Facultative asexual reproduction and genetic diversity of populations in the humivorous termite Cavitermes tuberosus
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
27252019
PubMed Central
PMC4920309
DOI
10.1098/rspb.2016.0196
PII: rspb.2016.0196
Knihovny.cz E-zdroje
- Klíčová slova
- Isoptera *, Termitidae *, gamete duplication *, population structure *, reproductive strategies *, thelytokous parthenogenesis *,
- MeSH
- genetická variace * MeSH
- Isoptera genetika fyziologie MeSH
- partenogeneze * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Termite colonies are typically founded by a pair of sexually reproducing dispersers, which can sometimes be replaced by some of their offspring. Some Reticulitermes and Embiratermes species routinely practice asexual queen succession (AQS): the queen is replaced by neotenic daughters produced by parthenogenesis, which mate with the primary king. Here, to cast light on the evolution of AQS, we investigated another candidate species, Cavitermes tuberosus (Termitinae). Of 95 nests, 39 contained a primary queen and 28 contained neotenic females (2-667 individuals), usually with the primary king. Microsatellite analyses confirmed that colonies were initiated by single pairs after large dispersal flights. More than 80% of the neotenic females were of exclusively maternal origin and completely homozygous, suggesting automictic parthenogenesis with gamete duplication. Conversely, workers, soldiers, and most alates and primary reproductives were produced sexually. AQS often occurs late, after colonies have reached maturity, whereas early AQS in other species may boost the young colony's growth rate. We suggest additional benefits of AQS in C. tuberosus, related with a smaller size, lesser stability and higher mobility of colonies. Our data add to the phylogenetical dispersion and diversity of modalities of AQS in termites, supporting a multiple evolutionary origin of this process.
Zobrazit více v PubMed
Bengtsson BO. 2009. Asex and evolution: a very large-scale overview. In Lost sex—the evolutionary biology of parthenogenesis (eds Schön I, Martens K, van Dijk P), pp. 1–19. Berlin, Germany: Springer.
Simon J-C, Rispe C, Sunnucks P. 2002. Ecology and evolution of sex in aphids. Trends Ecol. Evol. 17, 34–39. (10.1016/S0169-5347(01)02331-X) DOI
Decaestecker E, De Meester L, Mergeay J. 2009. Cyclical parthenogenesis in Daphnia: sexual versus asexual reproduction. In Lost sex—the evolutionary biology of parthenogenesis (eds Schön I, Martens K, van Dijk P), pp. 295–316. Berlin, Germany: Springer.
Fournier D, Aron S. 2009. No-male's land for an Amazonian ant. Curr. Biol. 19, R738–R740. (10.1016/j.cub.2009.07.021) PubMed DOI
Wenseleers T, Van Oystaeyen A. 2011. Unusual modes of reproduction in social insects: shedding light on the evolutionary paradox of sex. BioEssays 33, 927–937. (10.1002/bies.201100096) PubMed DOI
Rabeling C, Kronauer DJC. 2013. Thelytokous parthenogenesis in eusocial Hymenoptera. Annu. Rev. Entomol. 58, 273–292. (10.1146/annurev-ento-120811-153710) PubMed DOI
Myles TG. 1999. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33, 1–94.
Roonwal ML. 1975. Sex ratio and sexual dimorphism in termites. J. Sci. Ind. Res. 34, 402–415.
Matsuura K. 2011. Sexual and asexual reproduction in termites. In Biology of termites: a modern synthesis (eds Bignell DE, Roisin Y, Lo N), pp. 255–277. Dordrecht, The Netherlands: Springer.
Matsuura K, Vargo EL, Kawatsu K, Labadie PE, Nakano H, Yashiro T, Tsuji K. 2009. Queen succession through asexual reproduction in termites. Science 323, 1687 (10.1126/science.1169702) PubMed DOI
Vargo EL, Labadie PE, Matsuura K. 2012. Asexual queen succession in the subterranean termite Reticulitermes virginicus. Proc. R. Soc. B 279, 813–819. (10.1098/rspb.2011.1030) PubMed DOI PMC
Luchetti A, Velonà A, Mueller M, Mantovani B. 2013. Breeding systems and reproductive strategies in Italian Reticulitermes colonies (Isoptera: Rhinotermitidae). Insect. Soc. 60, 203–211. (10.1007/s00040-013-0284-8) DOI
Thorne BL, Traniello JFA, Adams ES, Bulmer M. 1999. Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol. Ecol. Evol. 11, 149–169. (10.1080/08927014.1999.9522833) DOI
Grube S, Forschler BT. 2004. Census of monogyne and polygyne laboratory colonies illuminates dynamics of population growth in Reticulitermes flavipes (Isoptera: Rhinotermitidae). Annu. Entomol. Soc. Am. 97, 466–475. (10.1603/0013-8746(2004)097%5B0466:comapl%5D2.0.co;2) DOI
Fougeyrollas R, Dolejšová K, Sillam-Dussès D, Roy V, Poteaux C, Hanus R, Roisin Y. 2015. Asexual queen succession in the higher termite Embiratermes neotenicus. Proc. R. Soc. B 282, 20150260 (10.1098/rspb.2015.0260) PubMed DOI PMC
Holmgren N. 1906. Studien über südamerikanische Termiten. Zool. Jahrb. Abt. Syst. Geogr. Biol. Tiere 23, 521–676.
Bourguignon T, et al. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32, 406–421. (10.1093/molbev/msu308) PubMed DOI
Zimet M, Stuart AM. 1982. Sexual dimorphism in the immature stages of the termite Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 7, 1–7.
Walsh PS, Metzger DA, Higuchi R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10, 506–513. PubMed
Fournier D, Hanus R, Roisin Y. 2015. Development and characterization of microsatellite markers from the humivorous termite Cavitermes tuberosus (Isoptera: Termitinae) using pyrosequencing technology. Conserv. Genet. Resour. 7, 521–524. (10.1007/s12686-014-0411-5) DOI
Cournault L, Aron S. 2008. Rapid determination of sperm number in ant queens by flow cytometry. Insect. Soc. 55, 283–287. (10.1007/s00040-008-1003-8) DOI
Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539. (10.1093/bioinformatics/bts460) PubMed DOI PMC
Goudet J. 1995. FSTAT (Version 1.2): a computer program to calculate F-statistics. J. Hered. 86, 485–486.
Wang J. 2004. Sibship reconstruction from genetic data with typing errors. Genetics 166, 1963–1979. (10.1534/genetics.166.4.1963) PubMed DOI PMC
Jones OR, Wang J. 2010. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555. (10.1111/j.1755-0998.2009.02787.x) PubMed DOI
Goodnight KF, Queller DC. 2000. Relatedness 5.0.8. (5.0.8 ed). Houston, TX: Goodnight Software.
Queller DC, Goodnight KF. 1989. Estimating relatedness using genetic markers. Evolution 43, 258–275. (10.2307/2409206) PubMed DOI
R Development Core Team. 2013. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Goudet J. 2005. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186. (10.1111/j.1471-8286.2004.00828.x) DOI
Gao H, Williamson S, Bustamante CD. 2007. A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176, 1635–1651. (10.1534/genetics.107.072371) PubMed DOI PMC
Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806. (10.1093/bioinformatics/btm233) PubMed DOI
Rosenberg NA. 2004. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138. (10.1046/j.1471-8286.2003.00566.x) DOI
Smouse PE, Long JC, Sokal RR. 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondance. Syst. Zool. 35, 627–632. (10.2307/2413122) DOI
Pearcy M, Hardy O, Aron S. 2006. Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity 96, 377–382. (10.1038/sj.hdy.6800813) PubMed DOI
Lamb RY, Willey RB. 1987. Cytological mechanisms of thelytokous parthenogenesis in insects. Génome 29, 367–369. (10.1139/g87-062) DOI
Stenberg P, Saura A. 2010. Cytology of asexual animals. In Lost sex—the evolutionary biology of parthenogenesis (eds Schön I, Martens K, van Dijk P), pp. 63–74. Berlin, Germany: Springer.
Brandl R, Hacker M, Epplen JT, Kaib M. 2005. High gene flow between populations of Macrotermes michaelseni (Isoptera, Termitidae). Insect. Soc. 52, 344–349. (10.1007/s00040-005-0820-2) DOI
Davies RG. 2002. Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation. Oecologia 133, 233–242. (10.1007/s00442-002-1011-8) PubMed DOI
Bourguignon T, Šobotník J, Lepoint G, Martin J-M, Hardy OJ, Dejean A, Roisin Y. 2011. Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol. Entomol. 36, 261–269. (10.1111/j.1365-2311.2011.01265.x) DOI
Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK. 2015. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56. (10.1016/j.tree.2011.08.009) PubMed DOI
Lehtonen J, Jennions MD, Kokko H. 2012. The many costs of sex. Trends Ecol. Evol. 27, 172–178. (10.1016/j.tree.2011.09.016) PubMed DOI
Foucaud J, Jourdan H, Le Breton J, Loiseau A, Konghouleux D, Estoup A. 2006. Rare sexual reproduction events in the clonal reproduction system of introduced populations of the little fire ant. Evolution 60, 1646–1657. (10.1554/06-099.1) PubMed DOI
Foucaud J, Orivel J, Fournier D, Delabie JHC, Loiseau A, Le Breton J, Cerdan P, Estoup A. 2009. Reproductive system, social organization, human disturbance and ecological dominance in native populations of the little fire ant, Wasmannia auropunctata. Mol. Ecol. 18, 5059–5073. (10.1111/j.1365-294X.2009.04440.x) PubMed DOI
Suomalainen E, Saura A, Lokki J. 1987. Cytology and evolution in parthenogenesis. Boca Raton, FL: CRC Press.
Crow JF. 1970. Genetic loads and the cost of natural selection. In Mathematical topics in population genetics (ed. Kojima K-i.), pp. 128–177. Berlin, Germany: Springer.
Dedeine F, Dupont S, Guyot S, Matsuura K, Wang C, Habibpour B, Bagnères A-G, Mantovani B, Luchetti A. 2016. Historical biogeography of Reticulitermes termites (Isoptera: Rhinotermitidae) inferred from analyses of mitochondrial and nuclear loci. Mol. Phylogenet. Evol. 94, 778–790. (10.1016/j.ympev.2015.10.020) PubMed DOI
Emerson AE. 1933. Conditioned behavior among termites (Isoptera). Psyche 40, 125–129. (10.1155/1933/72040) DOI
Miller LR. 1991. A revision of the Termes-Capritermes branch of the Termitinae in Australia (Isoptera: Rhinotermitidae). Invertebr. Taxon. 4, 1147–1282. (10.1071/IT9901147) DOI
Noirot C. 1985. Differentiation of reproductives in higher termites. In Caste differentiation in social insects (eds Watson AL, Okot-Kotber BM, Noirot C), pp. 177–186. Oxford, UK: Pergamon Press.
Identification of a queen primer pheromone in higher termites
Dryad
10.5061/dryad.v26gh