Widespread occurrence of asexual reproduction in higher termites of the Termes group (Termitidae: Termitinae)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31226928
PubMed Central
PMC6588926
DOI
10.1186/s12862-019-1459-3
PII: 10.1186/s12862-019-1459-3
Knihovny.cz E-zdroje
- Klíčová slova
- Asexual queen succession, Gamete duplication, South America, Termes-group, Termites, Thelytokous parthenogenesis,
- MeSH
- fylogeneze MeSH
- Isoptera klasifikace genetika fyziologie MeSH
- mikrosatelitní repetice MeSH
- nepohlavní rozmnožování MeSH
- partenogeneze MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: A decade ago, the mixed reproductive strategy Asexual Queen Succession (AQS) was first described in termites. In AQS species, the workers, soldiers and dispersing reproductives are produced through sexual reproduction, while non-dispersing (neotenic) queens arise through automictic thelytokous parthenogenesis, replace the founding queen and mate with the founding king. As yet, AQS has been documented in six species from three lineages of lower (Rhinotermitidae) and higher (Termitinae: Termes group and Syntermitinae) termites. Independent evolution of the capacity of thelytoky as a preadaptation to AQS is supported by different mechanisms of automixis in each of the three clades. These pioneering discoveries prompt the question on the extent of thelytoky and AQS in the diversified family of higher termites. RESULTS: Here, we investigated the capacity of thelytoky and occurrence of AQS in three species from the phylogenetic proximity of the neotropical AQS species Cavitermes tuberosus (Termitinae: Termes group): Palmitermes impostor, Spinitermes trispinosus, and Inquilinitermes inquilinus. We show that queens of all three species are able to lay unfertilized eggs, which undergo thelytokous parthenogenesis (via gamete duplication as in C. tuberosus) and develop through the transitional stage of aspirants into replacement neotenic queens. CONCLUSIONS: The breeding system in P. impostor is very reminiscent of that described in C. tuberosus and can be characterized as AQS. In the remaining two species, our limited data do not allow classifying the breeding system as AQS; yet, also in these species the thelytokous production of neotenic females appears to be a systematic element of reproductive strategies. It appears likely that the capacity of thelytokous parthenogenesis evolved once in the Termes group, and may ultimately be found more widely, well beyond these Neotropical species.
Zobrazit více v PubMed
Matsuura K, Vargo EL, Kawatsu K, Labadie PE, Nakano H, Yashiro T, et al. Queen succession through asexual reproduction in termites. Science. 2009;323:1687. doi: 10.1126/science.1169702. PubMed DOI
Matsuura K. Evolution of asexual queen succession system and its underlying mechanisms in termites. J Exp Biol. 2017;220:63–72. doi: 10.1242/jeb.142547. PubMed DOI
Rabeling C, Kronauer DJC. Thelytokous parthenogenesis in eusocial hymenoptera. Annu Rev Entomol. 2013;58:273–292. doi: 10.1146/annurev-ento-120811-153710. PubMed DOI
Matsuura K. Sexual and asexual reproduction in termites. In: Bignell DE, Roisin Y, Lo N, editors. Biology of Termites: A Modern Synthesis. Dordrecht: Springer; 2011. pp. 255–277. PubMed
Kobayashi K, Miyaguni Y. Facultative parthenogenesis in the Ryukyu drywood termite Neotermes koshunensis. Sci Rep. 2016;6:30712. doi: 10.1038/srep30712. PubMed DOI PMC
Nozaki T, Yashiro T, Matsuura K. Preadaptation for asexual queen succession: queen tychoparthenogenesis produces neotenic queens in the termite Reticulitermes okinawanus. Insect Soc. 2018;65:225–231. doi: 10.1007/s00040-018-0603-1. DOI
Vargo EL, Labadie PE, Matsuura K. Asexual queen succession in the subterranean termite Reticulitermes virginicus. Proc R Soc B. 2012;279:813–819. doi: 10.1098/rspb.2011.1030. PubMed DOI PMC
Luchetti A, Velonà A, Mueller M, Mantovani B. Breeding systems and reproductive strategies in Italian Reticulitermes colonies (Isoptera: Rhinotermitidae) Insect Soc. 2013;60:203–211. doi: 10.1007/s00040-013-0284-8. DOI
Dedeine F, Dupont S, Guyot S, Matsuura K, Wang C, Habibpour B, et al. Historical biogeography of Reticulitermes termites (Isoptera: Rhinotermitidae) inferred from analyses of mitochondrial and nuclear loci. Mol Phylogenet Evol. 2016;94:778–790. doi: 10.1016/j.ympev.2015.10.020. PubMed DOI
Fougeyrollas R, Dolejšová K, Sillam-Dussès D, Roy V, Poteaux C, Hanus R, et al. Asexual queen succession in the higher termite Embiratermes neotenicus. Proc R Soc B. 2015;282:20150260. doi: 10.1098/rspb.2015.0260. PubMed DOI PMC
Fougeyrollas R, Křivánek J, Roy V, Dolejšová K, Frechault S, Roisin Y, et al. Asexual queen succession mediates an accelerated colony life cycle in the termite Silvestritermes minutus. Mol Ecol. 2017;26:3295–3308. doi: 10.1111/mec.14095. PubMed DOI
Rocha MM. Morales-Corrêa e Castro AC, Cuezzo C, Cancello EM. Phylogenetic reconstruction of Syntermitinae (Isoptera, Termitidae) based on morphological and molecular data. PLoS One. 2017;12:e0174366. doi: 10.1371/journal.pone.0174366. PubMed DOI PMC
Fournier D, Hellemans S, Hanus R, Roisin Y. Facultative asexual reproduction and genetic diversity of populations in the humivorous termite Cavitermes tuberosus. Proc R Soc B. 2016;283:20160196. doi: 10.1098/rspb.2016.0196. PubMed DOI PMC
Emerson AE. The termites of Kartabo, Bartica District, British Guiana. Zoologica. 1925;6:291–459.
Emerson AE. Conditioned behavior among termites (Isoptera) Psyche. 1933;40:125–129. doi: 10.1155/1933/72040. DOI
Holmgren N. Studien über südamerikanische Termiten. Zool Jahrb. 1906;23:521–676.
Hellemans S, Fournier D, Hanus R, Roisin Y. Secondary queens in the parthenogenetic termite Cavitermes tuberosus develop through a transitional helper stage. Evol Dev. 2017;19:253–262. doi: 10.1111/ede.12240. PubMed DOI
Hellemans S., Fournier D., Hanus R., Roisin Y. Sex ratio variations among years and breeding systems in a facultatively parthenogenetic termite. Insectes Sociaux. 2018;66(1):129–138. doi: 10.1007/s00040-018-0667-y. DOI
Inward DJG, Vogler AP, Eggleton P. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol. 2007;44:953–967. doi: 10.1016/j.ympev.2007.05.014. PubMed DOI
Kyjaková P, Roy V, Jirošová A, Krasulová J, Dolejšová K, Křivánek J, et al. Chemical systematics of Neotropical termite genera with symmetrically snapping soldiers (Termitidae: Termitinae) Zool J Linnean Soc. 2017;180:66–81.
Hellemans S, Bourguignon T, Kyjaková P, Hanus R, Roisin Y. Mitochondrial and chemical profiles reveal a new genus and species of Neotropical termite with snapping soldiers, Palmitermes impostor (Termitidae: Termitinae) Invertebr Syst. 2017;31:394–405. doi: 10.1071/IS16089. DOI
Carrijo TF, Cancello EM. Divinotermes (Isoptera, Termitidae, Termitinae), a new genus from South America. Sociobiology. 2011;58:537–556.
Krishna K, Grimaldi DA, Krishna V, Engel MS. Treatise on the Isoptera of the World. 6. Termitidae (Part Three), Incertae sedis, taxa excluded from Isoptera. Bull Am Mus Nat Hist. 2013;377:1989–2432. doi: 10.1206/377.6. DOI
de ARA, Dambros C de S, de MJW. A new termite species of the genus Dihoplotermes Araújo (Blattaria, Isoptera, Termitidae) from the Brazilian Amazonian rainforest. Acta Amaz. 2019;49:17–23. doi: 10.1590/1809-4392201800582. DOI
Myles TG. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology. 1999;33:1–91.
Noirot C. Les sexués de remplacement chez les termites supérieurs (Termitidae) Insect Soc. 1956;3:145–158. doi: 10.1007/BF02230675. DOI
Carrijo TF. Revisão taxonômica do gênero Spinitermes Wasmann, 1897 (Isoptera, Termitidae, Termitinae) Brazil: Universidade de São Paulo; 2009.
Jones DT, Eggleton P. Global biogeography of termites: a compilation of sources. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Dordrecht: Springer; 2011. pp. 477–498. PubMed
Kobayashi K, Hasegawa E, Yamamoto Y, Kawatsu K, Vargo EL, Yoshimura J, et al. Sex ratio biases in termites provide evidence for kin selection. Nat Commun. 2013;4:2048. doi: 10.1038/ncomms3048. PubMed DOI
Noirot C. The nest of termites. In: Krishna K, Weesner FM, editors. Biology of termites. New York: Academic Press; 1970. pp. 73–125.
Bourguignon T, Šobotník J, Lepoint G, Martin JM, Hardy OJ, Dejean A, et al. Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol. 2011;36:261–269. doi: 10.1111/j.1365-2311.2011.01265.x. DOI
Ferreira da Cunha H, Costa DA, do Espírito Santo Filho K, Silva LO, Brandão D. Relationship between Constrictotermes cyphergaster and inquiline termites in the Cerrado (Isoptera: Termitidae) Sociobiology. 2003;42:761–770.
Jirošová A, Sillam-Dussès D, Kyjaková P, Kalinová B, Dolejšová K, Jančařík A, et al. Smells like home: chemically mediated co-habitation of two termite species in a single nest. J Chem Ecol. 2016;42:1070–1081. doi: 10.1007/s10886-016-0756-1. PubMed DOI
Florencio DF, Marins A, Rosa CS, Cristaldo PF, Araújo APA, Silva IR, et al. Diet segregation between cohabiting builder and inquiline termite species. PLoS One. 2013;8:e66535. doi: 10.1371/journal.pone.0066535. PubMed DOI PMC
Shellman-Reeve JS. The spectrum of eusociality in termites. In: Choe JC, Crespi BJ, editors. The evolution of social behavior in insects and arachnids. Cambridge: Cambridge University Press; 1997. pp. 52–93.
Ferreira da Cunha H, Brandão D. Multiple reproductives in nests of the Neotropical termite Constrictotermes cyphergaster (Isoptera, Termitidae, Nasutitermitinae ) Rev Bras Entomol. 2002;46:21–24. doi: 10.1590/S0085-56262002000100004. DOI
Scheffrahn RH. Inquilinitermes johnchapmani, a new termite (Isoptera: Termitidae: Termitinae) from the llanos of north Central Bolivia. Sociobiology. 2014;61:95–99. doi: 10.13102/sociobiology.v61i1.95-99. DOI
Jones SC, La Fage JP, Howard RW. Isopteran sex ratios: phylogenetic trends. Sociobiology. 1988;14:89–156.
Nutting WL. Flight and colony foundation. In: Krishna K, Weesner FM, editors. Biology of Termites, Vol. 1. New-York: Academic Press; 1969. pp. 233–282.
Matsuura K, Mizumoto N, Kobayashi K, Nozaki T, Fujita T, Yashiro T, et al. A genomic imprinting model of termite caste determination: not genetic but epigenetic inheritance influences offspring caste fate. Am Nat. 2018;191:677–690. doi: 10.1086/697238. PubMed DOI
Bourguignon T, Lo N, Šobotník J, Ho SYW, Iqbal N, Coissac É, et al. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol Biol Evol. 2017;34:589–597. PubMed
Bourguignon T, Lo N, Cameron SL, Šobotník J, Hayashi Y, Shigenobu S, et al. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol Biol Evol. 2015;32:406–421. doi: 10.1093/molbev/msu308. PubMed DOI
Wu LW, Bourguignon T, Šobotník J, Wen P, Liang WR, Li HF. Phylogenetic position of the enigmatic termite family Stylotermitidae (Insecta: Blattodea) Invertebr Syst. 2018;32:1111–1117. doi: 10.1071/IS17093. DOI
Yashiro T, Lo N, Kobayashi K, Nozaki T, Fuchikawa T, Mizumoto N, et al. Loss of males from mixed-sex societies in termites. BMC Biol. 2018;16:96. doi: 10.1186/s12915-018-0563-y. PubMed DOI PMC
Suomalainen E, Saura A, Lokki J. Cytology and Evolution in Parthenogenesis. Boca Raton: CRC Press; 1987.
Ma WJ, Schwander T. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. J Evol Biol. 2017;30:868–888. doi: 10.1111/jeb.13069. PubMed DOI
Hellemans S, Kaczmarek N, Marynowska M, Calusinska M, Roisin Y, Fournier D. Bacteriome-associated Wolbachia of the parthenogenetic termite Cavitermes tuberosus. FEMS Microbiol Ecol. 2019;95:fiy235. doi: 10.1093/femsec/fiy235. PubMed DOI
van der Kooi CJ, Schwander T. Evolution of asexuality via different mechanisms in grass thrips (Thysanoptera: Aptinothrips) Evolution. 2014;68:1883–1893. doi: 10.1111/evo.12402. PubMed DOI
Feldhaar H, Gross R. Insects as hosts for mutualistic bacteria. Int J Med Microbiol. 2009;299:1–8. doi: 10.1016/j.ijmm.2008.05.010. PubMed DOI PMC
Hamilton PT, Hodson CN, Curtis CI, Perlman SJ. Genetics and genomics of an unusual selfish sex ratio distortion in an insect. Curr Biol. 2018;28:3864–3870. doi: 10.1016/j.cub.2018.10.035. PubMed DOI
Vershinina AO, Kuznetsova VG. Parthenogenesis in Hexapoda: Entognatha and non-holometabolous insects. J Zool Syst Evol Res. 2016;54:257–268. doi: 10.1111/jzs.12141. DOI
Corley LS, Blankenship JR, Moore AJ, Moore PJ. Developmental constraints on the mode of reproduction in the facultatively parthenogenetic cockroach Nauphoeta cinerea. Evol Dev. 1999;1:90–99. doi: 10.1046/j.1525-142x.1999.99001.x. PubMed DOI
Corley LS, Blankenship JR, Moore AJ. Genetic variation and asexual reproduction in the facultatively parthenogenetic cockroach Nauphoeta cinerea: implications for the evolution of sex. J Evol Biol. 2001;14:68–74. doi: 10.1046/j.1420-9101.2001.00254.x. PubMed DOI
Roth LM, Willis ER. Parthenogenesis in cockroaches. Ann Entomol Soc Am. 1956;49:195–204. doi: 10.1093/aesa/49.3.195. DOI
Katoh K, Iwasaki M, Hosono S, Yoritsune A, Ochiai M, Mizunami M, et al. Group-housed females promote production of asexual ootheca in American cockroaches. Zool Lett. 2017;3:3. doi: 10.1186/s40851-017-0063-x. PubMed DOI PMC
Parker EDJ, Selander RK, Hudson RO, Lester LJ. Genetic diversity in colonizing parthenogenetic cockroaches. Evolution. 1977;31:836–842. doi: 10.1111/j.1558-5646.1977.tb01076.x. PubMed DOI
Short JE, Edwards JP. Reproductive and developmental biology of the oriental cockroach Blatta orientalis (Dictyoptera) Med Vet Entomol. 1991;5:385–394. doi: 10.1111/j.1365-2915.1991.tb00566.x. PubMed DOI
Tanaka M, Daimon T. First molecular genetic evidence for automictic parthenogenesis in cockroaches. Insect Sci. 2019;26:649–655. doi: 10.1111/1744-7917.12572. PubMed DOI
Noirot C. Recherches sur le polymorphisme des termites supérieurs. Ann Sci Nat Zool (11ème série) 1955;27:399–595.
Gay FJ. The termitinae (Isoptera) of temperate Australia. Aust J Zool. 1971;19:1–36. doi: 10.1071/AJZS003. DOI
Miller LR. A revision of the Termes-Capritermes branch of the Termitinae in Australia (Isoptera: Termitidae) Invertebr Taxon. 1991;4:1147–1282. doi: 10.1071/IT9901147. DOI
Krishna K, Grimaldi DA, Krishna V, Engel MS. Treatise on the Isoptera of the World. 4. Termitidae (Part One) Bull Am Mus Nat Hist. 2013;377:973–1494. doi: 10.1206/377.4. DOI
Krishna K, Grimaldi DA, Krishna V, Engel MS. Treatise on the Isoptera of the World. 1. Introduction. Bull Am Mus Nat Hist. 2013;377:1–200. doi: 10.1206/377.1. DOI
Fournier D, Hanus R, Roisin Y. Development and characterization of microsatellite markers from the humivorous termite Cavitermes tuberosus (Isoptera: Termitinae) using pyrosequencing technology. Conserv Genet Resour. 2015;7:521–524. doi: 10.1007/s12686-014-0411-5. DOI
Andrews S. FastQC A quality control tool for high throughput sequence data. 2018.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics. 2012;13:31. doi: 10.1186/1471-2105-13-31. PubMed DOI PMC
Meglécz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N, et al. QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics. 2010;26:403–404. doi: 10.1093/bioinformatics/btp670. PubMed DOI
Blacket MJ, Robin C, Good RT, Lee SF, Miller AD. Universal primers for fluorescent labelling of PCR fragments-an efficient and cost-effective approach to genotyping by fluorescence. Mol Ecol Resour. 2012;12:456–463. doi: 10.1111/j.1755-0998.2011.03104.x. PubMed DOI
Holleley CE, Geerts PG. Multiplex manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques. 2009;46:511–517. doi: 10.2144/000113156. PubMed DOI
Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 1991;10:506–513. PubMed
Rousset F. GENEPOP’007: a complete re-implementation of the GENEPOP software for windows and Linux. Mol Ecol Resour. 2008;8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x. PubMed DOI
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x. DOI
Peakall R, Smouse PE. GenALEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28:2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC
Weir B, Cockerham C. Estimating F-statics for the analysis of population structure. Evolution. 1984;38:1358–1370. PubMed
Vargo EL, Husseneder C, Grace JK. Colony and population genetic structure of the Formosan subterranean termite, Coptotermes formosanus, in Japan. Mol Ecol. 2003;12:2599–2608. doi: 10.1046/j.1365-294X.2003.01938.x. PubMed DOI
R Development Core Team . R: A Language and Environment for Statistical Computing. 2015.
Identification of a queen primer pheromone in higher termites