Structural analysis of natural killer cell receptor protein 1 (NKR-P1) extracellular domains suggests a conserved long loop region involved in ligand specificity

. 2011 Jun ; 17 (6) : 1353-70. [epub] 20100914

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20839018

Receptor proteins at the cell surface regulate the ability of natural killer cells to recognize and kill a variety of aberrant target cells. The structural features determining the function of natural killer receptor proteins 1 (NKR-P1s) are largely unknown. In the present work, refined homology models are generated for the C-type lectin-like extracellular domains of rat NKR-P1A and NKR-P1B, mouse NKR-P1A, NKR-P1C, NKR-P1F, and NKR-P1G, and human NKR-P1 receptors. Experimental data on secondary structure, tertiary interactions, and thermal transitions are acquired for four of the proteins using Raman and infrared spectroscopy. The experimental and modeling results are in agreement with respect to the overall structures of the NKR-P1 receptor domains, while suggesting functionally significant local differences among species and isoforms. Two sequence regions that are conserved in all analyzed NKR-P1 receptors do not correspond to conserved structural elements as might be expected, but are represented by loop regions, one of which is arranged differently in the constructed models. This region displays high flexibility but is anchored by conserved sequences, suggesting that its position relative to the rest of the domain might be variable. This loop may contribute to ligand-binding specificity via a coupled conformational transition.

Zobrazit více v PubMed

Nature. 1999 Oct 28;401(6756):923-5 PubMed

Bioinformatics. 2007 Nov 1;23(21):2947-8 PubMed

Protein Sci. 2007 Jun;16(6):1042-52 PubMed

Immunol Rev. 1998 Jun;163:19-34 PubMed

J Mass Spectrom. 2009 Nov;44(11):1571-8 PubMed

Nature. 1985 Sep 19-25;317(6034):207 PubMed

Eur J Immunol. 2009 Feb;39(2):541-51 PubMed

Methods Enzymol. 1999;303:19-44 PubMed

Biochemistry. 1991 Jun 18;30(24):6074-80 PubMed

J Biol Chem. 2005 Apr 8;280(14):13593-9 PubMed

J Immunol. 1994 Sep 15;153(6):2417-28 PubMed

Immunity. 2007 May;26(5):617-27 PubMed

J Comput Chem. 2005 Dec;26(16):1701-18 PubMed

J Mol Biol. 2005 Apr 15;347(5):979-89 PubMed

Biochemistry. 1988 Jan 12;27(1):88-94 PubMed

Anal Chem. 2003 Nov 1;75(21):5703-9 PubMed

Subcell Biochem. 1995;24:55-99 PubMed

Electrophoresis. 1997 Dec;18(15):2714-23 PubMed

Immunol Today. 1990 Jul;11(7):237-44 PubMed

Immunogenetics. 2001 Sep;53(7):592-8 PubMed

Anal Biochem. 1976 May 7;72:248-54 PubMed

Q Rev Biophys. 2002 Nov;35(4):369-430 PubMed

J Biol Chem. 2001 Mar 9;276(10):7312-9 PubMed

J Exp Med. 1996 May 1;183(5):2197-207 PubMed

Mol Biol Evol. 1987 Jul;4(4):406-25 PubMed

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Dec 1;65(Pt 12):1258-60 PubMed

Prog Biophys Mol Biol. 2000;74(3-5):141-73 PubMed

J Immunol. 1991 Sep 1;147(5):1701-8 PubMed

Protein Eng. 1990 Dec;4(2):125-31 PubMed

Science. 1990 Sep 14;249(4974):1298-300 PubMed

Bioinformatics. 2003 Aug 12;19(12):1572-4 PubMed

Biopolymers. 1983 Dec;22(12):2577-637 PubMed

Methods Enzymol. 1986;130:311-31 PubMed

J Biol Chem. 2008 Jun 13;283(24):16840-9 PubMed

Science. 1967 Jan 20;155(3760):279-84 PubMed

Nat Immun. 1996-1997;15(5):259-68 PubMed

J Mol Biol. 1996 Jun 21;259(4):774-91 PubMed

J Immunol. 1999 May 15;162(10):5876-87 PubMed

Evolution. 1985 Jul;39(4):783-791 PubMed

Biochemistry. 1975 Nov 4;14(22):4870-6 PubMed

Nat Immunol. 2008 May;9(5):503-10 PubMed

J Immunol. 2006 Jun 15;176(12):7511-24 PubMed

Biochemistry. 1990 Sep 18;29(37):8771-9 PubMed

Annu Rev Immunol. 1998;16:359-93 PubMed

Biochemistry. 1999 Mar 30;38(13):4018-27 PubMed

J Mol Biol. 1990 Oct 5;215(3):403-10 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...