Production of recombinant soluble dimeric C-type lectin-like receptors of rat natural killer cells
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31780667
PubMed Central
PMC6882821
DOI
10.1038/s41598-019-52114-8
PII: 10.1038/s41598-019-52114-8
Knihovny.cz E-zdroje
- MeSH
- HEK293 buňky MeSH
- krysa rodu Rattus MeSH
- lektinové receptory NK-buněk - podrodina B chemie genetika metabolismus MeSH
- lidé MeSH
- multimerizace proteinu MeSH
- protein podobný kalcitoninovému receptoru chemie genetika metabolismus MeSH
- proteinové domény MeSH
- proteinové inženýrství metody MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Calcrl protein, rat MeSH Prohlížeč
- lektinové receptory NK-buněk - podrodina B MeSH
- protein podobný kalcitoninovému receptoru MeSH
- rekombinantní proteiny MeSH
Working at the border between innate and adaptive immunity, natural killer (NK) cells play a key role in the immune system by protecting healthy cells and by eliminating malignantly transformed, stressed or virally infected cells. NK cell recognition of a target cell is mediated by a receptor "zipper" consisting of various activating and inhibitory receptors, including C-type lectin-like receptors. Among this major group of receptors, two of the largest rodent receptor families are the NKR-P1 and the Clr receptor families. Although these families have been shown to encode receptor-ligand pairs involved in MHC-independent self-nonself discrimination and are a target for immune evasion by tumour cells and viruses, structural mechanisms of their mutual recognition remain less well characterized. Therefore, we developed a non-viral eukaryotic expression system based on transient transfection of suspension-adapted human embryonic kidney 293 cells to produce soluble native disulphide dimers of NK cell C-type lectin-like receptor ectodomains. The expression system was optimized using green fluorescent protein and secreted alkaline phosphatase, easily quantifiable markers of recombinant protein production. We describe an application of this approach to the recombinant protein production and characterization of native rat NKR-P1B and Clr-11 proteins suitable for further structural and functional studies.
Department of Immunology University of Toronto 1 King's College Circle M5S 1A8 Toronto ON Canada
Department of Infectious Diseases Robert Koch Institute Seestraße 10 13353 Berlin Germany
EMBL Hamburg c o DESY Building 25A Notkestraße 85 22603 Hamburg Germany
Institute of Microbiology The Czech Academy of Sciences Vídeňská 1083 14220 Prague Czech Republic
Zobrazit více v PubMed
Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nature Immunology. 2008;9:495–502. doi: 10.1038/ni1581. PubMed DOI PMC
Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nature Immunology. 2008;9:503–510. doi: 10.1038/ni1582. PubMed DOI
Lanier LL. NK cell recognition. Annual Review of Immunology. 2005;23:225–274. doi: 10.1146/annurev.immunol.23.021704.115526. PubMed DOI
Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319:675–678. doi: 10.1038/319675a0. PubMed DOI
Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nature Reviews Immunology. 2003;3:781–790. doi: 10.1038/nri1199. PubMed DOI
Chambers WH, et al. Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells. The Journal of Experimental Medicine. 1989;169:1373–1389. doi: 10.1084/jem.169.4.1373. PubMed DOI PMC
Mesci A, Ljutic B, Makrigiannis AP, Carlyle JR. NKR-P1 biology: from prototype to missing self. Immunologic Research. 2006;35:13–26. doi: 10.1385/IR:35:1:13. PubMed DOI
Hao L, Klein J, Nei M. Heterogeneous but conserved natural killer receptor gene complexes in four major orders of mammals. Proceedings of the National Academy of Sciences of the United States of America. 2006;103:3192–3197. doi: 10.1073/pnas.0511280103. PubMed DOI PMC
Giorda R, et al. NKR-P1, a signal transduction molecule on natural killer cells. Science. 1990;249:1298–1300. doi: 10.1126/science.2399464. PubMed DOI
Iizuka K, Naidenko OV, Plougastel BF, Fremont DH, Yokoyama WM. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nature Immunology. 2003;4:801–807. doi: 10.1038/ni954. PubMed DOI
Carlyle JR, et al. Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:3527–3532. doi: 10.1073/pnas.0308304101. PubMed DOI PMC
Rahim MM, Makrigiannis AP. Ly49 receptors: evolution, genetic diversity, and impact on immunity. Immunological Reviews. 2015;267:137–147. doi: 10.1111/imr.12318. PubMed DOI
Kveberg L, et al. Two major groups of rat NKR-P1 receptors can be distinguished based on chromosomal localization, phylogenetic analysis and Clr ligand binding. European Journal of Immunology. 2009;39:541–551. doi: 10.1002/eji.200838891. PubMed DOI
Aldemir H, et al. Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. Journal of Immunology. 2005;175:7791–7795. doi: 10.4049/jimmunol.175.12.7791. PubMed DOI
Rosen DB, et al. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. Journal of Immunology. 2005;175:7796–7799. doi: 10.4049/jimmunol.175.12.7796. PubMed DOI
Roth P, et al. Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1. Cancer Research. 2007;67:3540–3544. doi: 10.1158/0008-5472.CAN-06-4783. PubMed DOI
Mathew SO, Chaudhary P, Powers SB, Vishwanatha JK, Mathew PA. Overexpression of LLT1 (OCIL, CLEC2D) on prostate cancer cells inhibits NK cell-mediated killing through LLT1-NKRP1A (CD161) interaction. Oncotarget. 2016;7:68650–68661. doi: 10.18632/oncotarget.11896. PubMed DOI PMC
Germain C, et al. Lectin-like transcript 1 is a marker of germinal center-derived B-cell non-Hodgkin’s lymphomas dampening natural killer cell functions. Oncoimmunology. 2015;4:e1026503. doi: 10.1080/2162402X.2015.1026503. PubMed DOI PMC
Voigt S, et al. Cytomegalovirus evasion of innate immunity by subversion of the NKR-P1B:Clr-b missing-self axis. Immunity. 2007;26:617–627. doi: 10.1016/j.immuni.2007.03.013. PubMed DOI
Carlyle JR, et al. Molecular and genetic basis for strain-dependent NK1.1 alloreactivity of mouse NK cells. Journal of Immunology. 2006;176:7511–7524. doi: 10.4049/jimmunol.176.12.7511. PubMed DOI
Aguilar OA, et al. Modulation of Clr Ligand Expression and NKR-P1 Receptor Function during Murine Cytomegalovirus Infection. Journal of Innate Immunity. 2015;7:584–600. doi: 10.1159/000382032. PubMed DOI PMC
Aguilar OA, et al. A Viral Immunoevasin Controls Innate Immunity by Targeting the Prototypical Natural Killer Cell Receptor Family. Cell. 2017;169:58–71 e14. doi: 10.1016/j.cell.2017.03.002. PubMed DOI
Fine JH, et al. Chemotherapy-induced genotoxic stress promotes sensitivity to natural killer cell cytotoxicity by enabling missing-self recognition. Cancer Research. 2010;70:7102–7113. doi: 10.1158/0008-5472.CAN-10-1316. PubMed DOI PMC
Williams KJ, et al. Poxvirus infection-associated downregulation of C-type lectin-related-b prevents NK cell inhibition by NK receptor protein-1B. Journal of Immunology. 2012;188:4980–4991. doi: 10.4049/jimmunol.1103425. PubMed DOI
Tanaka M, et al. The inhibitory NKRP1B: Clr-b recognition axis facilitates detection of oncogenic transformation and cancer immunosurveillance. Cancer Research. 2018;78:3589–3603. doi: 10.1158/0008-5472.CAN-17-1688. PubMed DOI
Chen P, et al. Genetic investigation of MHC-independent missing-self recognition by mouse NK cells using an in vivo bone marrow transplantation model. Journal of Immunology. 2015;194:2909–2918. doi: 10.4049/jimmunol.1401523. PubMed DOI
Rahim MM, et al. The mouse NKR-P1B:Clr-b recognition system is a negative regulator of innate immune responses. Blood. 2015;125:2217–2227. doi: 10.1182/blood-2014-02-556142. PubMed DOI PMC
Kolenko P, et al. Molecular architecture of mouse activating NKR-P1 receptors. Journal of Structural Biology. 2011;175:434–441. doi: 10.1016/j.jsb.2011.05.001. PubMed DOI
Skalova T, et al. Mouse Clr-g, a ligand for NK cell activation receptor NKR-P1F: crystal structure and biophysical properties. Journal of Immunology. 2012;189:4881–4889. doi: 10.4049/jimmunol.1200880. PubMed DOI
Bartel Y, Bauer B, Steinle A. Modulation of NK cell function by genetically coupled C-type lectin-like receptor/ligand pairs encoded in the human natural killer gene complex. Frontiers in Immunology. 2013;4:362. doi: 10.3389/fimmu.2013.00362. PubMed DOI PMC
Durocher Y, Perret S, Kamen A. High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Research. 2002;30:E9. doi: 10.1093/nar/30.2.e9. PubMed DOI PMC
Aricescu AR, Lu W, Jones EY. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallographica Section D, Biological Crystallography. 2006;62:1243–1250. doi: 10.1107/S0907444906029799. PubMed DOI
Chang VT, et al. Glycoprotein structural genomics: solving the glycosylation problem. Structure. 2007;15:267–273. doi: 10.1016/j.str.2007.01.011. PubMed DOI PMC
Backliwal G, et al. Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnology and Bioengineering. 2008;101:182–189. doi: 10.1002/bit.21882. PubMed DOI
Sunley K, Butler M. Strategies for the enhancement of recombinant protein production from mammalian cells by growth arrest. Biotechnology Advances. 2010;28:385–394. doi: 10.1016/j.biotechadv.2010.02.003. PubMed DOI
Pham PL, et al. Transient gene expression in HEK293 cells: peptone addition posttransfection improves recombinant protein synthesis. Biotechnology and Bioengineering. 2005;90:332–344. doi: 10.1002/bit.20428. PubMed DOI
Reeves PJ, Callewaert N, Contreras R, Khorana HG. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proceedings of the National Academy of Sciences of the United States of America. 2002;99:13419–13424. doi: 10.1073/pnas.212519299. PubMed DOI PMC
Sovova Z, et al. Structural analysis of natural killer cell receptor protein 1 (NKR-P1) extracellular domains suggests a conserved long loop region involved in ligand specificity. Journal of Molecular Modeling. 2011;17:1353–1370. doi: 10.1007/s00894-010-0837-y. PubMed DOI
Barth A. Infrared spectroscopy of proteins. Biochimica et Biophysica Acta. 2007;1767:1073–1101. doi: 10.1016/j.bbabio.2007.06.004. PubMed DOI
Fabian H, Vogel HJ. Fourier transform infrared spectroscopy of calcium-binding proteins. Methods in Molecular Biology. 2002;173:57–74. doi: 10.1385/1-59259-184-1:057. PubMed DOI
Hernychova L, et al. The C-type lectin-like receptor Nkrp1b: Structural proteomics reveals features affecting protein conformation and interactions. Journal of Proteomics. 2019;196:162–172. doi: 10.1016/j.jprot.2018.11.007. PubMed DOI
Balaji GR, et al. Recognition of host Clr-b by the inhibitory NKR-P1B receptor provides a basis for missing-self recognition. Nature. Communications. 2018;9:4623. doi: 10.1038/s41467-018-06989-2. PubMed DOI PMC
Skalova T, et al. Four crystal structures of human LLT1, a ligand of human NKR-P1, in varied glycosylation and oligomerization states. Acta Crystallographica Section D, Biological Crystallography. 2015;71:578–591. doi: 10.1107/S1399004714027928. PubMed DOI PMC
Vanek O, et al. Soluble recombinant CD69 receptors optimized to have an exceptional physical and chemical stability display prolonged circulation and remain intact in the blood of mice. FEBS Journal. 2008;275:5589–5606. doi: 10.1111/j.1742-4658.2008.06683.x. PubMed DOI
Muller N, Girard P, Hacker DL, Jordan M, Wurm FM. Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnology and Bioengineering. 2005;89:400–406. doi: 10.1002/bit.20358. PubMed DOI
Pompach P, et al. Modified electrophoretic and digestion conditions allow a simplified mass spectrometric evaluation of disulfide bonds. Journal of Mass Spectrometry: JMS. 2009;44:1571–1578. doi: 10.1002/jms.1609. PubMed DOI
Peri S, Steen H, Pandey A. GPMAW–a software tool for analyzing proteins and peptides. Trends in Biochemical Sciences. 2001;26:687–689. doi: 10.1016/S0968-0004(01)01954-5. PubMed DOI
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophysical Journal. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
Schuck P. On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Analytical Biochemistry. 2003;320:104–124. doi: 10.1016/S0003-2697(03)00289-6. PubMed DOI
Dousseau F, Therrien M, Pezolet M. On the Spectral Subtraction of Water from the FT-IR Spectra of Aqueous-Solutions of Proteins. Applied Spectroscopy. 1989;43:538–542. doi: 10.1366/0003702894202814. DOI
Dousseau F, Pezolet M. Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods. Biochemistry. 1990;29:8771–8779. doi: 10.1021/bi00489a038. PubMed DOI
Pazderka T, Kopecky V., Jr. Two-dimensional correlation analysis of Raman optical activity - Basic rules and data treatment. Vibrational Spectroscopy. 2012;60:193–199. doi: 10.1016/j.vibspec.2011.10.002. DOI
Baumruk V, Pancoska P, Keiderling TA. Predictions of secondary structure using statistical analyses of electronic and vibrational circular dichroism and Fourier transform infrared spectra of proteins in H O. Journal of Molecular Biology. 1996;259:774–791. doi: 10.1006/jmbi.1996.0357. PubMed DOI
Jung C. Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy. Journal of Molecular Recognition. 2000;13:325–351. doi: 10.1002/1099-1352(200011/12)13:6<325::AID-JMR507>3.0.CO;2-C. PubMed DOI
Cai S, Singh BR. Identification of beta-turn and random coil amide III infrared bands for secondary structure estimation of proteins. Biophysical Chemistry. 1999;80:7–20. doi: 10.1016/S0301-4622(99)00060-5. PubMed DOI
Barth A. The infrared absorption of amino acid side chains. Progress in Biophysics and Molecular Biology. 2000;74:141–173. doi: 10.1016/S0079-6107(00)00021-3. PubMed DOI
Barth A, Zscherp C. What vibrations tell us about proteins. Quarterly Reviews of Biophysics. 2002;35:369–430. doi: 10.1017/S0033583502003815. PubMed DOI
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI