Production of recombinant soluble dimeric C-type lectin-like receptors of rat natural killer cells

. 2019 Nov 28 ; 9 (1) : 17836. [epub] 20191128

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31780667
Odkazy

PubMed 31780667
PubMed Central PMC6882821
DOI 10.1038/s41598-019-52114-8
PII: 10.1038/s41598-019-52114-8
Knihovny.cz E-zdroje

Working at the border between innate and adaptive immunity, natural killer (NK) cells play a key role in the immune system by protecting healthy cells and by eliminating malignantly transformed, stressed or virally infected cells. NK cell recognition of a target cell is mediated by a receptor "zipper" consisting of various activating and inhibitory receptors, including C-type lectin-like receptors. Among this major group of receptors, two of the largest rodent receptor families are the NKR-P1 and the Clr receptor families. Although these families have been shown to encode receptor-ligand pairs involved in MHC-independent self-nonself discrimination and are a target for immune evasion by tumour cells and viruses, structural mechanisms of their mutual recognition remain less well characterized. Therefore, we developed a non-viral eukaryotic expression system based on transient transfection of suspension-adapted human embryonic kidney 293 cells to produce soluble native disulphide dimers of NK cell C-type lectin-like receptor ectodomains. The expression system was optimized using green fluorescent protein and secreted alkaline phosphatase, easily quantifiable markers of recombinant protein production. We describe an application of this approach to the recombinant protein production and characterization of native rat NKR-P1B and Clr-11 proteins suitable for further structural and functional studies.

Erratum v

PubMed

Zobrazit více v PubMed

Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nature Immunology. 2008;9:495–502. doi: 10.1038/ni1581. PubMed DOI PMC

Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nature Immunology. 2008;9:503–510. doi: 10.1038/ni1582. PubMed DOI

Lanier LL. NK cell recognition. Annual Review of Immunology. 2005;23:225–274. doi: 10.1146/annurev.immunol.23.021704.115526. PubMed DOI

Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319:675–678. doi: 10.1038/319675a0. PubMed DOI

Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nature Reviews Immunology. 2003;3:781–790. doi: 10.1038/nri1199. PubMed DOI

Chambers WH, et al. Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells. The Journal of Experimental Medicine. 1989;169:1373–1389. doi: 10.1084/jem.169.4.1373. PubMed DOI PMC

Mesci A, Ljutic B, Makrigiannis AP, Carlyle JR. NKR-P1 biology: from prototype to missing self. Immunologic Research. 2006;35:13–26. doi: 10.1385/IR:35:1:13. PubMed DOI

Hao L, Klein J, Nei M. Heterogeneous but conserved natural killer receptor gene complexes in four major orders of mammals. Proceedings of the National Academy of Sciences of the United States of America. 2006;103:3192–3197. doi: 10.1073/pnas.0511280103. PubMed DOI PMC

Giorda R, et al. NKR-P1, a signal transduction molecule on natural killer cells. Science. 1990;249:1298–1300. doi: 10.1126/science.2399464. PubMed DOI

Iizuka K, Naidenko OV, Plougastel BF, Fremont DH, Yokoyama WM. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nature Immunology. 2003;4:801–807. doi: 10.1038/ni954. PubMed DOI

Carlyle JR, et al. Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:3527–3532. doi: 10.1073/pnas.0308304101. PubMed DOI PMC

Rahim MM, Makrigiannis AP. Ly49 receptors: evolution, genetic diversity, and impact on immunity. Immunological Reviews. 2015;267:137–147. doi: 10.1111/imr.12318. PubMed DOI

Kveberg L, et al. Two major groups of rat NKR-P1 receptors can be distinguished based on chromosomal localization, phylogenetic analysis and Clr ligand binding. European Journal of Immunology. 2009;39:541–551. doi: 10.1002/eji.200838891. PubMed DOI

Aldemir H, et al. Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. Journal of Immunology. 2005;175:7791–7795. doi: 10.4049/jimmunol.175.12.7791. PubMed DOI

Rosen DB, et al. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. Journal of Immunology. 2005;175:7796–7799. doi: 10.4049/jimmunol.175.12.7796. PubMed DOI

Roth P, et al. Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1. Cancer Research. 2007;67:3540–3544. doi: 10.1158/0008-5472.CAN-06-4783. PubMed DOI

Mathew SO, Chaudhary P, Powers SB, Vishwanatha JK, Mathew PA. Overexpression of LLT1 (OCIL, CLEC2D) on prostate cancer cells inhibits NK cell-mediated killing through LLT1-NKRP1A (CD161) interaction. Oncotarget. 2016;7:68650–68661. doi: 10.18632/oncotarget.11896. PubMed DOI PMC

Germain C, et al. Lectin-like transcript 1 is a marker of germinal center-derived B-cell non-Hodgkin’s lymphomas dampening natural killer cell functions. Oncoimmunology. 2015;4:e1026503. doi: 10.1080/2162402X.2015.1026503. PubMed DOI PMC

Voigt S, et al. Cytomegalovirus evasion of innate immunity by subversion of the NKR-P1B:Clr-b missing-self axis. Immunity. 2007;26:617–627. doi: 10.1016/j.immuni.2007.03.013. PubMed DOI

Carlyle JR, et al. Molecular and genetic basis for strain-dependent NK1.1 alloreactivity of mouse NK cells. Journal of Immunology. 2006;176:7511–7524. doi: 10.4049/jimmunol.176.12.7511. PubMed DOI

Aguilar OA, et al. Modulation of Clr Ligand Expression and NKR-P1 Receptor Function during Murine Cytomegalovirus Infection. Journal of Innate Immunity. 2015;7:584–600. doi: 10.1159/000382032. PubMed DOI PMC

Aguilar OA, et al. A Viral Immunoevasin Controls Innate Immunity by Targeting the Prototypical Natural Killer Cell Receptor Family. Cell. 2017;169:58–71 e14. doi: 10.1016/j.cell.2017.03.002. PubMed DOI

Fine JH, et al. Chemotherapy-induced genotoxic stress promotes sensitivity to natural killer cell cytotoxicity by enabling missing-self recognition. Cancer Research. 2010;70:7102–7113. doi: 10.1158/0008-5472.CAN-10-1316. PubMed DOI PMC

Williams KJ, et al. Poxvirus infection-associated downregulation of C-type lectin-related-b prevents NK cell inhibition by NK receptor protein-1B. Journal of Immunology. 2012;188:4980–4991. doi: 10.4049/jimmunol.1103425. PubMed DOI

Tanaka M, et al. The inhibitory NKRP1B: Clr-b recognition axis facilitates detection of oncogenic transformation and cancer immunosurveillance. Cancer Research. 2018;78:3589–3603. doi: 10.1158/0008-5472.CAN-17-1688. PubMed DOI

Chen P, et al. Genetic investigation of MHC-independent missing-self recognition by mouse NK cells using an in vivo bone marrow transplantation model. Journal of Immunology. 2015;194:2909–2918. doi: 10.4049/jimmunol.1401523. PubMed DOI

Rahim MM, et al. The mouse NKR-P1B:Clr-b recognition system is a negative regulator of innate immune responses. Blood. 2015;125:2217–2227. doi: 10.1182/blood-2014-02-556142. PubMed DOI PMC

Kolenko P, et al. Molecular architecture of mouse activating NKR-P1 receptors. Journal of Structural Biology. 2011;175:434–441. doi: 10.1016/j.jsb.2011.05.001. PubMed DOI

Skalova T, et al. Mouse Clr-g, a ligand for NK cell activation receptor NKR-P1F: crystal structure and biophysical properties. Journal of Immunology. 2012;189:4881–4889. doi: 10.4049/jimmunol.1200880. PubMed DOI

Bartel Y, Bauer B, Steinle A. Modulation of NK cell function by genetically coupled C-type lectin-like receptor/ligand pairs encoded in the human natural killer gene complex. Frontiers in Immunology. 2013;4:362. doi: 10.3389/fimmu.2013.00362. PubMed DOI PMC

Durocher Y, Perret S, Kamen A. High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Research. 2002;30:E9. doi: 10.1093/nar/30.2.e9. PubMed DOI PMC

Aricescu AR, Lu W, Jones EY. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallographica Section D, Biological Crystallography. 2006;62:1243–1250. doi: 10.1107/S0907444906029799. PubMed DOI

Chang VT, et al. Glycoprotein structural genomics: solving the glycosylation problem. Structure. 2007;15:267–273. doi: 10.1016/j.str.2007.01.011. PubMed DOI PMC

Backliwal G, et al. Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnology and Bioengineering. 2008;101:182–189. doi: 10.1002/bit.21882. PubMed DOI

Sunley K, Butler M. Strategies for the enhancement of recombinant protein production from mammalian cells by growth arrest. Biotechnology Advances. 2010;28:385–394. doi: 10.1016/j.biotechadv.2010.02.003. PubMed DOI

Pham PL, et al. Transient gene expression in HEK293 cells: peptone addition posttransfection improves recombinant protein synthesis. Biotechnology and Bioengineering. 2005;90:332–344. doi: 10.1002/bit.20428. PubMed DOI

Reeves PJ, Callewaert N, Contreras R, Khorana HG. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proceedings of the National Academy of Sciences of the United States of America. 2002;99:13419–13424. doi: 10.1073/pnas.212519299. PubMed DOI PMC

Sovova Z, et al. Structural analysis of natural killer cell receptor protein 1 (NKR-P1) extracellular domains suggests a conserved long loop region involved in ligand specificity. Journal of Molecular Modeling. 2011;17:1353–1370. doi: 10.1007/s00894-010-0837-y. PubMed DOI

Barth A. Infrared spectroscopy of proteins. Biochimica et Biophysica Acta. 2007;1767:1073–1101. doi: 10.1016/j.bbabio.2007.06.004. PubMed DOI

Fabian H, Vogel HJ. Fourier transform infrared spectroscopy of calcium-binding proteins. Methods in Molecular Biology. 2002;173:57–74. doi: 10.1385/1-59259-184-1:057. PubMed DOI

Hernychova L, et al. The C-type lectin-like receptor Nkrp1b: Structural proteomics reveals features affecting protein conformation and interactions. Journal of Proteomics. 2019;196:162–172. doi: 10.1016/j.jprot.2018.11.007. PubMed DOI

Balaji GR, et al. Recognition of host Clr-b by the inhibitory NKR-P1B receptor provides a basis for missing-self recognition. Nature. Communications. 2018;9:4623. doi: 10.1038/s41467-018-06989-2. PubMed DOI PMC

Skalova T, et al. Four crystal structures of human LLT1, a ligand of human NKR-P1, in varied glycosylation and oligomerization states. Acta Crystallographica Section D, Biological Crystallography. 2015;71:578–591. doi: 10.1107/S1399004714027928. PubMed DOI PMC

Vanek O, et al. Soluble recombinant CD69 receptors optimized to have an exceptional physical and chemical stability display prolonged circulation and remain intact in the blood of mice. FEBS Journal. 2008;275:5589–5606. doi: 10.1111/j.1742-4658.2008.06683.x. PubMed DOI

Muller N, Girard P, Hacker DL, Jordan M, Wurm FM. Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnology and Bioengineering. 2005;89:400–406. doi: 10.1002/bit.20358. PubMed DOI

Pompach P, et al. Modified electrophoretic and digestion conditions allow a simplified mass spectrometric evaluation of disulfide bonds. Journal of Mass Spectrometry: JMS. 2009;44:1571–1578. doi: 10.1002/jms.1609. PubMed DOI

Peri S, Steen H, Pandey A. GPMAW–a software tool for analyzing proteins and peptides. Trends in Biochemical Sciences. 2001;26:687–689. doi: 10.1016/S0968-0004(01)01954-5. PubMed DOI

Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophysical Journal. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC

Schuck P. On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Analytical Biochemistry. 2003;320:104–124. doi: 10.1016/S0003-2697(03)00289-6. PubMed DOI

Dousseau F, Therrien M, Pezolet M. On the Spectral Subtraction of Water from the FT-IR Spectra of Aqueous-Solutions of Proteins. Applied Spectroscopy. 1989;43:538–542. doi: 10.1366/0003702894202814. DOI

Dousseau F, Pezolet M. Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods. Biochemistry. 1990;29:8771–8779. doi: 10.1021/bi00489a038. PubMed DOI

Pazderka T, Kopecky V., Jr. Two-dimensional correlation analysis of Raman optical activity - Basic rules and data treatment. Vibrational Spectroscopy. 2012;60:193–199. doi: 10.1016/j.vibspec.2011.10.002. DOI

Baumruk V, Pancoska P, Keiderling TA. Predictions of secondary structure using statistical analyses of electronic and vibrational circular dichroism and Fourier transform infrared spectra of proteins in H O. Journal of Molecular Biology. 1996;259:774–791. doi: 10.1006/jmbi.1996.0357. PubMed DOI

Jung C. Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy. Journal of Molecular Recognition. 2000;13:325–351. doi: 10.1002/1099-1352(200011/12)13:6<325::AID-JMR507>3.0.CO;2-C. PubMed DOI

Cai S, Singh BR. Identification of beta-turn and random coil amide III infrared bands for secondary structure estimation of proteins. Biophysical Chemistry. 1999;80:7–20. doi: 10.1016/S0301-4622(99)00060-5. PubMed DOI

Barth A. The infrared absorption of amino acid side chains. Progress in Biophysics and Molecular Biology. 2000;74:141–173. doi: 10.1016/S0079-6107(00)00021-3. PubMed DOI

Barth A, Zscherp C. What vibrations tell us about proteins. Quarterly Reviews of Biophysics. 2002;35:369–430. doi: 10.1017/S0033583502003815. PubMed DOI

Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...