Nkrp1 family, from lectins to protein interacting molecules
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25690298
PubMed Central
PMC6272133
DOI
10.3390/molecules20023463
PII: molecules20023463
Knihovny.cz E-zdroje
- MeSH
- buňky NK * chemie imunologie metabolismus MeSH
- CD antigeny * chemie imunologie metabolismus MeSH
- diferenciační antigeny T-lymfocytů * chemie imunologie metabolismus MeSH
- krysa rodu Rattus MeSH
- lektinové receptory NK-buněk - podrodina B * chemie imunologie metabolismus MeSH
- lektiny typu C * chemie imunologie metabolismus MeSH
- lidé MeSH
- oligosacharidy * chemie imunologie metabolismus MeSH
- terciární struktura proteinů MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CD antigeny * MeSH
- CD69 antigen MeSH Prohlížeč
- diferenciační antigeny T-lymfocytů * MeSH
- KLRB1 protein, human MeSH Prohlížeč
- lektinové receptory NK-buněk - podrodina B * MeSH
- lektiny typu C * MeSH
- oligosacharidy * MeSH
The C-type lectin-like receptors include the Nkrp1 protein family that regulates the activity of natural killer (NK) cells. Rat Nkrp1a was reported to bind monosaccharide moieties in a Ca2+-dependent manner in preference order of GalNac > GlcNAc >> Fuc >> Gal > Man. These findings established for rat Nkrp1a have been extrapolated to all additional Nkrp1 receptors and have been supported by numerous studies over the past two decades. However, since 1996 there has been controversy and another article showed lack of interactions with saccharides in 1999. Nevertheless, several high affinity saccharide ligands were synthesized in order to utilize their potential in antitumor therapy. Subsequently, protein ligands were introduced as specific binders for Nkrp1 proteins and three dimensional models of receptor/protein ligand interaction were derived from crystallographic data. Finally, for at least some members of the NK cell C-type lectin-like proteins, the "sweet story" was impaired by two reports in recent years. It has been shown that the rat Nkrp1a and CD69 do not bind saccharide ligands such as GlcNAc, GalNAc, chitotetraose and saccharide derivatives (GlcNAc-PAMAM) do not directly and specifically influence cytotoxic activity of NK cells as it was previously described.
Zobrazit více v PubMed
Vivier E., Tomasello E., Baratin M., Walzer T., Ugolini S. Functions of natural killer cells. Nat. Immunol. 2008;9:503–510. doi: 10.1038/ni1582. PubMed DOI
Strowig T., Brilot F., Münz C. Noncytotoxic functions of NK cells: Direct pathogen restriction and assistance to adaptive immunity. J. Immunol. 2008;180:7785–7791. doi: 10.4049/jimmunol.180.12.7785. PubMed DOI PMC
Villard J. The role of natural killer cells in human solid organ and tissue transplantation. J. Innate Immun. 2011;3:395–402. doi: 10.1159/000324400. PubMed DOI
Tian Z., Gershwin M.E., Zhang C. Regulatory NK cells in autoimmune disease. J. Autoimmun. 2012;39:206–215. doi: 10.1016/j.jaut.2012.05.006. PubMed DOI
Mathias C.B., Guernsey L.A., Zammit D., Brammer C., Wu C.A., Thrall R.S., Aguila H.L. Pro-inflammatory role of natural killer cells in the development of allergic airway disease. Clin. Exp. Allergy. 2014;44:589–601. doi: 10.1111/cea.12271. PubMed DOI PMC
Winger E.E., Reed J.L. The multiple faces of the decidual natural killer cell. Am. J. Reprod. Immunol. 2013;70:1–9. doi: 10.1111/aji.12103. PubMed DOI
Lanier L.L. NK cell recognition. Annu. Rev. Immunol. 2005;23:225–274. doi: 10.1146/annurev.immunol.23.021704.115526. PubMed DOI
Kärre K., Ljunggren H.G., Piontek G., Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319:675–678. doi: 10.1038/319675a0. PubMed DOI
Raulet D.H., Vance R.E. Self-tolerance of natural killer cells. Nat. Rev. Immunol. 2006;6:520–531. doi: 10.1038/nri1863. PubMed DOI
Bauer S., Groh V., Wu J., Steinle A., Phillips J.H., Lanier L.L., Spies T. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 1999;285:727–729. doi: 10.1126/science.285.5428.727. PubMed DOI
Giorda R., Rudert W., Vavassori C., Chambers W.H., Hiserodt J.C., Trucco M. NKR-P1, a signal transduction molecule on natural killer cells. Science. 1990;249:1298–300. doi: 10.1126/science.2399464. PubMed DOI
Giorda R., Trucco M. Mouse NKR-P1. A family of genes selectively coexpressed in adherent lymphokine-activated killer cells. J. Immunol. 1991;147:1701–1708. PubMed
Glimcher L., Shen F.W., Cantors H. Identification of a cell-surface expressed antigen selectively on the natural killer cell. J. Exp. Med. 1977;145:1–9. doi: 10.1084/jem.145.1.1. PubMed DOI PMC
Ryan J.C., Turck J., Niemi E.C., Yokoyama W.M., Seaman W.E. Molecular cloning of the NK1.1 antigen, a member of the NKR-P1 family of natural killer cell activation molecules. J. Immunol. 1992;149:1631–1635. PubMed
Lanier L.L., Chang C., Phillips J.H. Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J. Immunol. 1994;153:2417–2428. PubMed
Plougastel B., Matsumoto K., Dubbelde C., Yokoyama W.M. Analysis of a 1-Mb BAC contig overlapping the mouse Nkrp1 cluster of genes: Cloning of three new Nkrp1 members, Nkrp1d, Nkrp1e, and Nkrp1f. Immunogenetics. 2001;53:592–598. doi: 10.1007/s002510100367. PubMed DOI
Kveberg L., Dai K.-Z., Westgaard I.H., Daws M.R., Fossum S., Naper C., Vaage J.T. Two major groups of rat NKR-P1 receptors can be distinguished based on chromosomal localization, phylogenetic analysis and Clr ligand binding. Eur. J. Immunol. 2009;39:541–551. doi: 10.1002/eji.200838891. PubMed DOI
Kveberg L., Dai K.-Z., Inngjerdingen M., Brooks C.G., Fossum S., Vaage J.T. Phylogenetic and functional conservation of the NKR-P1F and NKR-P1G receptors in rat and mouse. Immunogenetics. 2011;63:429–436. doi: 10.1007/s00251-011-0520-1. PubMed DOI PMC
Yokoyama W.M., Ryan J.C., Hunter J.J., Smith H.R.C., Stark M., Seamant W.E. cDNA cloning of mouse NKR-P1 and genetic linkage with LY-49. Identification of a natural killer cell gene complex on chromosome 6. J. Immunol. 1991;147:3229–3236. PubMed
Dissen E., Ryan J.C., Seaman W.E., Fossum S. An Autosomal Dominant Locus, Nka, Mapping to the Ly-49 Region of a Rat Natural Killer (NK) Gene Complex, Controls NK Cell Lysis of Allogeneic Lymphocytes. J. Exp. Med. 1996;183:2197–2207. doi: 10.1084/jem.183.5.2197. PubMed DOI PMC
Chambers W.H., Vujanovic N.L., DeLeo A.B., Olszowy M.W., Herberman R.B., Hiserodt J.C. Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells. J. Exp. Med. 1989;169:1373–1389. doi: 10.1084/jem.169.4.1373. PubMed DOI PMC
Ryan J.C., Niemi E.C., Goldfien R.D., Hiserodt J.C., Seaman W.E. NKR-P1, an activating molecule on rat natural killer cells, stimulates phosphoinositide turnover and a rise in intracellular calcium. J. Immunol. 1991:3244–3250. PubMed
Kveberg L., Bäck C.J., Dai K.-Z., Inngjerdingen M., Rolstad B., Ryan J.C., Vaage J.T., Naper C. The novel inhibitory NKR-P1C receptor and Ly49s3 identify two complementary, functionally distinct NK cell subsets in rats. J. Immunol. 2006;176:4133–4140. doi: 10.4049/jimmunol.176.7.4133. PubMed DOI
Appasamy P.M., Kenniston T.W., Brissette-Storkus C.S., Chambers W.H. NKR-P1dim/TCR alpha beta + T cells and natural killer cells share expression of NKR-P1A and NKR-P1D. Nat. Immun. 1996;15:259–268. PubMed
Aust J.G., Gays F., Mickiewicz K.M., Buchanan E., Brooks C.G. The expression and function of the NKRP1 receptor family in C57BL/6 mice. J. Immunol. 2009;183:106–116. doi: 10.4049/jimmunol.0804281. PubMed DOI
Iizuka K., Naidenko O.V., Plougastel B.F.M., Fremont D.H., Yokoyama W.M. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat. Immunol. 2003;4:801–807. doi: 10.1038/ni954. PubMed DOI
Rozbeský D., Kavan D., Chmelík J., Novák P., Vaněk O., Bezouška K. High-level expression of soluble form of mouse natural killer cell receptor NKR-P1C(B6) in Escherichia coli. Protein Expr. Purif. 2011;77:178–184. doi: 10.1016/j.pep.2011.01.013. PubMed DOI
Weis W.I., Kahn R., Fourme R., Drickamer K., Hendrickson W.A. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science. 1991;254:1608–1615. doi: 10.1126/science.1721241. PubMed DOI
Zelensky A.N., Gready J.E. The C-type lectin-like domain superfamily. FEBS J. 2005;272:6179–6217. doi: 10.1111/j.1742-4658.2005.05031.x. PubMed DOI
Sovová Z., Kopecký V., Pazderka T., Hofbauerová K., Rozbeský D., Vaněk O., Bezouška K., Ettrich R. Structural analysis of natural killer cell receptor protein 1 (NKR-P1) extracellular domains suggests a conserved long loop region involved in ligand specificity. J. Mol. Model. 2011;17:1353–1370. doi: 10.1007/s00894-010-0837-y. PubMed DOI
Kolenko P., Rozbeský D., Vaněk O., Kopecký V., Hofbauerová K., Novák P., Pompach P., Hašek J., Skálová T., Bezouška K., et al. Molecular architecture of mouse activating NKR-P1 receptors. J. Struct. Biol. 2011;175:434–441. doi: 10.1016/j.jsb.2011.05.001. PubMed DOI
Feinberg H., Park-Snyder S., Kolatkar R., Heise C.T., Taylor M.E., Weis W.I. Structure of a C-type carbohydrate recognition domain from the macrophage mannose receptor. J. Biol. Chem. 2000;275:21539–21548. doi: 10.1074/jbc.M002366200. PubMed DOI
Maita N., Nishio K., Nishimoto E., Matsui T., Shikamoto Y., Morita T., Sadler J.E., Mizuno H. Crystal structure of von Willebrand factor A1 domain complexed with snake venom, bitiscetin: Insight into glycoprotein Ib alpha binding mechanism induced by snake venom proteins. J. Biol. Chem. 2003;278:37777–37781. doi: 10.1074/jbc.M305566200. PubMed DOI
Rozbesky D., Man P., Kavan D., Chmelik J., Cerny J., Bezouska K., Novak P. Chemical cross-linking and H/D exchange for fast refinement of protein crystal structure. Anal. Chem. 2012;84:867–870. doi: 10.1021/ac202818m. PubMed DOI
Rozbesky D., Sovova Z., Marcoux J., Man P., Ettrich R., Robinson C.V., Novak P. Structural model of lymphocyte receptor NKR-P1C revealed by mass spectrometry and molecular modeling. Anal. Chem. 2013;85:1597–1604. doi: 10.1021/ac302860m. PubMed DOI
Li Y., Wang Q., Chen S., Brown P.H., Mariuzza R.A. Structure of NKp65 bound to its keratinocyte ligand reveals basis for genetically linked recognition in natural killer gene complex. Proc. Natl. Acad. Sci. USA. 2013;110:11505–11510. doi: 10.1073/pnas.1303300110. PubMed DOI PMC
Carlyle J.R., Martin A., Mehra A., Attisano L., Tsui F.W., Zúñiga-Pflücker J.C. Mouse NKR-P1B, a novel NK1.1 antigen with inhibitory function. J. Immunol. 1999;162:5917–5923. PubMed
Li J., Rabinovich B.A., Hurren R., Shannon J., Miller R.G. Expression cloning and function of the rat NK activating and inhibitory receptors NKR-P1A and -P1B. Int. Immunol. 2003;15:411–416. doi: 10.1093/intimm/dxg046. PubMed DOI
Lanier L.L. Up on the tightrope: Natural killer cell activation and inhibition. Nat. Immunol. 2008;9:495–502. doi: 10.1038/ni1581. PubMed DOI PMC
Ljutic B., Carlyle J.R., Filipp D., Nakagawa R., Julius M., Zúñiga-Pflücker J.C. Functional requirements for signaling through the stimulatory and inhibitory mouse NKR-P1 (CD161) NK cell receptors. J. Immunol. 2005;174:4789–4796. doi: 10.4049/jimmunol.174.8.4789. PubMed DOI
Chen P., Bélanger S., Aguilar O., Zhang Q., St-Laurent A., Rahim M.M.A., Makrigiannis A.P., Carlyle J.R. Analysis of the mouse 129-strain Nkrp1-Clr gene cluster reveals conservation of genomic organization and functional receptor-ligand interactions despite significant allelic polymorphism. Immunogenetics. 2011;63:627–640. doi: 10.1007/s00251-011-0542-8. PubMed DOI
Vivier E., Nunès J., Vély F. Natural killer cell signaling pathways. Science. 2004;306:1517–1519. doi: 10.1126/science.1103478. PubMed DOI
Burshtyn D.N., Yang W., Yi T., Long E.O. A novel phosphotyrosine motif with a critical amino acid at position -2 for the SH2 domain-mediated activation of the tyrosine phosphatase SHP-1. J. Biol. Chem. 1997;272:13066–13072. doi: 10.1074/jbc.272.20.13066. PubMed DOI
Tamir I., dal Porto J.M., Cambier J.C. Cytoplasmic protein tyrosine phosphatases SHP-1 and SHP-2: Regulators of B cell signal transduction. Curr. Opin. Immunol. 2000;12:307–315. doi: 10.1016/S0952-7915(00)00092-3. PubMed DOI
Ravetch J.V., Lanier L.L. Immune Inhibitory Receptors. Science. 2000;290:84–89. doi: 10.1126/science.290.5489.84. PubMed DOI
Pozo D., Valés-Gómez M., Mavaddat N., Williamson S.C., Chisholm S.E., Reyburn H. CD161 (human NKR-P1A) signaling in NK cells involves the activation of acid sphingomyelinase. J. Immunol. 2006;176:2397–2406. doi: 10.4049/jimmunol.176.4.2397. PubMed DOI
Bezouska K., Vlahas G., Horváth O., Jinochová G., Fiserová A., Giorda R., Chambers W.H., Feizi T., Pospísil M. Rat natural killer cell antigen, NKR-P1, related to C-type animal lectins is a carbohydrate-binding protein. J. Biol. Chem. 1994;269:16945–16952. PubMed
Bezouska K., Yuen C.T., O’Brien J., Childs R.A., Chai W., Lawson A.M., Drbal K., Fiserová A., Pospísil M., Feizi T. Oligosaccharide ligands for NKR-P1 protein activate NK cells and cytotoxicity. Nature. 1994;372:150–157. doi: 10.1038/372150a0. PubMed DOI
Bezouska K., Yuen C.T., O’Brien J., Childs R.A., Chai W., Lawson A.M., Drbal K., Fiserová A., Pospisil M., Feizi T. Correspondence: Oligosaccharide ligands for NKR-P1 protein activate NK cells and cytotoxicity. Nature. 1996;380:559–559. PubMed
Kogelberg H., Montero E., Bay S., Lawson A.M., Feizi T. Re-evaluation of monosaccharide binding property of recombinant soluble carbohydrate recognition domain of the natural killer cell receptor NKR-P1A. J. Biol. Chem. 1999;274:30335–30336. PubMed
Bezouska K., Sklenar J., Dvorakova J., Havlicek V., Pospisil M., Thiem J., Kren V. NKR-P1A protein, an activating receptor of rat natural killer cells, binds to the chitobiose core ofuncompletely glycosylated N-linked glycans, and to linear chitooligomers. Biochem. Biophys. Res. Commun. 1997;238:149–153. doi: 10.1006/bbrc.1997.7260. PubMed DOI
Krist P., Herkommerová-Rajnochová E., Rauvolfová J., Semenuk T., Vavrusková P., Pavlícek J., Bezouska K., Petrus L., Kren V. Toward an optimal oligosaccharide ligand for rat natural killer cell activation receptor NKR-P1. Biochem. Biophys. Res. Commun. 2001;287:11–20. doi: 10.1006/bbrc.2001.5537. PubMed DOI
Sedmera P., Přikrylová V., Bezouška K., Rajnochová E., Thiem J., Křen V. Preparation of mannac containing chitooligomers by isomerisation and their binding to Nkr-P1 Protein. J. Carbohydr. Chem. 1998;17:1351–1357. doi: 10.1080/07328309808002358. DOI
Kren V., Dvoráková J., Gambert U., Sedmera P., Havlícek V., Thiem J., Bezouska K. beta-Glucosylation of chitooligomers by galactosyltransferase. Carbohydr. Res. 1997;305:517–523. doi: 10.1016/S0008-6215(97)00248-6. PubMed DOI
Semenuk T., Krist P., Pavlícek J., Bezouska K., Kuzma M., Novák P., Kren V. Synthesis of chitooligomer-based glycoconjugates and their binding to the rat natural killer cell activation receptor NKR-P1. Glycoconj. J. 2001;18:817–826. doi: 10.1023/A:1021111703443. PubMed DOI
Bezouska K., Kren V., Kieburg C., Lindhorst T.K. GlcNAc-terminated glycodendrimers form defined precipitates with the soluble dimeric receptor of rat natural killer cells, sNKR-P1A. FEBS Lett. 1998;426:243–247. doi: 10.1016/S0014-5793(98)00340-8. PubMed DOI
Pospisil M., Vannucci L., Fiserova A., Krausova K., Horvath O., Kren V., Mosca F., Lindhorst T.K., Sadalapure K., Bezouska K. Glycodendrimeric ligands of c-type lectin receptors as therapeutic agents in experimental cancer. Adv. Exp. Med. Biol. 2001;495:343–347. PubMed
Krist P., Vannucci L., Kuzma M., Man P., Sadalapure K., Patel A., Bezouska K., Pospísil M., Petrus L., Lindhorst T.K., Kren V. Fluorescent labelled thiourea-bridged glycodendrons. Chembiochem. 2004;5:445–452. doi: 10.1002/cbic.200300669. PubMed DOI
Vannucci L., Fiserová A., Sadalapure K., Lindhorst T.K., Kuldová M., Rossmann P., Horváth O., Kren V., Krist P., Bezouska K., et al. Effects of N-acetyl-glucosamine-coated glycodendrimers as biological modulators in the B16F10 melanoma model in vivo. Int. J. Oncol. 2003;23:285–296. PubMed
Attolino E., Bonaccorsi F., Catelani G., D’Andrea F., Křenek K., Bezouška K., Křen V. Improved preparation of β-d-ManNAc-(1→4)-D-Glc and β-d-TalNAc-(1→4)-d-Glc disaccharides and evaluation of their activating properties on the Natural Killer cells NKR-P1 and CD69 Receptors. J. Carbohydr. Chem. 2008;27:156–171. doi: 10.1080/07328300802030845. DOI
Bojarová P., Krenek K., Wetjen K., Adamiak K., Pelantová H., Bezouska K., Elling L., Kren V. Synthesis of LacdiNAc-terminated glycoconjugates by mutant galactosyltransferase-a way to new glycodrugs and materials. Glycobiology. 2009;19:509–517. doi: 10.1093/glycob/cwp010. PubMed DOI
Drozdová A., Bojarová P., Křenek K., Weignerová L., Henssen B., Elling L., Christensen H., Jensen H.H., Pelantová H., Kuzma M., et al. Enzymatic synthesis of dimeric glycomimetic ligands of NK cell activation receptors. Carbohydr. Res. 2011;346:1599–1609. doi: 10.1016/j.carres.2011.04.043. PubMed DOI
Bojarová P., Křenek K., Kuzma M., Petrásková L., Bezouška K., Namdjou D.-J., Elling L., Křen V. N-Acetylhexosamine triad in one molecule: Chemoenzymatic introduction of 2-acetamido-2-deoxy-β-d-galactopyranosyluronic acid residue into a complex oligosaccharide. J. Mol. Catal. B Enzym. 2008;50:69–73. doi: 10.1016/j.molcatb.2007.09.002. DOI
Fialová P., Namdjou D.-J., Ettrich R., Přikrylová V., Rauvolfová J., Křenek K., Kuzma M., Elling L., Bezouška K., Křen V. Combined application of galactose oxidase and β-N-acetylhexosaminidase in the synthesis of complex immunoactive N-acetyl-d-galactosaminides. Adv. Synth. Catal. 2005;347:997–1006. doi: 10.1002/adsc.200505041. DOI
Bojarová P., Slámová K., Křenek K., Gažák R., Kulik N., Ettrich R., Pelantová H., Kuzma M., Riva S., Adámek D., et al. Charged hexosaminides as new substrates for β-N-acetylhexosaminidase-catalyzed synthesis of immunomodulatory disaccharides. Adv. Synth. Catal. 2011;353:2409–2420. doi: 10.1002/adsc.201100371. DOI
Catelani G., D’Andrea F., Griselli A., Guazzelli L., Nemcová P., Bezouska K., Krenek K., Kren V. Deoxynojirimycin and its hexosaminyl derivatives bind to natural killer cell receptors rNKR-P1A and hCD69. Bioorg. Med. Chem. Lett. 2010;20:4645–4648. doi: 10.1016/j.bmcl.2010.05.109. PubMed DOI
Slámová K., Marhol P., Bezouska K., Lindkvist L., Hansen S.G., Kren V., Jensen H.H. Synthesis and biological activity of glycosyl-1H-1,2,3-triazoles. Bioorg. Med. Chem. Lett. 2010;20:4263–4265. doi: 10.1016/j.bmcl.2010.04.151. PubMed DOI
Krenek K., Kuldová M., Hulíková K., Stibor I., Lhoták P., Dudic M., Budka J., Pelantová H., Bezouska K., Fiserová A., et al. N-acetyl-d-glucosamine substituted calix[4]arenes as stimulators of NK cell-mediated antitumor immune response. Carbohydr. Res. 2007;342:1781–1792. doi: 10.1016/j.carres.2007.04.026. PubMed DOI
Hulikova K., Benson V., Svoboda J., Sima P., Fiserova A. N-Acetyl-d-glucosamine-coated polyamidoamine dendrimer modulates antibody formation via natural killer cell activation. Int. Immunopharmacol. 2009;9:792–799. doi: 10.1016/j.intimp.2009.03.007. PubMed DOI
Hulíková K., Grobárová V., Křivohlavá R., Fišerová A. Antitumor activity of N-acetyl-d-glucosamine-substituted glycoconjugates and combined therapy with keyhole limpet hemocyanin in B16F10 mouse melanoma model. Folia Microbiol. (Praha). 2010;55:528–532. doi: 10.1007/s12223-010-0087-5. PubMed DOI
Hulikova K., Svoboda J., Benson V., Grobarova V., Fiserova A. N-acetyl-d-glucosamine-coated polyamidoamine dendrimer promotes tumor-specific B cell responses via natural killer cell activation. Int. Immunopharmacol. 2011;11:955–961. doi: 10.1016/j.intimp.2011.02.009. PubMed DOI
Bezouska K., Nepovim A., Horvath O., Pospisil M., Hamann J., Feizi T. CD69 antigen of human lymphocytes is a calcium-dependent carbohydrate-binding protein. Biochem. Biophys. Res. Commun. 1995;208:68–74. doi: 10.1006/bbrc.1995.1306. PubMed DOI
Pavlicek J., Sopko B., Ettrich R., Kopecky V., Baumruk V., Man P., Havlicek V., Vrbacky M., Martinkova L., Kren V., et al. Molecular characterization of binding of calcium and carbohydrates by an early activation antigen of lymphocytes CD69. Biochemistry. 2003;42:9295–9306. doi: 10.1021/bi027298l. PubMed DOI
Kavan D., Kubickova M., Bily J., Vanek O., Hofbauerova K., Mrazek H., Rozbesky D., Bojarova P., Kren V., Zidek L., et al. Cooperation between subunits is essential for high-affinity binding of N-acetyl-d-hexosamines to dimeric soluble and dimeric cellular forms of human CD69. Biochemistry. 2010;49:4060–4067. doi: 10.1021/bi100181a. PubMed DOI
Kovalova A., Ledvina M., Saman D., Zyka D., Kubickova M., Zidek L., Sklenar V., Pompach P., Kavan D., Bily J., et al. Synthetic N-acetyl-d-glucosamine based fully branched tetrasaccharide, a mimetic of the endogenous ligand for CD69, activates CD69+ killer lymphocytes upon dimerization via a hydrophilic flexible linker. J. Med. Chem. 2010;53:4050–4065. doi: 10.1021/jm100055b. PubMed DOI
Report of the Joint Ethical Committee of the Institute of Microbiology, Prague and Charles University in Prague. English translation can be found in the Supplementary Material. [(accessed on 11 November 2014)]. Available online: http://www.biomed.cas.cz/mbu/doc/VyjadreniEK.PDF.
Rozbeský D., Krejzová J., Křenek K., Prchal J., Hrabal R., Kožíšek M., Weignerová L., Fiore M., Dumy P., Křen V., et al. Re-evaluation of binding properties of recombinant lymphocyte receptors NKR-P1A and CD69 to chemically synthesized glycans and peptides. Int. J. Mol. Sci. 2014;15:1271–1283. doi: 10.3390/ijms15011271. PubMed DOI PMC
Grobárová V., Benson V., Rozbeský D., Novák P., Cerný J. Re-evaluation of the involvement of NK cells and C-type lectin-like NK receptors in modulation of immune responses by multivalent GlcNAc-terminated oligosaccharides. Immunol. Lett. 2013;156:110–117. doi: 10.1016/j.imlet.2013.09.009. PubMed DOI
Daniels B.F., Nakamura M.C., Rosen S.D., Yokoyama W.M., Seaman W.E. Ly-49A, a receptor for H-2Dd, has a functional carbohydrate recognition domain. Immunity. 1994;1:785–792. doi: 10.1016/S1074-7613(94)80020-0. PubMed DOI
Hartmann J., Tran T.-V., Kaudeer J., Oberle K., Herrmann J., Quagliano I., Abel T., Cohnen A., Gatterdam V., Jacobs A., et al. The stalk domain and the glycosylation status of the activating natural killer cell receptor NKp30 are important for ligand binding. J. Biol. Chem. 2012;287:31527–31539. doi: 10.1074/jbc.M111.304238. PubMed DOI PMC
Mason L.H., Willette-Brown J., Anderson S.K., Alvord W.G., Klabansky R.L., Young H.A., Ortaldo J.R. Receptor Glycosylation Regulates Ly-49 Binding to MHC Class I. J. Immunol. 2003;171:4235–4242. doi: 10.4049/jimmunol.171.8.4235. PubMed DOI
Andresen L., Skovbakke S.L., Persson G., Hagemann-Jensen M., Hansen K.A., Jensen H., Skov S. 2-deoxy d-glucose prevents cell surface expression of NKG2D ligands through inhibition of N-linked glycosylation. J. Immunol. 2012;188:1847–1855. doi: 10.4049/jimmunol.1004085. PubMed DOI
Plougastel B., Dubbelde C., Yokoyama W.M. Cloning of Clr, a new family of lectin-like genes localized between mouse Nkrp1a and Cd69. Immunogenetics. 2001;53:209–214. doi: 10.1007/s002510100319. PubMed DOI
Zhou H., Kartsogiannis V., Hu Y.S., Elliott J., Quinn J.M., McKinstry W.J., Gillespie M.T., Ng K.W. A novel osteoblast-derived C-type lectin that inhibits osteoclast formation. J. Biol. Chem. 2001;276:14916–14923. doi: 10.1074/jbc.M011554200. PubMed DOI
Carlyle J.R., Jamieson A.M., Gasser S., Clingan C.S., Arase H., Raulet D.H. Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc. Natl. Acad. Sci. USA. 2004;101:3527–3532. doi: 10.1073/pnas.0308304101. PubMed DOI PMC
Kamishikiryo J., Fukuhara H., Okabe Y., Kuroki K., Maenaka K. Molecular basis for LLT1 protein recognition by human CD161 protein (NKRP1A/KLRB1) J. Biol. Chem. 2011;286:23823–23830. doi: 10.1074/jbc.M110.214254. PubMed DOI PMC
Skálová T., Kotýnková K., Dušková J., Hašek J., Koval T., Kolenko P., Novák P., Man P., Hanč P., Vaněk O., et al. Mouse Clr-g, a ligand for NK cell activation receptor NKR-P1F: Crystal structure and biophysical properties. J. Immunol. 2012;189:4881–4889. doi: 10.4049/jimmunol.1200880. PubMed DOI
Rosen D.B., Bettadapura J., Alsharifi M., Mathew P., Warren H.S., Lanier L.L. Cutting edge: Lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J. Immunol. 2005;175:7796–7799. doi: 10.4049/jimmunol.175.12.7796. PubMed DOI
Aldemir H., Prod’homme V., Dumaurier M.-J., Retiere C., Poupon G., Cazareth J., Bihl F., Braud V.M. Cutting Edge: Lectin-Like Transcript 1 Is a Ligand for the CD161 Receptor. J. Immunol. 2005;175:7791–7795. doi: 10.4049/jimmunol.175.12.7791. PubMed DOI
Borrego F., Ulbrecht M., Weiss E.H., Coligan J.E., Brooks A.G. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J. Exp. Med. 1998;187:813–818. doi: 10.1084/jem.187.5.813. PubMed DOI PMC
Braud V.M., Allan D.S., O’Callaghan C.A., Söderström K., D’Andrea A., Ogg G.S., Lazetic S., Young N.T., Bell J.I., Phillips J.H., et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998;391:795–799. doi: 10.1038/35869. PubMed DOI
Lee N., Llano M., Carretero M., Ishitani A., Navarro F., López-Botet M., Geraghty D.E. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl. Acad. Sci. USA. 1998;95:5199–5204. doi: 10.1073/pnas.95.9.5199. PubMed DOI PMC
Mistry A.R., O’Callaghan C.A. Regulation of ligands for the activating receptor NKG2D. Immunology. 2007;121:439–447. doi: 10.1111/j.1365-2567.2007.02652.x. PubMed DOI PMC
Zhang Q., Rahim M.M., Allan D.S.J., Tu M.M., Belanger S., Abou-Samra E., Ma J., Sekhon H.S., Fairhead T., Zein H.S., et al. Mouse Nkrp1-Clr gene cluster sequence and expression analyses reveal conservation of tissue-specific MHC-independent immunosurveillance. PLoS One. 2012;7:e50561. doi: 10.1371/journal.pone.0050561. PubMed DOI PMC
Williams K.J.N., Wilson E., Davidson C.L., Aguilar O., Fu L., Carlyle J.R., Burshtyn D.N. Poxvirus infection-associated downregulation of C-type lectin-related-b prevents NK cell inhibition by NK receptor protein-1B. J. Immunol. 2012;188:4980–4991. doi: 10.4049/jimmunol.1103425. PubMed DOI
Fine J.H., Chen P., Mesci A., Allan D.S.J., Gasser S., Raulet D.H., Carlyle J.R. Chemotherapy-induced genotoxic stress promotes sensitivity to natural killer cell cytotoxicity by enabling missing-self recognition. Cancer Res. 2010;70:7102–7113. doi: 10.1158/0008-5472.CAN-10-1316. PubMed DOI PMC
Tian W., Nunez R., Cheng S., Ding Y., Tumang J., Lyddane C., Roman C., Liou H.-C. C-type lectin OCILRP2/Clr-g and its ligand NKRP1f costimulate T cell proliferation and IL-2 production. Cell Immunol. 2005;234:39–53. doi: 10.1016/j.cellimm.2005.04.021. PubMed DOI
Voigt S., Mesci A., Ettinger J., Fine J.H., Chen P., Chou W., Carlyle J.R. Cytomegalovirus evasion of innate immunity by subversion of the NKR-P1B:Clr-b missing-self axis. Immunity. 2007;26:617–627. doi: 10.1016/j.immuni.2007.03.013. PubMed DOI
Fodil-Cornu N., Lee S.-H., Belanger S., Makrigiannis A.P., Biron C.A., Buller R.M., Vidal S.M. Ly49h-deficient C57BL/6 mice: A new mouse cytomegalovirus-susceptible model remains resistant to unrelated pathogens controlled by the NK gene complex. J. Immunol. 2008;181:6394–6405. doi: 10.4049/jimmunol.181.9.6394. PubMed DOI PMC
Germain C., Meier A., Jensen T., Knapnougel P., Poupon G., Lazzari A., Neisig A., Håkansson K., Dong T., Wagtmann N., et al. Induction of lectin-like transcript 1 (LLT1) protein cell surface expression by pathogens and interferon-γ contributes to modulate immune responses. J. Biol. Chem. 2011;286:37964–37975. doi: 10.1074/jbc.M111.285312. PubMed DOI PMC
Rosen D.B., Cao W., Avery D.T., Tangye S.G., Liu Y.-J., Houchins J.P., Lanier L.L. Functional consequences of interactions between human NKR-P1A and its ligand LLT1 expressed on activated dendritic cells and B cells. J. Immunol. 2008;180:6508–6517. doi: 10.4049/jimmunol.180.10.6508. PubMed DOI PMC
Satkunanathan S., Kumar N., Bajorek M., Purbhoo M., Culley F.J. Respiratory syncytial virus infection, TLR3 ligands, and proinflammatory cytokines induce CD161 ligand LLT1 expression on the respiratory epithelium. J. Virol. 2014;88:2366–2373. doi: 10.1128/JVI.02789-13. PubMed DOI PMC
Kolenko P., Rozbeský D., Vaněk O., Bezouška K., Hašek J., Dohnálek J. Structure of the H107R variant of the extracellular domain of mouse NKR-P1A at 2.3 Å resolution. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2011;67:1519–1523. doi: 10.1107/S1744309111046203. PubMed DOI PMC