/j.pathol.2017.02.002. PubMed DOI
Karpathiou G, et al. Prognostic impact of immune microenvironment in laryngeal and pharyngeal squamous cell carcinoma: Immune cell subtypes, immuno-suppressive pathways and clinicopathologic characteristics. Oncotarget. 2016;8(12):19310–19322. PubMed PMC
Ni YH, et al. Microlocalization of CD68+ tumor-associated macrophages in tumor stroma correlated with poor clinical outcomes in oral squamous cell carcinoma patients. Tumour Biol. 2015; 1423-0380 (Electronic). PubMed
He K-F, et al. CD163+ Tumor-Associated Macrophages Correlated with Poor Prognosis and Cancer Stem Cells in Oral Squamous Cell Carcinoma. BioMed Research International. 2014;2014:9. PubMed PMC
Weber M, et al. Prognostic significance of macrophage polarization in early stage oral squamous cell carcinomas. Oral Oncol. 2016; 1879-0593 (Electronic). PubMed
Marcus B, et al. Prognostic factors in oral cavity and oropharyngeal squamous cell carcinoma. Cancer. 2004; 0008-543X (Print). PubMed
Liu SY, et al. Clinicopathologic significance of tumor cell-lined vessel and microenvironment in oral squamous cell carcinoma. Oral Oncol. 2008; 1368-8375 (Print). PubMed
Kross KW, et al. Co-culture of Head and Neck Squamous Cell Carcinoma Spheroids with Autologous Monocytes Predicts Prognosis. Scandinavian Journal of Immunology. 2008;67(4):392–399. doi: 10.1111/j.1365-3083.2008.02072.x. PubMed DOI
Costa NL, et al. Tumor-associated macrophages and the profile of inflammatory cytokines in oral squamous cell carcinoma. Oral Oncology. 2013;49(3):216–223. doi: 10.1016/j.oraloncology.2012.09.012. PubMed DOI
Jiang C, et al. Oral squamous cell carcinoma suppressed antitumor immunity through induction of PD-L1 expression on tumor-associated macrophages. Immunobiology. 2017;222(4):651–657. doi: 10.1016/j.imbio.2016.12.002. PubMed DOI
Kubota K, et al. CD163+CD204+ tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma. Scientific Reports. 2017;7(1):1755. doi: 10.1038/s41598-017-01661-z. PubMed DOI PMC
Salven P, et al. Vascular endothelial growth factor in squamous cell head and neck carcinoma: expression and prognostic significance. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 1997;10(11):1128–1133. PubMed
Neuchrist C. Vascular Endothelial Growth Factor (VEGF) and Microvessel Density in Squamous Cell Carcinomas of the Larynx: an Immunohistochemical Study. Acta Oto-Laryngologica. 1999;119(6):732–738. doi: 10.1080/00016489950180711. PubMed DOI
Sun H, et al. TGF-beta1/TbetaRII/Smad3 signaling pathway promotes VEGF expression in oral squamous cell carcinoma tumor-associated macrophages. Biochem Biophys Res Commun. 2018;497(2):583–590. doi: 10.1016/j.bbrc.2018.02.104. PubMed DOI
Li C, et al. Infiltration of tumor-associated macrophages in human oral squamous cell carcinoma. Oncol Rep. 2002;9(6):1219–1223. PubMed
Oguejiofor K, et al. Distinct patterns of infiltrating CD8+ T cells in HPV+ and CD68 macrophages in HPV- oropharyngeal squamous cell carcinomas are associated with better clinical outcome but PD-L1 expression is not prognostic. Oncotarget. 2017;8(9):14416–14427. doi: 10.18632/oncotarget.14796. PubMed DOI PMC
Trellakis S, et al. Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. Int J Cancer. 2011;129(9):2183–2193. doi: 10.1002/ijc.25892. PubMed DOI
Wang N, et al. Neutrophils infiltration in the tongue squamous cell carcinoma and its correlation with CEACAM1 expression on tumor cells. PLoS One. 2014;9(2):e89991. doi: 10.1371/journal.pone.0089991. PubMed DOI PMC
Trellakis S, et al. Polymorphonuclear granulocytes in human head and neck cancer: Enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. International Journal of Cancer. 2010;129(9):2183–2193. doi: 10.1002/ijc.25892. PubMed DOI
Iamaroon A, et al. Increase of mast cells and tumor angiogenesis in oral squamous cell carcinoma. J Oral Pathol Med. 2003;32(4):195–199. doi: 10.1034/j.1600-0714.2003.00128.x. PubMed DOI
Ciurea R, et al. VEGF and his R1 and R2 receptors expression in mast cells of oral squamous cells carcinomas and their involvement in tumoral angiogenesis. Rom J Morphol Embryol. 2011;52:1227. PubMed
Sharma B, et al. Immunohistochemical evaluation of mast cells and angiogenesis in oral squamous cell carcinoma. Indian J Dent Res. 2010;21:260. doi: 10.4103/0970-9290.70782. PubMed DOI
Telagi N, et al. The master switch: Comparative study of mast cell in oral epithelial dysplasia, oral submucous fibrosis and oral squamous cells carcinoma and their association with inflammation and angiogenesis. J Oral Maxillofac Pathol. 2015;19:25. doi: 10.4103/0973-029X.157196. PubMed DOI PMC
Zaidi M, Mallick A. A study on assessment of mast cells in oral squamous cell carcinoma. Ann Med Health Sci Res. 2014;4:457. doi: 10.4103/2141-9248.133479. PubMed DOI PMC
Anuradha A, et al. Incidence of mast cells in oral squamous cell carcinoma: a short study. Journal of Oncology. 2014;2014:3. doi: 10.1155/2014/614291. PubMed DOI PMC
Kathuriya PT, et al. Cd34 and Mast Cell Analysis in Normal Oral Mucosa and Different Grades of Oral Squamous Cell Carcinoma: A Comparative Study. J Clin Diagn Res. 2015;9:ZC61. PubMed PMC
Wagner S, et al. CD56-positive lymphocyte infiltration in relation to human papillomavirus association and prognostic significance in oropharyngeal squamous cell carcinoma. International Journal of Cancer. 2015;138(9):2263–2273. doi: 10.1002/ijc.29962. PubMed DOI
Agarwal R, et al. Evaluation of natural killer cell (CD57) as a prognostic marker in oral squamous cell carcinoma: An immunohistochemistry study. Journal of oral and maxillofacial pathology : JOMFP. 2016;20(2):173–177. doi: 10.4103/0973-029X.185933. PubMed DOI PMC
Korrer MJ, Kim Y. Natural Killer cells from primary human head and neck squamous cell carcinomas upregulate NKG2A. The Journal of Immunology. 2017;198(1 Supplement):130.18.
Gaur P, et al. Inter-relation of Th1, Th2, Th17 and Treg cytokines in oral cancer patients and their clinical significance. Human Immunology. 2014;75(4):330–337. doi: 10.1016/j.humimm.2014.01.011. PubMed DOI
Hussaini HM, et al. Forkhead box-P3(+) regulatory T cells and toll-like receptor 2 co-expression in oral squamous cell carcinoma. Acta Histochem. 2017;119:205. doi: 10.1016/j.acthis.2016.12.005. PubMed DOI
Song JJ, et al. Foxp3 overexpression in tumor cells predicts poor survival in oral squamous cell carcinoma. BMC Cancer. 2016;16:530. doi: 10.1186/s12885-016-2419-6. PubMed DOI PMC
Stasikowska-Kanicka O, Wągrowska-Danilewicz M, Danilewicz M. Immunohistochemical Analysis of Foxp3+, CD4+, CD8+ Cell Infiltrates and PD-L1 in Oral Squamous Cell Carcinoma. Pathology & Oncology Research. 2018;24(3):497–505. doi: 10.1007/s12253-017-0270-y. PubMed DOI PMC
Weed DT, et al. FOXP3 subcellular localization predicts recurrence in oral squamous cell carcinoma. PloS one. 2013;8(8):–e71908. PubMed PMC
Schott AK, Fau-Wollenberg BPR, Wollenberg B. Permanent up-regulation of regulatory T-lymphocytes in patients with head and neck cancer. Int J Mol Med. 2010;26:67. PubMed
Drennan S, et al. Increased frequency and suppressive activity of CD127low/− regulatory T cells in the peripheral circulation of patients with head and neck squamous cell carcinoma are associated with advanced stage and nodal involvement. Immunology. 2013;140(3):335–343. PubMed PMC
Ihara F, et al. CD45RA(-)Foxp3(high) regulatory T cells have a negative impact on the clinical outcome of head and neck squamous cell carcinoma. Cancer Immunol Immunother. 2017;66:1275. doi: 10.1007/s00262-017-2021-z. PubMed DOI PMC
Strauss L, et al. The frequency and suppressor function of CD4+CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13:6301. doi: 10.1158/1078-0432.CCR-07-1403. PubMed DOI
Vasquez-Dunddel D, et al. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. The Journal of clinical investigation. 2013;123(4):1580–1589. doi: 10.1172/JCI60083. PubMed DOI PMC
Zeng Q, et al. Caspase-1 from Human Myeloid-Derived Suppressor Cells Can Promote T Cell–Independent Tumor Proliferation. Cancer Immunology Research. 2018;6(5):566. doi: 10.1158/2326-6066.CIR-17-0543. PubMed DOI PMC
Weed DT, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:39. doi: 10.1158/1078-0432.CCR-14-1711. PubMed DOI PMC
Mao L, et al. Selective blockade of B7-H3 enhances antitumour immune activity by reducing immature myeloid cells in head and neck squamous cell carcinoma. Journal of cellular and molecular medicine. 2017;21(9):2199–2210. doi: 10.1111/jcmm.13143. PubMed DOI PMC
Younis RH, Han KL, Webb TJ. Human Head and Neck Squamous Cell Carcinoma-Associated Semaphorin 4D Induces Expansion of Myeloid-Derived Suppressor Cells. Journal of immunology. 2016;196(3):1419–1429. doi: 10.4049/jimmunol.1501293. PubMed DOI PMC
Kellermann MG, et al. Myofibroblasts in the stroma of oral squamous cell carcinoma are associated with poor prognosis. Histopathology. 2007;51(6):849–853. doi: 10.1111/j.1365-2559.2007.02873.x. PubMed DOI
Rodrigues PC, et al. Stromal myofibroblasts in potentially malignant and malignant lesions of the oral cavity. Oncol Lett. 2015;9(2):667. doi: 10.3892/ol.2014.2763. PubMed DOI PMC
Kellermann MG, et al. Mutual paracrine effects of oral squamous cell carcinoma cells and normal oral fibroblasts: Induction of fibroblast to myofibroblast transdifferentiation and modulation of tumor cell proliferation. Oral Oncology. 2008;44(5):509–517. doi: 10.1016/j.oraloncology.2007.07.001. PubMed DOI
Bello IO, et al. Cancer-associated fibroblasts, a parameter of the tumor microenvironment, overcomes carcinoma-associated parameters in the prognosis of patients with mobile tongue cancer. Oral Oncol. 2011;47:33. doi: 10.1016/j.oraloncology.2010.10.013. PubMed DOI
Marsh D, et al. Stromal features are predictive of disease mortality in oral cancer patients. The Journal of Pathology. 2010;223(4):470–481. doi: 10.1002/path.2830. PubMed DOI
Kawashiri S, et al. Significance of stromal desmoplasia and myofibroblast appearance at the invasive front in squamous cell carcinoma of the oral cavity. Head & Neck. 2009;31(10):1346–1353. doi: 10.1002/hed.21097. PubMed DOI
Fujii N, et al. Cancer-associated fibroblasts and CD163-positive macrophages in oral squamous cell carcinoma: their clinicopathological and prognostic significance. Journal of Oral Pathology & Medicine. 2012;41(6):444–451. doi: 10.1111/j.1600-0714.2012.01127.x. PubMed DOI
Álvarez-Teijeiro S, et al. Factors Secreted by Cancer-Associated Fibroblasts that Sustain Cancer Stem Properties in Head and Neck Squamous Carcinoma Cells as Potential Therapeutic Targets. Cancers. 2018;10(9):334. doi: 10.3390/cancers10090334. PubMed DOI PMC
Rosenthal E, et al. Elevated expression of TGF-beta1 in head and neck cancer-associated fibroblasts. Mol Carcinog. 2004;40:116. doi: 10.1002/mc.20024. PubMed DOI
Knowles LM, et al. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin Cancer Res. 2009;15(11):3740. doi: 10.1158/1078-0432.CCR-08-3252. PubMed DOI PMC
Johansson AC, et al. Cancer-associated fibroblasts induce matrix metalloproteinase-mediated cetuximab resistance in head and neck squamous cell carcinoma cells. Mol Cancer Res. 2012;10(9):1158. doi: 10.1158/1541-7786.MCR-12-0030. PubMed DOI
Takahashi H, et al. Immunosuppressive activity of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Cancer Immunology, Immunotherapy. 2015;64(11):1407–1417. doi: 10.1007/s00262-015-1742-0. PubMed DOI PMC
Bagordakis E, et al. Secretome profiling of oral squamous cell carcinoma-associated fibroblasts reveals organization and disassembly of extracellular matrix and collagen metabolic process signatures. Tumor Biology. 2016;37(7):9045–9057. doi: 10.1007/s13277-015-4629-y. PubMed DOI
Ziober AF, Falls EM, Ziober BL. The extracellular matrix in oral squamous cell carcinoma: Friend or foe? Head & Neck. 2006;28(8):740–749. doi: 10.1002/hed.20382. PubMed DOI
Agarwal P, Ballabh R. Expression of type IV collagen in different histological grades of oral squamous cell carcinoma: an immunohistochemical study. Journal of Cancer Research and Therapeutics. 2013;9(2):272. doi: 10.4103/0973-1482.113382. PubMed DOI
Shruthy R, et al. Immunohistochemical expression of basement membrane laminin in histological grades of oral squamous cell carcinoma: A semiquantitative analysis. Journal of oral and maxillofacial pathology : JOMFP. 2013;17(2):185–189. doi: 10.4103/0973-029X.119755. PubMed DOI PMC
Firth NA, Reade PC. The prognosis of oral mucosal squamous cell carcinomas: a comparison of clinical and histopathological grading and of laminin and type IV collagen staining. Aust Dent J. 1996;41(2):83. doi: 10.1111/j.1834-7819.1996.tb05918.x. PubMed DOI
Harada T, et al. An immunohistochemical study of the extracellular matrix in oral squamous cell carcinoma and its association with invasive and metastatic potential. Virchows Arch. 1994;424(3):257. doi: 10.1007/BF00194609. PubMed DOI
Fabricius E-M, et al. Immunohistochemical analysis of integrins αvβ3, αvβ5 and α5β1, and their ligands, fibrinogen, fibronectin, osteopontin and vitronectin, in frozen sections of human oral head and neck squamous cell carcinomas. Experimental and therapeutic medicine. 2011;2(1):9–19. doi: 10.3892/etm.2010.171. PubMed DOI PMC
Rygiel KA, et al. Epithelial–mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease. Laboratory Investigation. 2007;88:112. doi: 10.1038/labinvest.3700704. PubMed DOI
Okada H, et al. Early role of Fsp1 in epithelial-mesenchymal transformation. Am J Physiol. 1997;273(4 Pt 2):F563. PubMed
Myong NH. Loss of E-cadherin and Acquisition of Vimentin in Epithelial-Mesenchymal Transition are Noble Indicators of Uterine Cervix Cancer Progression. Korean J Pathol. 2012;46(4):341. doi: 10.4132/KoreanJPathol.2012.46.4.341. PubMed DOI PMC
Nijkamp MM, et al. Expression of E-cadherin and vimentin correlates with metastasis formation in head and neck squamous cell carcinoma patients. Radiotherapy and Oncology. 2011;99(3):344–348. doi: 10.1016/j.radonc.2011.05.066. PubMed DOI
Oser M, et al. Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. The Journal of Cell Biology. 2009;186(4):571. doi: 10.1083/jcb.200812176. PubMed DOI PMC
Peláez R, et al. β3 integrin expression is required for invadopodia-mediated ECM degradation in lung carcinoma cells. PLOS ONE. 2017;12(8):e0181579. doi: 10.1371/journal.pone.0181579. PubMed DOI PMC
Iizuka S, et al. The role of Tks adaptor proteins in invadopodia formation, growth and metastasis of melanoma. Oncotarget. 2016;7(48):78473–78486. doi: 10.18632/oncotarget.12954. PubMed DOI PMC
Artym VV, et al. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res. 2006;66(6):3034. doi: 10.1158/0008-5472.CAN-05-2177. PubMed DOI
Blouw B, et al. A role for the podosome/invadopodia scaffold protein Tks5 in tumor growth in vivo. Eur J Cell Biol. 2008;87:555. doi: 10.1016/j.ejcb.2008.02.008. PubMed DOI PMC
Hayes KE, et al. Ableson kinases negatively regulate invadopodia function and invasion in head and neck squamous cell carcinoma by inhibiting an HB-EGF autocrine loop. Oncogene. 2013;32(40):4766–4777. doi: 10.1038/onc.2012.513. PubMed DOI PMC
Kelley LC, et al. Oncogenic Src requires a wild-type counterpart to regulate invadopodia maturation. Journal of cell science. 2010;123(Pt 22):3923–3932. doi: 10.1242/jcs.075200. PubMed DOI PMC
Clark ES, et al. Cortactin Is an Essential Regulator of Matrix Metalloproteinase Secretion and Extracellular Matrix Degradation in Invadopodia. Cancer Research. 2007;67(9):4227. doi: 10.1158/0008-5472.CAN-06-3928. PubMed DOI
Bowden ET, et al. An invasion-related complex of cortactin, paxillin and PKCμ associates with invadopodia at sites of extracellular matrix degradation. Oncogene. 1999;18:4440. doi: 10.1038/sj.onc.1202827. PubMed DOI
Nakahara H, et al. Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc Natl Acad Sci U S A. 1997;94(15):7959. doi: 10.1073/pnas.94.15.7959. PubMed DOI PMC
Jacob A, et al. Rab40b regulates trafficking of MMP2 and MMP9 during invadopodia formation and invasion of breast cancer cells. J Cell Sci. 2013;126:4647. doi: 10.1242/jcs.126573. PubMed DOI PMC
Mohtasham N, et al. Immunohistochemical study of p53, Ki-67, MMP-2 and MMP-9 expression at invasive front of squamous cell and verrucous carcinoma in oral cavity. Pathol Res Pract. 2013;209:110. doi: 10.1016/j.prp.2012.11.002. PubMed DOI
Sterz CM, et al. A basal-cell-like compartment in head and neck squamous cell carcinomas represents the invasive front of the tumor and is expressing MMP-9. Oral Oncol. 2010;46:116. doi: 10.1016/j.oraloncology.2009.11.011. PubMed DOI
Sterz, C. and R. Mandic, [Cells of the tumor front : a potential therapeutic target in head and neck cancer therapy?]. (1433-0458 (Electronic)). PubMed
Herrmann D, et al. Three-dimensional cancer models mimic cell-matrix interactions in the tumour microenvironment. Carcinogenesis. 2014;35(8):1671–1679. doi: 10.1093/carcin/bgu108. PubMed DOI
Lucas JT, Jr, et al. Regulation of invasive behavior by vascular endothelial growth factor is HEF1-dependent. Oncogene. 2010;29(31):4449–4459. doi: 10.1038/onc.2010.185. PubMed DOI PMC
Grauzam S, et al. NEDD9 stimulated MMP9 secretion is required for invadopodia formation in oral squamous cell carcinoma. Oncotarget. 2018;9(39):25503–25516. doi: 10.18632/oncotarget.25347. PubMed DOI PMC
Semelakova M, et al. Vimentin and Non-Muscle Myosin IIA are Members of the Neural Precursor Cell Expressed Developmentally Down-Regulated 9 (NEDD9) Interactome in Head and Neck Squamous Cell Carcinoma Cells. Translational oncology. 2018;12(1):49–61. doi: 10.1016/j.tranon.2018.09.006. PubMed DOI PMC
Loudig O, et al. Illumina whole-genome complementary DNA–mediated annealing, selection, extension and ligation platform: assessing its performance in formalin-fixed, paraffin-embedded samples and identifying invasion pattern–related genes in oral squamous cell carcinoma. Human Pathology. 2011;42(12):1911–1922. doi: 10.1016/j.humpath.2011.02.011. PubMed DOI
Gao L, et al. CCL2/EGF positive feedback loop between cancer cells and macrophages promotes cell migration and invasion in head and neck squamous cell carcinoma. Oncotarget. 2016;7(52):87037–87051. PubMed PMC
Gao L, et al. Tumor associated macrophages induce epithelial to mesenchymal transition via the EGFR/ERK1/2 pathway in head and neck squamous cell carcinoma. Oncol Rep. 2018;40:2558. PubMed PMC
Pirilä E, et al. Macrophages Modulate Migration and Invasion of Human Tongue Squamous Cell Carcinoma. PLOS ONE. 2015;10(3):e0120895. doi: 10.1371/journal.pone.0120895. PubMed DOI PMC
Smirnova T, et al. In vivo invasion of head and neck squamous cell carcinoma cells does not require macrophages. The American journal of pathology. 2011;178(6):2857–2865. doi: 10.1016/j.ajpath.2011.02.030. PubMed DOI PMC
Zeng J, Quan J, Xia X. Transient transfection of macrophage migration inhibitory factor small interfering RNA disrupts the biological behavior of oral squamous carcinoma cells. Molecular medicine reports. 2016;13(1):174–180. doi: 10.3892/mmr.2015.4525. PubMed DOI PMC
Dumitru CA, et al. Tumor-derived macrophage migration inhibitory factor modulates the biology of head and neck cancer cells via neutrophil activation. International Journal of Cancer. 2011;129(4):859–869. doi: 10.1002/ijc.25991. PubMed DOI
Trellakis S, et al. Peripheral blood neutrophil granulocytes from patients with head and neck squamous cell carcinoma functionally differ from their counterparts in healthy donors. Int J Immunopathol Pharmacol. 2011;24:683. doi: 10.1177/039463201102400314. PubMed DOI
Glogauer JE, et al. Neutrophils Increase Oral Squamous Cell Carcinoma Invasion through an Invadopodia-Dependent Pathway. Cancer Immunology Research. 2015;3(11):1218. doi: 10.1158/2326-6066.CIR-15-0017. PubMed DOI
Dumitru CA, et al. Neutrophils Activate Tumoral CORTACTIN to Enhance Progression of Orohypopharynx Carcinoma. Frontiers in immunology. 2013;4:33. doi: 10.3389/fimmu.2013.00033. PubMed DOI PMC
Finke J, et al. MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int Immunopharmacol. Int Immunopharmacol. 2011;11:856. doi: 10.1016/j.intimp.2011.01.030. PubMed DOI PMC
Toh B, et al. Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS biology. 2011;9(9):e1001162. doi: 10.1371/journal.pbio.1001162. PubMed DOI PMC
Zhu H, et al. CXCR2(+) MDSCs promote breast cancer progression by inducing EMT and activated T cell exhaustion. Oncotarget. 2017;8(70):114554–114567. PubMed PMC
Ouzounova M, et al. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade. Nature Communications. 2017;8:14979. doi: 10.1038/ncomms14979. PubMed DOI PMC
Peinado H, et al. Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer. 2017;17:302. doi: 10.1038/nrc.2017.6. PubMed DOI
Sceneay J, et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res. 2012; 1538-7445 (Electronic). PubMed
Wang D, et al. CXCL1 Is Critical for Premetastatic Niche Formation and Metastasis in Colorectal Cancer. Cancer Res. 2017; 1538-7445 (Electronic). PubMed PMC
Shi H, et al. Recruited monocytic myeloid-derived suppressor cells promote the arrest of tumor cells in the premetastatic niche through an IL-1β-mediated increase in E-selectin expression. International Journal of Cancer. 2016;140(6):1370–1383. doi: 10.1002/ijc.30538. PubMed DOI
Sinha P, et al. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. Journal of immunology. 2008;181(7):4666–4675. doi: 10.4049/jimmunol.181.7.4666. PubMed DOI PMC
Gebhardt C, et al. RAGE signaling sustains inflammation and promotes tumor development. J Exp Med. 2008; 1540-9538 (Electronic). PubMed PMC
Grebhardt S, et al. Impact of S100A8/A9 expression on prostate cancer progression in vitro and in vivo. J Cell Physiol. 2014; 1097-4652 (Electronic). PubMed
Simard J-C, et al. S100A8 and S100A9 Induce Cytokine Expression and Regulate the NLRP3 Inflammasome via ROS-Dependent Activation of NF-κB1. PLOS ONE. 2013;8(8):e72138. doi: 10.1371/journal.pone.0072138. PubMed DOI PMC
Ichikawa M, et al. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res. 2011; 1557-3125 (Electronic). PubMed PMC
Tardif M, et al. Secretion of S100A8, S100A9, and S100A12 by Neutrophils Involves Reactive Oxygen Species and Potassium Efflux. Journal of Immunology Research. 2015;2015:16. doi: 10.1155/2015/296149. PubMed DOI PMC
Hiratsuka S, et al. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol. 2006; 1465-7392 (Print). PubMed
Hermani A, et al. S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res, 2006. 0014-4827 (Print). PubMed
Sinha P, et al. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol. 2008; 1550-6606 (Electronic). PubMed PMC
Hiratsuka S, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. 2008; 1476-4679 (Electronic). PubMed
Cross SS, et al. Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers. Histopathology. 2005;46(3):256–269. doi: 10.1111/j.1365-2559.2005.02097.x. PubMed DOI
Tugizov S, et al. Inhibition of human papillomavirus type 16 E7 phosphorylation by the S100 MRP-8/14 protein complex. J Virol. 2005; 0022-538X (Print). PubMed PMC
Kong JP, et al. Loss of myeloid-related proteins 8 and myeloid-related proteins 14 expression in human esophageal squamous cell carcinoma correlates with poor differentiation. World J Gastroenterol. 2004; 1007-9327 (Print). PubMed PMC
Wang J, et al. Expression of MRP14 gene is frequently down-regulated in Chinese human esophageal cancer. Cell Res. 2004; 1001-0602 (Print). PubMed
Khammanivong A, et al. Involvement of calprotectin (S100A8/A9) in molecular pathways associated with HNSCC. Oncotarget. 2016;7(12):14029–14047. doi: 10.18632/oncotarget.7373. PubMed DOI PMC
Silva EJ, et al. S100A8/A9 regulates MMP-2 expression and invasion and migration by carcinoma cells. The international journal of biochemistry & cell biology. 2014;55:279–287. doi: 10.1016/j.biocel.2014.09.007. PubMed DOI PMC
Shan T, et al. Prometastatic mechanisms of CAF-mediated EMT regulation in pancreatic cancer cells. Int J Oncol. 2017; 1791-2423 (Electronic). PubMed
Zhuang J, et al. TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Scientific Reports. 2015;5:11924. doi: 10.1038/srep11924. PubMed DOI PMC
Giannoni E, et al. Reciprocal Activation of Prostate Cancer Cells and Cancer-Associated Fibroblasts Stimulates Epithelial-Mesenchymal Transition and Cancer Stemness. Cancer Research. 2010;70(17):6945. doi: 10.1158/0008-5472.CAN-10-0785. PubMed DOI
Ren Y, et al. Paracrine and epigenetic control of CAF-induced metastasis: the role of HOTAIR stimulated by TGF-ß1 secretion. Molecular Cancer. 2018;17(1):5. doi: 10.1186/s12943-018-0758-4. PubMed DOI PMC
Orimo A, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005; 0092-8674 (Print). PubMed
Goetz JG, et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell. 2011; 1097-4172 (Electronic). PubMed PMC
Maller O, DuFort CC, Weaver VM. YAP forces fibroblasts to feel the tension. Nature Cell Biology. 2013;15:570. doi: 10.1038/ncb2777. PubMed DOI
Yu L-X, et al. Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nature Communications. 2014;5:5256. doi: 10.1038/ncomms6256. PubMed DOI
Lau EY, et al. Cancer-Associated Fibroblasts Regulate Tumor-Initiating Cell Plasticity in Hepatocellular Carcinoma through c-Met/FRA1/HEY1 Signaling. Cell Rep. 2016; 2211-1247 (Electronic). PubMed
Otomo R, et al. TSPAN12 is a critical factor for cancer-fibroblast cell contact-mediated cancer invasion. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(52):18691–18696. doi: 10.1073/pnas.1412062112. PubMed DOI PMC
Berndt A, et al. Oral squamous cell carcinoma invasion is associated with a laminin-5 matrix re-organization but independent of basement membrane and hemidesmosome formation. clues from an in vitro invasion model. Invasion & metastasis. 1997;17(5):251–258. PubMed
Satoh S, et al. A new in vitro model for analyzing the biological behavior of well-differentiated squamous cell carcinoma. Pathology - Research and Practice. 2005;201(1):27–35. doi: 10.1016/j.prp.2004.09.015. PubMed DOI
Nyström ML, et al. Development of a quantitative method to analyse tumour cell invasion in organotypic culture. The Journal of Pathology. 2005;205(4):468–475. doi: 10.1002/path.1716. PubMed DOI
Vered M, et al. Cancer-associated fibroblasts and epithelial-mesenchymal transition in metastatic oral tongue squamous cell carcinoma. International Journal of Cancer. 2010;127(6):1356–1362. doi: 10.1002/ijc.25358. PubMed DOI
Onoue T, et al. Epithelial-mesenchymal transition induced by the stromal cell-derived factor-1/CXCR4 system in oral squamous cell carcinoma cells. Int J Oncol. 2006;29:1133–1138. PubMed
Yu C, et al. TGF-β1 mediates epithelial to mesenchymal transition via the TGF-β/Smad pathway in squamous cell carcinoma of the head and neck. Oncol Rep. 2011;25:1581–1587. doi: 10.3892/or.2011.1144. PubMed DOI
Hinsley EE, et al. Endothelin-1 stimulates oral fibroblasts to promote oral cancer invasion. Life Sciences. 2012;91(13):557–561. doi: 10.1016/j.lfs.2012.04.001. PubMed DOI
Richter P, et al. EGF/TGFβ1 co-stimulation of oral squamous cell carcinoma cells causes an epithelial–mesenchymal transition cell phenotype expressing laminin 332. Journal of Oral Pathology & Medicine. 2010;40(1):46–54. doi: 10.1111/j.1600-0714.2010.00936.x. PubMed DOI
Wu M-H, et al. Targeting Galectin-1 in Carcinoma-Associated Fibroblasts Inhibits Oral Squamous Cell Carcinoma Metastasis by Downregulating MCP-1/CCL2 Expression. Clinical Cancer Research. 2011;17(6):1306. doi: 10.1158/1078-0432.CCR-10-1824. PubMed DOI
Knowles LM, et al. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15(11):3740–3750. doi: 10.1158/1078-0432.CCR-08-3252. PubMed DOI PMC
Wheeler SE, et al. Enhancement of head and neck squamous cell carcinoma proliferation, invasion, and metastasis by tumor-associated fibroblasts in preclinical models. Head & neck. 2014;36(3):385–392. doi: 10.1002/hed.23312. PubMed DOI PMC
Hwang YS, et al. Functional invadopodia formation through stabilization of the PDPN transcript by IMP-3 and cancer-stromal crosstalk for PDPN expression. Carcinogenesis. 2012;33(11):2135–2146. doi: 10.1093/carcin/bgs258. PubMed DOI
Hasina R, et al. Autocrine and paracrine motility factors and their involvement in invasiveness in a human oral carcinoma cell line. British Journal Of Cancer. 1999;80:1708. doi: 10.1038/sj.bjc.6690587. PubMed DOI PMC
Lewis MP, et al. Tumour-derived TGF-β1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. British Journal Of Cancer. 2004;90:822. doi: 10.1038/sj.bjc.6601611. PubMed DOI PMC
Takkunen M, et al. Snail-dependent and -independent Epithelial-Mesenchymal Transition in Oral Squamous Carcinoma Cells. Journal of Histochemistry & Cytochemistry. 2006;54(11):1263–1275. doi: 10.1369/jhc.6A6958.2006. PubMed DOI
Liang X, et al. Hypoxia-inducible factor-1 alpha, in association with TWIST2 and SNIP1, is a critical prognostic factor in patients with tongue squamous cell carcinoma. Oral Oncology. 2011;47(2):92–97. doi: 10.1016/j.oraloncology.2010.11.014. PubMed DOI
Yokoyama K, et al. Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncology. 2001;37(1):65–71. doi: 10.1016/S1368-8375(00)00059-2. PubMed DOI
Huang C-H, et al. Regulation of membrane-type 4 matrix metalloproteinase by SLUG contributes to hypoxia-mediated metastasis. Neoplasia. 2009;11(12):1371–1382. doi: 10.1593/neo.91326. PubMed DOI PMC
Yang M-H, et al. Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition. Nature Cell Biology. 2010;12:982. doi: 10.1038/ncb2099. PubMed DOI
Ishida T, et al. Notch signaling induces EMT in OSCC cell lines in a hypoxic environment. Oncology letters. 2013;6(5):1201–1206. doi: 10.3892/ol.2013.1549. PubMed DOI PMC
Díaz B, et al. Notch increases the shedding of HB-EGF by ADAM12 to potentiate invadopodia formation in hypoxia. The Journal of cell biology. 2013;201(2):279–292. doi: 10.1083/jcb.201209151. PubMed DOI PMC
Zhu G, et al. Hypoxia promotes migration/invasion and glycolysis in head and neck squamous cell carcinoma via an HIF-1α-MTDH loop. Oncol Rep. 2017;38. PubMed
Li H-M, et al. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research. 2017;36(1):7. doi: 10.1186/s13046-016-0481-1. PubMed DOI PMC
Xu Q, et al. EGF induces epithelial-mesenchymal transition and cancer stem-like cell properties in human oral cancer cells via promoting Warburg effect. Oncotarget. 2016;8(6):9557–9571. PubMed PMC
Wang H, Xue W, Jiang X. Overexpression of TRIM24 Stimulates Proliferation and Glucose Metabolism of Head and Neck Squamous Cell Carcinoma. BioMed research international. 2018;2018:–6142843. PubMed PMC
Chang Y-C, et al. Glucose transporter 4 promotes head and neck squamous cell carcinoma metastasis through the TRIM24-DDX58 axis. Journal of Hematology & Oncology. 2017;10(1):11. doi: 10.1186/s13045-016-0372-0. PubMed DOI PMC
Neiva KG, et al. Cross talk initiated by endothelial cells enhances migration and inhibits anoikis of squamous cell carcinoma cells through STAT3/Akt/ERK signaling. Neoplasia. 2009;11(6):583–593. doi: 10.1593/neo.09266. PubMed DOI PMC
Zeng Q, et al. Hepatocyte Growth Factor Inhibits Anoikis in Head and Neck Squamous Cell Carcinoma Cells by Activation of ERK and Akt Signaling Independent of NFκB. Journal of Biological Chemistry. 2002;277(28):25203–25208. doi: 10.1074/jbc.M201598200. PubMed DOI
Zeng Q, McCauley LK, Wang C-Y. Hepatocyte Growth Factor Inhibits Anoikis by Induction of Activator Protein 1-dependent Cyclooxygenase-2: IMPLICATION IN HEAD AND NECK SQUAMOUS CELL CARCINOMA PROGRESSION. Journal of Biological Chemistry. 2002;277(51):50137–50142. doi: 10.1074/jbc.M208952200. PubMed DOI
Geiger TR, Peeper DS. Critical Role for TrkB Kinase Function in Anoikis Suppression, Tumorigenesis, and Metastasis. Cancer Research. 2007;67(13):6221. doi: 10.1158/0008-5472.CAN-07-0121. PubMed DOI
Moriwaki K, et al. TRKB tyrosine kinase receptor is a potential therapeutic target for poorly differentiated oral squamous cell carcinoma. Oncotarget. 2018;9(38):25225–25243. doi: 10.18632/oncotarget.25396. PubMed DOI PMC
Kupferman ME, et al. TrkB induces EMT and has a key role in invasion of head and neck squamous cell carcinoma. Oncogene. 2010;29(14):2047–2059. doi: 10.1038/onc.2009.486. PubMed DOI PMC
Jiffar T, et al. Brain derived neutrophic factor (BDNF) coordinates lympho-vascular metastasis through a fibroblast-governed paracrine axis in the tumor microenvironment. Cancer Cell Microenviron. 2017;4. PubMed PMC
Ziober BL, Silverman SS, Kramer RH. Adhesive Mechanisms Regulating Invasion and Metastasis in Oral Cancer. Critical Reviews in Oral Biology & Medicine. 2001;12(6):499–510. doi: 10.1177/10454411010120060401. PubMed DOI
Bozzo C, et al. Activation of caspase-8 triggers anoikis in human neuroblastoma cells. Neuroscience Research. 2006;56(2):145–153. doi: 10.1016/j.neures.2006.06.008. PubMed DOI
Koontongkaew S, et al. Fibroblasts and extracellular matrix differently modulate MMP activation by primary and metastatic head and neck cancer cells. Medical Oncology. 2012;29(2):690–703. doi: 10.1007/s12032-011-9871-6. PubMed DOI
Zhang Y, et al. Squamous Cell Carcinoma Cell Aggregates Escape Suspension-induced, p53-mediated Anoikis: FIBRONECTIN AND INTEGRIN αv MEDIATE SURVIVAL SIGNALS THROUGH FOCAL ADHESION KINASE. Journal of Biological Chemistry. 2004;279(46):48342–48349. doi: 10.1074/jbc.M407953200. PubMed DOI
Kamarajan P, Kapila YL. An altered fibronectin matrix induces anoikis of human squamous cell carcinoma cells by suppressing integrin alpha v levels and phosphorylation of FAK and ERK. Apoptosis. 2007;12(12):2221–2231. doi: 10.1007/s10495-007-0138-9. PubMed DOI
Philippe C, et al. Protection from tumor necrosis factor-mediated cytolysis by platelets. American Journal of Pathology. 1993;143(6):1713–1723. PubMed PMC
Nieswandt B, et al. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Research. 1999;59(6):1295–1300. PubMed
Rickles FR, Falanga A. Molecular Basis for the Relationship Between Thrombosis and Cancer. Thrombosis Research. 2001;102(6):V215–V224. doi: 10.1016/S0049-3848(01)00285-7. PubMed DOI
Takagi S, et al. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis. Cancer Science. 2014;105(8):983–988. doi: 10.1111/cas.12464. PubMed DOI PMC
Placke T, et al. Platelet-Derived MHC Class I Confers a Pseudonormal Phenotype to Cancer Cells That Subverts the Antitumor Reactivity of Natural Killer Immune Cells. Cancer Research. 2012;72(2):440. doi: 10.1158/0008-5472.CAN-11-1872. PubMed DOI
Lian L, et al. Inhibition of MCF-7 breast cancer cell-induced platelet aggregation using a combination of antiplatelet drugs. Oncology letters. 2013;5(2):675–680. doi: 10.3892/ol.2012.1074. PubMed DOI PMC
Jurasz P, et al. Matrix Metalloproteinase 2 in Tumor Cell-induced Platelet Aggregation: Regulation by Nitric Oxide. Cancer Research. 2001;61(1):376. PubMed
Steinert BW, et al. Studies on the role of platelet eicosanoid metabolism and integrin αIIbβ3 in tumor-cell-induced platelet aggregation. International Journal of Cancer. 1993;54(1):92–101. doi: 10.1002/ijc.2910540116. PubMed DOI
Borsig L, et al. Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proceedings of the National Academy of Sciences. 2001;98(6):3352. doi: 10.1073/pnas.061615598. PubMed DOI PMC
Huang G-W, et al. Platelet Aggregation in Head and Neck Tumors in China. The Laryngoscope. 2009;107(8):1142–1145. doi: 10.1097/00005537-199708000-00025. PubMed DOI
Laimer K, et al. Expression and prognostic impact of indoleamine 2,3-dioxygenase in oral squamous cell carcinomas. Oral Oncology. 2011;47(5):352–357. doi: 10.1016/j.oraloncology.2011.03.007. PubMed DOI
Brandacher G, et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res. 2006; 1078-0432 (Print). PubMed
Witkiewicz A, et al. Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. J Am Coll Surg. 2008; 1879-1190 (Electronic). PubMed
Jabłońska E, et al. iNOS expression and NO production by neutrophils in cancer patients. Arch Immunol Ther Exp. 2005;53(March–April (2)):175–179. PubMed
Ratajczak-Wrona W, et al. Role of p38 MAPK pathway in induction of iNOS expression in neutrophils and peripheral blood mononuclear cells in patients with squamous cell carcinoma of the oral cavity. Journal of Oral and Maxillofacial Surgery. 2009;67(11):2354–2363. doi: 10.1016/j.joms.2009.04.030. PubMed DOI
Miles FL, et al. Stepping out of the flow: capillary extravasation in cancer metastasis. Clinical & Experimental Metastasis. 2008;25(4):305–324. doi: 10.1007/s10585-007-9098-2. PubMed DOI
Bendas G, Borsig L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. International journal of cell biology. 2012;2012:–676731. PubMed PMC
Stoletov K, et al. Visualizing extravasation dynamics of metastatic tumor cells. Journal of Cell Science. 2010;123(13):2332. doi: 10.1242/jcs.069443. PubMed DOI PMC
Labelle, M., Begum S Fau - Hynes, Hynes, Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011(1878-3686 (Electronic)). PubMed PMC
Schumacher D, et al. Platelet-Derived Nucleotides Promote Tumor-Cell Transendothelial Migration and Metastasis via P2Y2 Receptor. Cancer Cell. 2013;24(1):130–137. doi: 10.1016/j.ccr.2013.05.008. PubMed DOI
Weber MR, et al. Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thrombosis research. 2016;140(Suppl 1):S27–S36. doi: 10.1016/S0049-3848(16)30095-0. PubMed DOI PMC
Labelle M, Begum S, Hynes RO. Platelets guide the formation of early metastatic niches. Proceedings of the National Academy of Sciences. 2014;111(30):E3053. doi: 10.1073/pnas.1411082111. PubMed DOI PMC
Cools-Lartigue J, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. The Journal of Clinical Investigation. 2013;123(8):3446–3458. doi: 10.1172/JCI67484. PubMed DOI PMC
Spiegel A, et al. Neutrophils Suppress Intraluminal NK Cell–Mediated Tumor Cell Clearance and Enhance Extravasation of Disseminated Carcinoma Cells. Cancer Discovery. 2016;6(6):630. doi: 10.1158/2159-8290.CD-15-1157. PubMed DOI PMC
Ferlito, A., et al., Incidence and sites of distant metastases from head and neck cancer. ORL J Otorhinolaryngol Relat Spec., 2001(0301-1569 (Print)). PubMed
Ferjančič Š, et al. VCAM-1 and VAP-1 recruit myeloid cells that promote pulmonary metastasis in mice. Blood. 2013;121(16):3289. doi: 10.1182/blood-2012-08-449819. PubMed DOI
Gil-Bernabé AM, et al. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood. 2012;119(13):3164. doi: 10.1182/blood-2011-08-376426. PubMed DOI
Chen Q, Xiang HF. Zhang, and J. Massagué, Macrophage Binding to Receptor VCAM-1 Transmits Survival Signals in Breast Cancer Cells that Invade the Lungs. Cancer Cell. 2011;20(4):538–549. doi: 10.1016/j.ccr.2011.08.025. PubMed DOI PMC
Qian B, et al. A Distinct Macrophage Population Mediates Metastatic Breast Cancer Cell Extravasation. Establishment and Growth. PLOS ONE. 2009;4(8):e6562. doi: 10.1371/journal.pone.0006562. PubMed DOI PMC
Prager GW, et al. Targeting of VEGF-dependent transendothelial migration of cancer cells by bevacizumab. Molecular Oncology. 2010;4(2):150–160. doi: 10.1016/j.molonc.2010.01.002. PubMed DOI PMC
Fennewald SM, et al. Laminin Interactions with Head and Neck Cancer Cells under Low Fluid Shear Conditions Lead to Integrin Activation and Binding. Journal of Biological Chemistry. 2012;287(25):21058–21066. doi: 10.1074/jbc.M112.360313. PubMed DOI PMC
Yen Y-C, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6(39):41837–41855. doi: 10.18632/oncotarget.5995. PubMed DOI PMC
Hong K-O, et al. Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells. Journal of Experimental & Clinical Cancer Research. 2009;28(1):28. doi: 10.1186/1756-9966-28-28. PubMed DOI PMC
Nguyen PT, et al. The FGFR1 inhibitor PD173074 induces mesenchymal-epithelial transition through the transcription factor AP-1. Br J Cancer. 2013:1532–827 (Electronic)). PubMed PMC
Chang CC, et al. Connective tissue growth factor activates pluripotency genes and mesenchymal-epithelial transition in head and neck cancer cells. Cancer Res. 2013:1538–7445 (Electronic)). PubMed
Cheng CW, et al. Loss of GDF10/BMP3b as a prognostic marker collaborates with TGFBR3 to enhance chemotherapy resistance and epithelial-mesenchymal transition in oral squamous cell carcinoma. Mol Carcinog. 2016:1098–2744 (Electronic)). PubMed
Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer
The Head and Neck Squamous Cell Carcinoma Microenvironment as a Potential Target for Cancer Therapy