Asexual queen succession in the higher termite Embiratermes neotenicus

. 2015 Jun 22 ; 282 (1809) : 20150260.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26019158

Asexual queen succession (AQS), in which workers, soldiers and dispersing reproductives are produced sexually while numerous non-dispersing queens arise through thelytokous parthenogenesis, has recently been described in three species of lower termites of the genus Reticulitermes. Here, we show that AQS is not an oddity restricted to a single genus of lower termites, but a more widespread strategy occurring also in the most advanced termite group, the higher termites (Termitidae). We analysed the genetic structure in 10 colonies of the Neotropical higher termite Embiratermes neotenicus (Syntermitinae) using five newly developed polymorphic microsatellite loci. The colonies contained one primary king accompanied either by a single primary queen or by up to almost 200 neotenic queens. While the workers, the soldiers and most future dispersing reproductives were produced sexually, the non-dispersing neotenic queens originated through thelytokous parthenogenesis of the founding primary queen. Surprisingly, the mode of thelytoky observed in E. neotenicus is most probably automixis with central fusion, contrasting with the automixis with terminal fusion documented in Reticulitermes. The occurrence of AQS based on different mechanisms of ploidy restoration raises the hypothesis of an independent evolutionary origin of this unique reproductive strategy in individual lineages of lower and higher termites.

Zobrazit více v PubMed

Bell G. 1982. The masterpiece of nature: the evolution and genetics of sexuality. Berkeley, CA: University of California Press.

Schön I, Martens K, van Dijk P. 2009. Lost sex: the evolutionary biology of parthenogenesis. Dordrecht, The Netherlands: Springer.

Wenseleers T, Van Oystaeyen A. 2011. Unusual modes of reproduction in social insects: shedding light on the evolutionary paradox of sex. BioEssays 33, 927–937. (doi:10.1002/bies.201100096) PubMed DOI

Rabeling C, Kronauer DJ. 2013. Thelytokous parthenogenesis in eusocial Hymenoptera. Annu. Rev. Entomol. 58, 273–292. (doi:10.1146/annurev-ento-120811-153710) PubMed DOI

Pearcy M, Aron S, Doums C, Keller L. 2004. Conditional use of sex and parthenogenesis for worker and queen production in ants. Science 306, 1780–1783. (doi:10.1126/science.1105453) PubMed DOI

Matsuura K, Vargo EL, Kawatsu K, Labadie PE, Nakano H, Yashiro T, Tsuji K. 2009. Queen succession through asexual reproduction in termites. Science 323, 1687 (doi:10.1126/science.1169702) PubMed DOI

Vargo EL, Labadie PE, Matsuura K. 2012. Asexual queen succession in the subterranean termite Reticulitermes virginicus. Proc. R. Soc. B 279, 813–819. (doi:10.1098/rspb.2011.1030) PubMed DOI PMC

Luchetti A, Velonà A, Mueller M, Mantovani B. 2013. Breeding systems and reproductive strategies in Italian Reticulitermes colonies (Isoptera: Rhinotermitidae). Insectes Soc. 60, 203–211. (doi:10.1007/s00040-013-0284-8) DOI

Matsuura K. 2011. Sexual and asexual reproduction in termites. In Biology of termites: a modern synthesis (eds Bignell DE, Roisin Y, Lo N.), pp. 255–277. Dordrecht, The Netherlands: Springer. PubMed PMC

Myles TG. 1999. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33, 1–91.

Holmgren N. 1906. Studien über südamerikanische Termiten. Zool. Jahrb. 23, 521–676.

Malausa T, et al. 2011. High-throughput microsatellite isolation through 454 GS-FLX titanium pyrosequencing of enriched DNA libraries. Mol. Ecol. Resour. 11, 638–644. (doi:10.1111/j.1755-0998.2011.02992.x) PubMed DOI

Raymond M, Rousset F. 1995. GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249.

Rousset F. 2008. GENEPOP'007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. (doi10.1111/j.1471-8286.2007.01931.x) PubMed

Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370. (doi:10.2307/2408641) PubMed DOI

Goudet J. 2001. FSTAT, version 2.9.3, a program to estimate and test gene diversities and fixation indices. Lausanne, Switzerland: Lausanne University.

Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. (doi:10.1111/j.1471-8286.2004.00684.x) DOI

Jones AG. 2005. GERUD 2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Mol. Ecol. Notes 5, 708–711. (doi:10.1111/j.1471-8286.2005.01029.x) DOI

Jones OR, Wang J. 2010. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555. (doi:10.1111/j.1755-0998.2009.02787.x) PubMed DOI

Queller DC, Goodnight KF. 1989. Estimating relatedness using genetic markers. Evolution 43, 258–275. (doi:10.2307/2409206) PubMed DOI

Thorne BL, Traniello JFA, Adams ES, Bulmer M. 1999. Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol. Ecol. Evol. 11, 149–169. (doi:10.1080/08927014.1999.9522833) DOI

Konovalov DA, Manning C, Henshaw MT. 2004. KINGROUP: a program for pedigree relationship reconstruction and kin group assignments using genetic markers. Mol. Ecol. Notes 4, 779–782. (doi:10.1111/j.1471-8286.2004.00796.x) DOI

Bulmer MS, Adams ES, Traniello JFA. 2001. Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behav. Ecol. Sociobiol. 49, 236–243. (doi:10.1007/s002650000304) DOI

Pearcy M, Hardy O, Aron S. 2006. Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity 96, 377–382. (doi:10.1038/sj.hdy.6800813) PubMed DOI

Roisin Y, Hanus R, Fournier D. 2014. Asexual queen succession in soil-feeding termites (Cavitermes tuberosus). In 17th Congress of IUSSI, 13–18 July 2014, Cairns, Queensland, Australia. See http://hdl.handle.net/2123/11069.

Vasconcellos A. 2010. Biomass and abundance of termites in three remnant areas of Atlantic Forest in northeastern Brazil. Rev. Bras. Entomol. 54, 455–461. (doi:10.1590/S0085-56262010000300017) DOI

Constantino R. 1992. Abundance and diversity of termites (Insecta: Isoptera) in two sites of primary rain-forest in Brazilian Amazonia. Biotropica 24, 420–430. (doi:10.2307/2388613) DOI

Constantino R. 1998. Catalog of the living termites of the New World. Arq. Zool. S. Paulo 35, 135–231. (doi:10.11606/issn.2176-7793.v35i2p135-230) DOI

Charlesworth D, Willis JH. 2009. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796. (doi:10.1038/nrg2664) PubMed DOI

Thorne BL, Breisch NL, Haverty MI. 2002. Longevity of kings and queens and first time of production of fertile progeny in dampwood termite (Isoptera; Termopsidae; Zootermopsis) colonies with different reproductive structures. J. Anim. Ecol. 71, 1030–1041. (doi:10.1046/j.1365-2656.2002.00666.x) DOI

Vargo EL, Husseneder C. 2011. Genetic structure of termite colonies and populations. In Biology of termites: a modern synthesis (eds Bignell DE, Roisin Y, Lo N.), pp. 321–347. Dordrecht, The Netherlands: Springer.

Dupont L, Roy V, Bakkali A, Harry M. 2009. Genetic variability of the soil-feeding termite Labiotermes labralis (Termitidae, Nasutitermitinae) in the Amazonian primary forest and remnant patches. Insect Conserv. Divers. 2, 53–61. (doi:10.1111/j.1752-4598.2008.00040.x) DOI

Zobrazit více v PubMed

Dryad
10.5061/dryad.2T99D

GENBANK
KP769532, KP769533, KP769534, KP769535

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...