Structure of the human NK cell NKR-P1:LLT1 receptor:ligand complex reveals clustering in the immune synapse
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
090532/Z/09/Z
Wellcome Trust - United Kingdom
PubMed
36028489
PubMed Central
PMC9418145
DOI
10.1038/s41467-022-32577-6
PII: 10.1038/s41467-022-32577-6
Knihovny.cz E-zdroje
- MeSH
- antigeny povrchové MeSH
- buňky NK * MeSH
- difrakce rentgenového záření MeSH
- lektinové receptory NK-buněk - podrodina B MeSH
- lektiny typu C MeSH
- lidé MeSH
- ligandy MeSH
- maloúhlový rozptyl MeSH
- receptory buněčného povrchu * MeSH
- shluková analýza MeSH
- synapse MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny povrchové MeSH
- lektinové receptory NK-buněk - podrodina B MeSH
- lektiny typu C MeSH
- ligandy MeSH
- receptory buněčného povrchu * MeSH
Signaling by the human C-type lectin-like receptor, natural killer (NK) cell inhibitory receptor NKR-P1, has a critical role in many immune-related diseases and cancer. C-type lectin-like receptors have weak affinities to their ligands; therefore, setting up a comprehensive model of NKR-P1-LLT1 interactions that considers the natural state of the receptor on the cell surface is necessary to understand its functions. Here we report the crystal structures of the NKR-P1 and NKR-P1:LLT1 complexes, which provides evidence that NKR-P1 forms homodimers in an unexpected arrangement to enable LLT1 binding in two modes, bridging two LLT1 molecules. These interaction clusters are suggestive of an inhibitory immune synapse. By observing the formation of these clusters in solution using SEC-SAXS analysis, by dSTORM super-resolution microscopy on the cell surface, and by following their role in receptor signaling with freshly isolated NK cells, we show that only the ligation of both LLT1 binding interfaces leads to effective NKR-P1 inhibitory signaling. In summary, our findings collectively support a model of NKR-P1:LLT1 clustering, which allows the interacting proteins to overcome weak ligand-receptor affinity and to trigger signal transduction upon cellular contact in the immune synapse.
EMBL Hamburg Unit c o DESY Notkestrasse 85 22607 Hamburg Germany
Institute of Applied Physics Biophysics group TU Wien Getreidemarkt 9 1060 Vienna Austria
Zobrazit více v PubMed
Vivier E, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–49. doi: 10.1126/science.1198687. PubMed DOI PMC
Cerwenka A, Lanier LL. Natural killer cell memory in infection, inflammation and cancer. Nat. Rev. Immunol. 2016;16:112–123. doi: 10.1038/nri.2015.9. PubMed DOI
Yokoyama WM, Plougastel BF. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 2003;3:304–316. doi: 10.1038/nri1055. PubMed DOI
Bartel Y, Bauer B, Steinle A. Modulation of NK cell function by genetically coupled C-type lectin-like receptor/ligand pairs encoded in the human natural killer gene complex. Front. Immunol. 2013;4:362. doi: 10.3389/fimmu.2013.00362. PubMed DOI PMC
Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J. 2005;272:6179–6217. doi: 10.1111/j.1742-4658.2005.05031.x. PubMed DOI
Rozbesky D, et al. Re-evaluation of binding properties of recombinant lymphocyte receptors NKR-P1A and CD69 to chemically synthesized glycans and peptides. Int. J. Mol. Sci. 2014;15:1271–1283. doi: 10.3390/ijms15011271. PubMed DOI PMC
Lanier LL, Chang C, Phillips JH. Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J. Immunol. 1994;153:2417–2428. PubMed
Spreu J, et al. Interaction of C-type lectin-like receptors NKp65 and KACL facilitates dedicated immune recognition of human keratinocytes. Proc. Natl Acad. Sci. USA. 2010;107:5100–5105. doi: 10.1073/pnas.0913108107. PubMed DOI PMC
Welte S, Kuttruff S, Waldhauer I, Steinle A. Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction. Nat. Immunol. 2006;7:1334–1342. doi: 10.1038/ni1402. PubMed DOI
Vogler I, Steinle A. Vis-a-vis in the NKC: genetically linked natural killer cell receptor/ligand pairs in the natural killer gene complex (NKC) J. Innate Immun. 2011;3:227–235. doi: 10.1159/000324112. PubMed DOI
Aldemir H, et al. Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. J. Immunol. 2005;175:7791–7795. doi: 10.4049/jimmunol.175.12.7791. PubMed DOI
Rosen DB, et al. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J. Immunol. 2005;175:7796–7799. doi: 10.4049/jimmunol.175.12.7796. PubMed DOI
Poggi A, Costa P, Tomasello E, Moretta L. IL-12-induced up-regulation of NKRP1A expression in human NK cells and consequent NKRP1A-mediated down-regulation of NK cell activation. Eur. J. Immunol. 1998;28:1611–1616. doi: 10.1002/(SICI)1521-4141(199805)28:05<1611::AID-IMMU1611>3.0.CO;2-6. PubMed DOI
Exley M, Porcelli S, Furman M, Garcia J, Balk S. CD161 (NKR-P1A) costimulation of CD1d-dependent activation of human T cells expressing invariant V alpha 24 J alpha Q T cell receptor alpha chains. J. Exp. Med. 1998;188:867–876. doi: 10.1084/jem.188.5.867. PubMed DOI PMC
Ussher JE, et al. CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur. J. Immunol. 2014;44:195–203. doi: 10.1002/eji.201343509. PubMed DOI PMC
Fergusson JR, et al. CD161 defines a transcriptional and functional phenotype across distinct human T cell lineages. Cell Rep. 2014;9:1075–1088. doi: 10.1016/j.celrep.2014.09.045. PubMed DOI PMC
Germain C, et al. Induction of lectin-like transcript 1 (LLT1) protein cell surface expression by pathogens and interferon-gamma contributes to modulate immune responses. J. Biol. Chem. 2011;286:37964–37975. doi: 10.1074/jbc.M111.285312. PubMed DOI PMC
Bennett IM, et al. Definition of a natural killer NKR-P1A+/CD56-/CD16- functionally immature human NK cell subset that differentiates in vitro in the presence of interleukin 12. J. Exp. Med. 1996;184:1845–1856. doi: 10.1084/jem.184.5.1845. PubMed DOI PMC
Cosmi L, et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J. Exp. Med. 2008;205:1903–1916. doi: 10.1084/jem.20080397. PubMed DOI PMC
Mathewson ND, et al. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell. 2021;184:1281–1298. doi: 10.1016/j.cell.2021.01.022. PubMed DOI PMC
Poggi A, Costa P, Zocchi MR, Moretta L. Phenotypic and functional analysis of CD4+ NKRP1A+ human T lymphocytes. Direct evidence that the NKRP1A molecule is involved in transendothelial migration. Eur. J. Immunol. 1997;27:2345–2350. doi: 10.1002/eji.1830270932. PubMed DOI
Chalan P, et al. Expression of Lectin-Like Transcript 1, the Ligand for CD161, in Rheumatoid Arthritis. PLoS One. 2015;10:e0132436. doi: 10.1371/journal.pone.0132436. PubMed DOI PMC
Rosen DB, et al. Functional consequences of interactions between human NKR-P1A and its ligand LLT1 expressed on activated dendritic cells and B cells. J. Immunol. 2008;180:6508–6517. doi: 10.4049/jimmunol.180.10.6508. PubMed DOI PMC
Boles KS, Barten R, Kumaresan PR, Trowsdale J, Mathew PA. Cloning of a new lectin-like receptor expressed on human NK cells. Immunogenetics. 1999;50:1–7. doi: 10.1007/s002510050679. PubMed DOI
Roth P, et al. Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1. Cancer Res. 2007;67:3540–3544. doi: 10.1158/0008-5472.CAN-06-4783. PubMed DOI
Mathew SO, Chaudhary P, Powers SB, Vishwanatha JK, Mathew PA. Overexpression of LLT1 (OCIL, CLEC2D) on prostate cancer cells inhibits NK cell-mediated killing through LLT1-NKRP1A (CD161) interaction. Oncotarget. 2016;7:68650–68661. doi: 10.18632/oncotarget.11896. PubMed DOI PMC
Marrufo AM, et al. Blocking LLT1 (CLEC2D, OCIL)-NKRP1A (CD161) interaction enhances natural killer cell-mediated lysis of triple-negative breast cancer cells. Am. J. Cancer Res. 2018;8:1050–1063. PubMed PMC
Germain C, et al. Lectin-like transcript 1 is a marker of germinal center-derived B-cell non-Hodgkin’s lymphomas dampening natural killer cell functions. Oncoimmunology. 2015;4:e1026503. doi: 10.1080/2162402X.2015.1026503. PubMed DOI PMC
Zambrano-Zaragoza JF, Romo-Martinez EJ, Duran-Avelar Mde J, Garcia-Magallanes N, Vibanco-Perez N. Th17 cells in autoimmune and infectious diseases. Int. J. Inflam. 2014;2014:651503. PubMed PMC
Afzali B, et al. CD161 expression characterizes a subpopulation of human regulatory T cells that produces IL-17 in a STAT3-dependent manner. Eur. J. Immunol. 2013;43:2043–2054. doi: 10.1002/eji.201243296. PubMed DOI PMC
Billerbeck E, et al. Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties. Proc. Natl Acad. Sci. USA. 2010;107:3006–3011. doi: 10.1073/pnas.0914839107. PubMed DOI PMC
Smith JA, Colbert RA. Review: The interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheumatol. 2014;66:231–241. doi: 10.1002/art.38291. PubMed DOI PMC
Brucklacher-Waldert V, Stuerner K, Kolster M, Wolthausen J, Tolosa E. Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain. 2009;132:3329–3341. doi: 10.1093/brain/awp289. PubMed DOI
Estrada-Capetillo L, et al. Induction of Th17 lymphocytes and Treg cells by monocyte-derived dendritic cells in patients with rheumatoid arthritis and systemic lupus erythematosus. Clin. Dev. Immunol. 2013;2013:584303. doi: 10.1155/2013/584303. PubMed DOI PMC
Michalak-Stoma A, et al. Serum levels of selected Th17 and Th22 cytokines in psoriatic patients. Dis. Markers. 2013;35:625–631. doi: 10.1155/2013/856056. PubMed DOI PMC
Germain C, et al. Characterization of alternatively spliced transcript variants of CLEC2D gene. J. Biol. Chem. 2010;285:36207–36215. doi: 10.1074/jbc.M110.179622. PubMed DOI PMC
Li Y, Wang Q, Chen S, Brown PH, Mariuzza RA. Structure of NKp65 bound to its keratinocyte ligand reveals basis for genetically linked recognition in natural killer gene complex. Proc. Natl Acad. Sci. USA. 2013;110:11505–11510. doi: 10.1073/pnas.1303300110. PubMed DOI PMC
Bauer B, Spreu J, Rohe C, Vogler I, Steinle A. Key residues at the membrane-distal surface of KACL, but not glycosylation, determine the functional interaction of the keratinocyte-specific C-type lectin-like receptor KACL with its high-affinity receptor NKp65. Immunology. 2015;145:114–123. doi: 10.1111/imm.12432. PubMed DOI PMC
Kamishikiryo J, Fukuhara H, Okabe Y, Kuroki K, Maenaka K. Molecular basis for LLT1 protein recognition by human CD161 protein (NKRP1A/KLRB1) J. Biol. Chem. 2011;286:23823–23830. doi: 10.1074/jbc.M110.214254. PubMed DOI PMC
Kita S, et al. Crystal structure of extracellular domain of human lectin-like transcript 1 (LLT1), the ligand for natural killer receptor-P1A. Eur. J. Immunol. 2015;45:1605–1613. doi: 10.1002/eji.201545509. PubMed DOI
Aguilar OA, et al. A viral Immunoevasin controls innate immunity by targeting the prototypical natural killer. Cell Receptor Fam. Cell. 2017;169:58–71. PubMed
Balaji GR, et al. Recognition of host Clr-b by the inhibitory NKR-P1B receptor provides a basis for missing-self recognition. Nat. Commun. 2018;9:4623. doi: 10.1038/s41467-018-06989-2. PubMed DOI PMC
Skalova T, et al. Four crystal structures of human LLT1, a ligand of human NKR-P1, in varied glycosylation and oligomerization states. Acta Crystallogr. D. Biol. Crystallogr. 2015;71:578–591. doi: 10.1107/S1399004714027928. PubMed DOI PMC
Blaha J, Pachl P, Novak P, Vanek O. Expression and purification of soluble and stable ectodomain of natural killer cell receptor LLT1 through high-density transfection of suspension adapted HEK293S GnTI(−) cells. Prot. Expr. Purif. 2015;109:7–13. doi: 10.1016/j.pep.2015.01.006. PubMed DOI
Vanek O, et al. Soluble recombinant CD69 receptors optimized to have an exceptional physical and chemical stability display prolonged circulation and remain intact in the blood of mice. FEBS J. 2008;275:5589–5606. doi: 10.1111/j.1742-4658.2008.06683.x. PubMed DOI
Kolenko P, et al. The high-resolution structure of the extracellular domain of human CD69 using a novel polymer. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 2009;65:1258–1260. doi: 10.1107/S1744309109043152. PubMed DOI PMC
Skalova T, et al. Mouse Clr-g, a ligand for NK cell activation receptor NKR-P1F: crystal structure and biophysical properties. J. Immunol. 2012;189:4881–4889. doi: 10.4049/jimmunol.1200880. PubMed DOI
Brown J, et al. Structure of the fungal beta-glucan-binding immune receptor dectin-1: implications for function. Protein Sci. 2007;16:1042–1052. doi: 10.1110/ps.072791207. PubMed DOI PMC
Vanek O, et al. Production of recombinant soluble dimeric C-type lectin-like receptors of rat natural killer cells. Sci. Rep. 2019;9:17836. doi: 10.1038/s41598-019-52114-8. PubMed DOI PMC
Blaha J, et al. High-level expression and purification of soluble form of human natural killer cell receptor NKR-P1 in HEK293S GnTI- cells. Protein Expr. Purif. 2017;140:36–43. doi: 10.1016/j.pep.2017.07.016. PubMed DOI
Rother S, et al. The c.503T>C polymorphism in the human KLRB1 gene alters ligand binding and inhibitory potential of CD161 molecules. PLoS One. 2015;10:e0135682. doi: 10.1371/journal.pone.0135682. PubMed DOI PMC
Skorepa O, et al. Natural killer cell activation receptor NKp30 Oligomerization depends on its N-Glycosylation. Cancers. 2020;12:1998. doi: 10.3390/cancers12071998. PubMed DOI PMC
Davis DM, et al. The human natural killer cell immune synapse. Proc. Natl Acad. Sci. USA. 1999;96:15062–15067. doi: 10.1073/pnas.96.26.15062. PubMed DOI PMC
Pageon SV, et al. Superresolution microscopy reveals nanometer-scale reorganization of inhibitory natural killer cell receptors upon activation of NKG2D. Sci. Signal. 2013;6:ra62. doi: 10.1126/scisignal.2003947. PubMed DOI
Stamper CC, et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature. 2001;410:608–611. doi: 10.1038/35069118. PubMed DOI
Schwartz JC, Zhang X, Fedorov AA, Nathenson SG, Almo SC. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature. 2001;410:604–608. doi: 10.1038/35069112. PubMed DOI
Bhatia S, Sun K, Almo SC, Nathenson SG, Hodes RJ. Dynamic equilibrium of B7-1 dimers and monomers differentially affects immunological synapse formation and T cell activation in response to TCR/CD28 stimulation. J. Immunol. 2010;184:1821–1828. doi: 10.4049/jimmunol.0902869. PubMed DOI PMC
Reeves PJ, Callewaert N, Contreras R, Khorana HG. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl Acad. Sci. USA. 2002;99:13419–13424. doi: 10.1073/pnas.212519299. PubMed DOI PMC
Grueninger-Leitch F, D’Arcy A, D’Arcy B, Chene C. Deglycosylation of proteins for crystallization using recombinant fusion protein glycosidases. Protein Sci. 1996;5:2617–2622. doi: 10.1002/pro.5560051224. PubMed DOI PMC
Kabsch W. Xds. Acta Crystallogr. D. Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Evans PR, Murshudov GN. How good are my data and what is the resolution? Acta Crystallogr. D. Biol. Crystallogr. 2013;69:1204–1214. doi: 10.1107/S0907444913000061. PubMed DOI PMC
Long F, Vagin AA, Young P, Murshudov GN. BALBES: a molecular-replacement pipeline. Acta Crystallogr. D. Biol. Crystallogr. 2008;64:125–132. doi: 10.1107/S0907444907050172. PubMed DOI PMC
Li Y, et al. Structure of natural killer cell receptor KLRG1 bound to E-cadherin reveals basis for MHC-independent missing self recognition. Immunity. 2009;31:35–46. doi: 10.1016/j.immuni.2009.04.019. PubMed DOI PMC
McCoy AJ, et al. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. PubMed DOI PMC
Kolenko P, et al. Molecular architecture of mouse activating NKR-P1 receptors. J. Struct. Biol. 2011;175:434–441. doi: 10.1016/j.jsb.2011.05.001. PubMed DOI
Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr. D. Biol. Crystallogr. 2010;66:22–25. doi: 10.1107/S0907444909042589. PubMed DOI
Murshudov GN, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D. Biol. Crystallogr. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Rozbesky D, et al. High-level expression of soluble form of mouse natural killer cell receptor NKR-P1C(B6) in Escherichia coli. Prot. Expr. Purif. 2011;77:178–184. doi: 10.1016/j.pep.2011.01.013. PubMed DOI
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
Brautigam CA. Calculations and publication-quality illustrations for analytical ultracentrifugation data. Meth. Enzymol. 2015;562:109–133. doi: 10.1016/bs.mie.2015.05.001. PubMed DOI
Schuck P. On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal. Biochem. 2003;320:104–124. doi: 10.1016/S0003-2697(03)00289-6. PubMed DOI
Scheuermann TH, Padrick SB, Gardner KH, Brautigam CA. On the acquisition and analysis of microscale thermophoresis data. Anal. Biochem. 2016;496:79–93. doi: 10.1016/j.ab.2015.12.013. PubMed DOI PMC
Petoukhov MV, et al. New developments in the program package for small-angle scattering data analysis. J. Appl. Crystallogr. 2012;45:342–350. doi: 10.1107/S0021889812007662. PubMed DOI PMC
Konarev PV, Volkov VV, Skolova AV, Koch MHJ, Svergun DI. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 2003;36:1277–1282. doi: 10.1107/S0021889803012779. DOI
Li Z, Michael IP, Zhou D, Nagy A, Rini JM. Simple piggyBac transposon-based mammalian cell expression system for inducible protein production. Proc. Natl Acad. Sci. USA. 2013;110:5004–5009. doi: 10.1073/pnas.1218620110. PubMed DOI PMC
Ovesny M, Krizek P, Borkovec J, Svindrych Z, Hagen GM. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30:2389–2390. doi: 10.1093/bioinformatics/btu202. PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Thompson RE, Larson DR, Webb WW. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 2002;82:2775–2783. doi: 10.1016/S0006-3495(02)75618-X. PubMed DOI PMC
Andronov L, Orlov I, Lutz Y, Vonesch JL, Klaholz BP. ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy. Sci. Rep. 2016;6:24084. doi: 10.1038/srep24084. PubMed DOI PMC
Blaha, J., et al. Human NKR-P1:LLT1 SEC-SAXS raw data. Mendeley Data, V1, https://data.mendeley.com/datasets/268ww2m4j3/1 (2022).
Lovell SC, et al. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins. 2003;50:437–450. doi: 10.1002/prot.10286. PubMed DOI
Madeira F, et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022;50:W276–W279. doi: 10.1093/nar/gkac240. PubMed DOI PMC
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42:W320–W324. doi: 10.1093/nar/gku316. PubMed DOI PMC