Engineered cytokine/antibody fusion proteins improve IL-2 delivery to pro-inflammatory cells and promote antitumor activity

. 2024 Sep 24 ; 9 (18) : . [epub] 20240924

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39115939

Grantová podpora
K12 GM123914 NIGMS NIH HHS - United States
R01 EB029341 NIBIB NIH HHS - United States
T32 GM080189 NIGMS NIH HHS - United States
R01 EB029455 NIBIB NIH HHS - United States
T32 GM149382 NIGMS NIH HHS - United States
T32 GM135131 NIGMS NIH HHS - United States
R21 CA249381 NCI NIH HHS - United States

Progress in cytokine engineering is driving therapeutic translation by overcoming these proteins' limitations as drugs. The IL-2 cytokine is a promising immune stimulant for cancer treatment but is limited by its concurrent activation of both pro-inflammatory immune effector cells and antiinflammatory regulatory T cells, toxicity at high doses, and short serum half-life. One approach to improve the selectivity, safety, and longevity of IL-2 is complexing with anti-IL-2 antibodies that bias the cytokine toward immune effector cell activation. Although this strategy shows potential in preclinical models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multiprotein drug and concerns regarding complex stability. Here, we introduced a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine toward immune effector cells. We optimized IC construction and engineered the cytokine/antibody affinity to improve immune bias. We demonstrated that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared with natural IL-2, both alone and combined with immune checkpoint inhibitors. Moreover, therapeutic efficacy was observed without inducing toxicity. This work presents a roadmap for the design and translation of cytokine/antibody fusion proteins.

Před aktualizací

PubMed

Zobrazit více v PubMed

Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012;12(3):180–190. doi: 10.1038/nri3156. PubMed DOI

Leonard WJ, et al. The γc family of cytokines: basic biology to therapeutic ramifications. Immunity. 2019;50(4):832–850. doi: 10.1016/j.immuni.2019.03.028. PubMed DOI

Mortara L, et al. Anti-cancer therapies employing IL-2 cytokine tumor targeting: contribution of innate, adaptive and immunosuppressive cells in the anti-tumor efficacy. Front Immunol. 2018;9:2905. doi: 10.3389/fimmu.2018.02905. PubMed DOI PMC

Siegel JP, Puri RK. Interleukin-2 toxicity. J Clin Oncol. 1991;9(4):694–704. doi: 10.1200/JCO.1991.9.4.694. PubMed DOI

Donohue JH, Rosenberg SA. The fate of interleukin-2 after in vivo administration. J Immunol. 1983;130(5):2203–2208. doi: 10.4049/jimmunol.130.5.2203. PubMed DOI

Silver AB, et al. Engineered antibody fusion proteins for targeted disease therapy. Trends Pharmacol Sci. 2021;42(12):1064–1081. doi: 10.1016/j.tips.2021.09.009. PubMed DOI PMC

Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–725. doi: 10.1038/nri2155. PubMed DOI

Palata O, et al. Radiotherapy in combination with cytokine treatment. Front Oncol. 2019;9:367. doi: 10.3389/fonc.2019.00367. PubMed DOI PMC

Pol JG, et al. Effects of interleukin-2 in immunostimulation and immunosuppression. J Exp Med. 2019;217(1):e20191247. doi: 10.1084/jem.20191247. PubMed DOI PMC

Mohammad GRKS, et al. Cytokines as potential combination agents with PD-1/PD-L1 blockade for cancer treatment. J Cell Physiol. 2020;235(7–8):5449–5460. doi: 10.1002/jcp.29491. PubMed DOI

Hashimoto M, et al. PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program. Nature. 2022;610(7930):173–181. doi: 10.1038/s41586-022-05257-0. PubMed DOI PMC

Wang X, et al. Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science. 2005;310(5751):1159–1163. doi: 10.1126/science.1117893. PubMed DOI

Leonard WJ, Lin J-X. Cytokine receptor signaling pathways. J Allergy Clin Immunol. 2000;105(5):877–888. doi: 10.1067/mai.2000.106899. PubMed DOI

Malek TR. The biology of interleukin-2. Annu Rev Immunol. 2008;26(1):453–479. doi: 10.1146/annurev.immunol.26.021607.090357. PubMed DOI

Zurawski SM, Zurawski G. Receptor antagonist and selective agonist derivatives of mouse interleukin-2. EMBO J. 1992;11(11):3905–3910. doi: 10.1002/j.1460-2075.1992.tb05483.x. PubMed DOI PMC

Margolin K, et al. Phase I trial of BAY 50-4798, an interleukin-2-specific agonist in advanced melanoma and renal cancer. Clin Cancer Res. 2007;13(11):3312–3319. doi: 10.1158/1078-0432.CCR-06-1341. PubMed DOI

Levin AM, et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature. 2012;484(7395):529–533. doi: 10.1038/nature10975. PubMed DOI PMC

Carmenate T, et al. Human IL-2 mutein with higher antitumor efficacy than wild type IL-2. J Immunol. 2013;190(12):6230–6238. doi: 10.4049/jimmunol.1201895. PubMed DOI

Klein C, et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncoimmunology. 2017;6(3):e1277306. doi: 10.1080/2162402X.2016.1277306. PubMed DOI PMC

Chen X, et al. A novel human IL-2 mutein with minimal systemic toxicity exerts greater antitumor efficacy than wild-type IL-2. Cell Death Dis. 2018;9(10):989. doi: 10.1038/s41419-018-1047-2. PubMed DOI PMC

Silva D-A, et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature. 2019;565(7738):186–191. doi: 10.1038/s41586-018-0830-7. PubMed DOI PMC

Lee J-Y, et al. TCB2, a new anti-human interleukin-2 antibody, facilitates heterodimeric IL-2 receptor signaling and improves anti-tumor immunity. Oncoimmunology. 2020;9(1):1681869. doi: 10.1080/2162402X.2019.1681869. PubMed DOI PMC

Hsu EJ, et al. A cytokine receptor-masked IL2 prodrug selectively activates tumor-infiltrating lymphocytes for potent antitumor therapy. Nat Commun. 2021;12(1):2768. doi: 10.1038/s41467-021-22980-w. PubMed DOI PMC

Kobayashi M, et al. MK-6, a novel not-α IL-2, elicits a potent antitumor activity by improving the effector to regulatory T cell balance. Cancer Sci. 2021;112(11):4478–4489. doi: 10.1111/cas.15127. PubMed DOI PMC

Waldhauer I, et al. Simlukafusp alfa (FAP-IL2v) immunocytokine is a versatile combination partner for cancer immunotherapy. MAbs. 2021;13(1):1913791. doi: 10.1080/19420862.2021.1913791. PubMed DOI PMC

Saxton RA, et al. Emerging principles of cytokine pharmacology and therapeutics. Nat Rev Drug Discov. 2023;22(1):21–37. doi: 10.1038/s41573-022-00557-6. PubMed DOI PMC

Merchant R, et al. Fine-tuned long-acting interleukin-2 superkine potentiates durable immune responses in mice and non-human primate. J Immunother Cancer. 2022;10(1):e003155. doi: 10.1136/jitc-2021-003155. PubMed DOI PMC

Raeber ME, et al. A systematic review of interleukin-2-based immunotherapies in clinical trials for cancer and autoimmune diseases. EBioMedicine. 2023;90:104539. doi: 10.1016/j.ebiom.2023.104539. PubMed DOI PMC

Zhang B, et al. Site-specific PEGylation of interleukin-2 enhances immunosuppression via the sustained activation of regulatory T cells. Nat Biomed Eng. 2021;5(11):1288–1305. doi: 10.1038/s41551-021-00797-8. PubMed DOI

Yang JC, et al. The use of polyethylene glycol-modified interleukin-2 (PEG-IL-2) in the treatment of patients with metastatic renal cell carcinoma and melanoma. A phase I study and a randomized prospective study comparing IL-2 alone versus IL-2 combined with PEG-IL-2. Cancer. 1995;76(4):687–694. doi: 10.1002/1097-0142(19950815)76:4<687::AID-CNCR2820760424>3.0.CO;2-M. PubMed DOI

Ptacin JL, et al. An engineered IL-2 reprogrammed for anti-tumor therapy using a semi-synthetic organism. Nat Commun. 2021;12(1):4785. doi: 10.1038/s41467-021-24987-9. PubMed DOI PMC

Sharma M, et al. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat Commun. 2020;11(1):661. doi: 10.1038/s41467-020-14471-1. PubMed DOI PMC

Hernandez R, et al. High-dose IL-2/CD25 fusion protein amplifies vaccine-induced CD4+ and CD8+ neoantigen-specific T cells to promote antitumor immunity. J Immunother Cancer. 2021;9(9):e002865. doi: 10.1136/jitc-2021-002865. PubMed DOI PMC

Ward NC, et al. IL-2/CD25: a long-acting fusion protein that promotes immune tolerance by selectively targeting the IL-2 receptor on regulatory T cells. J Immunol. 2018;201(9):2579–2592. doi: 10.4049/jimmunol.1800907. PubMed DOI PMC

Spangler JB, et al. Insights into cytokine-receptor interactions from cytokine engineering. Annu Rev Immunol. 2015;33(1):139–167. doi: 10.1146/annurev-immunol-032713-120211. PubMed DOI PMC

Boyman O, et al. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science. 2006;311(5769):1924–1927. doi: 10.1126/science.1122927. PubMed DOI

Krieg C, et al. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci U S A. 2010;107(26):11906–11911. doi: 10.1073/pnas.1002569107. PubMed DOI PMC

Létourneau S, et al. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor alpha subunit CD25. Proc Natl Acad Sci U S A. 2010;107(5):2171–2176. doi: 10.1073/pnas.0909384107. PubMed DOI PMC

Spangler JB, et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity. 2015;42(5):815–825. doi: 10.1016/j.immuni.2015.04.015. PubMed DOI PMC

Kamimura D, et al. IL-2 in vivo activities and antitumor efficacy enhanced by an anti-IL-2 mAb. J Immunol. 2006;177(1):306–314. doi: 10.4049/jimmunol.177.1.306. PubMed DOI

Arenas-Ramirez N, et al. Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci Transl Med. 2016;8(367):367ra166. doi: 10.1126/scitranslmed.aag3187. PubMed DOI

Sahin D, et al. An IL-2-grafted antibody immunotherapy with potent efficacy against metastatic cancer. Nat Commun. 2020;11(1):6440. doi: 10.1038/s41467-020-20220-1. PubMed DOI PMC

Wu Z, et al. Solution assembly of the pseudo-high affinity and intermediate affinity interleukin-2 receptor complexes. Protein Sci. 1999;8(3):482–489. doi: 10.1110/ps.8.3.482. PubMed DOI PMC

Stauber DJ, et al. Crystal structure of the IL-2 signaling complex: paradigm for a heterotrimeric cytokine receptor. Proc Natl Acad Sci U S A. 2006;103(8):2788–2793. doi: 10.1073/pnas.0511161103. PubMed DOI PMC

Shanafelt AB, et al. A T-cell-selective interleukin 2 mutein exhibits potent antitumor activity and is well tolerated in vivo. Nat Biotechnol. 2000;18(11):1197–1202. doi: 10.1038/81199. PubMed DOI

Myszka DG, et al. Kinetic analysis of ligand binding to interleukin-2 receptor complexes created on an optical biosensor surface. Protein Sci. 1996;5(12):2468–2478. doi: 10.1002/pro.5560051209. PubMed DOI PMC

Kuziel WA, et al. Unexpected effects of the IL-2 receptor alpha subunit on high affinity IL-2 receptor assembly and function detected with a mutant IL-2 analog. J Immunol. 1993;150(8 pt 1):3357–3365. doi: 10.4049/jimmunol.150.8.3357. PubMed DOI

Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol. 1997;15(6):553–557. doi: 10.1038/nbt0697-553. PubMed DOI

Whitlow M, et al. 1.85 A structure of anti-fluorescein 4-4-20 Fab. Protein Eng. 1995;8(8):749–761. doi: 10.1093/protein/8.8.749. PubMed DOI

Tomala J, et al. Antitumor activity of IL-2/anti-IL-2 mAb immunocomplexes exerts synergism with that of N-(2-hydroxypropyl)methacrylamide copolymer-bound doxorubicin conjugate due to its low immunosuppressive activity. Int J Cancer. 2011;129(8):2002–2012. doi: 10.1002/ijc.25859. PubMed DOI

Tomala J, et al. Chimera of IL-2 linked to light chain of anti-IL-2 mAb mimics IL-2/anti-IL-2 mAb complexes both structurally and functionally. ACS Chem Biol. 2013;8(5):871–876. doi: 10.1021/cb3007242. PubMed DOI

Harris LJ, et al. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry. 1997;36(7):1581–1597. doi: 10.1021/bi962514+. PubMed DOI

Hémar A, et al. Endocytosis of interleukin 2 receptors in human T lymphocytes: distinct intracellular localization and fate of the receptor alpha, beta, and gamma chains. J Cell Biol. 1995;129(1):55–64. doi: 10.1083/jcb.129.1.55. PubMed DOI PMC

Lo M, et al. Effector-attenuating substitutions that maintain antibody stability and reduce toxicity in mice. J Biol Chem. 2017;292(9):3900–3908. doi: 10.1074/jbc.M116.767749. PubMed DOI PMC

Ren Z, et al. Selective delivery of low-affinity IL-2 to PD-1+ T cells rejuvenates antitumor immunity with reduced toxicity. J Clin Invest. 2022;132(3):e153604. doi: 10.1172/JCI153604. PubMed DOI PMC

Kaptein P, et al. Addition of interleukin-2 overcomes resistance to neoadjuvant CTLA4 and PD1 blockade in ex vivo patient tumors. Sci Transl Med. 2022;14(642):eabj9779. doi: 10.1126/scitranslmed.abj9779. PubMed DOI

Caudana P, et al. IL2/anti-IL2 complex combined with CTLA-4, but not PD-1, blockade rescues antitumor NK cell function by regulatory T-cell modulation. Cancer Immunol Res. 2019;7(3):443–457. doi: 10.1158/2326-6066.CIR-18-0697. PubMed DOI

Moynihan KD, et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med. 2016;22(12):1402–1410. doi: 10.1038/nm.4200. PubMed DOI PMC

Reyes RM, et al. CD122-directed interleukin-2 treatment mechanisms in bladder cancer differ from αPD-L1 and include tissue-selective γδ T cell activation. J Immunother Cancer. 2021;9(4):e002051. doi: 10.1136/jitc-2020-002051. PubMed DOI PMC

VanDyke D, et al. Engineered human cytokine/antibody fusion proteins expand regulatory T cells and confer autoimmune disease protection. Cell Rep. 2022;41(3):111478. doi: 10.1016/j.celrep.2022.111478. PubMed DOI PMC

Ross SH, Cantrell DA. Signaling and function of interleukin-2 in T lymphocytes. Annu Rev Immunol. 2018;36(1):411–433. doi: 10.1146/annurev-immunol-042617-053352. PubMed DOI PMC

Fallon EM, Lauffenburger DA. Computational model for effects of ligand/receptor binding properties on interleukin-2 trafficking dynamics and T cell proliferation response. Biotechnol Prog. 2000;16(5):905–916. doi: 10.1021/bp000097t. PubMed DOI

Tomala J, et al. In vivo expansion of activated naive CD8+ T cells and NK cells driven by complexes of IL-2 and anti-IL-2 monoclonal antibody as novel approach of cancer immunotherapy. J Immunol. 2009;183(8):4904–4912. doi: 10.4049/jimmunol.0900284. PubMed DOI

Kohlhapp FJ, et al. NK cells and CD8+ T cells cooperate to improve therapeutic responses in melanoma treated with interleukin-2 (IL-2) and CTLA-4 blockade. J Immunother Cancer. 2015;3(1):18. doi: 10.1186/s40425-015-0063-3. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace