Circadian dysfunction and cardio-metabolic disorders in humans
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38742195
PubMed Central
PMC11089151
DOI
10.3389/fendo.2024.1328139
Knihovny.cz E-zdroje
- Klíčová slova
- cardiovascular disease risk, circadian clock, circadian rhythm disruption, glucose tolerance, insulin sensitivity, time restricted eating, type 2 diabetes mellitus,
- MeSH
- chronobiologické poruchy patofyziologie komplikace MeSH
- cirkadiánní rytmus * fyziologie MeSH
- diabetes mellitus 2. typu patofyziologie metabolismus MeSH
- kardiovaskulární nemoci * etiologie patofyziologie MeSH
- lidé MeSH
- metabolické nemoci * patofyziologie metabolismus etiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The topic of human circadian rhythms is not only attracting the attention of clinical researchers from various fields but also sparking a growing public interest. The circadian system comprises the central clock, located in the suprachiasmatic nucleus of the hypothalamus, and the peripheral clocks in various tissues that are interconnected; together they coordinate many daily activities, including sleep and wakefulness, physical activity, food intake, glucose sensitivity and cardiovascular functions. Disruption of circadian regulation seems to be associated with metabolic disorders (particularly impaired glucose tolerance) and cardiovascular disease. Previous clinical trials revealed that disturbance of the circadian system, specifically due to shift work, is associated with an increased risk of type 2 diabetes mellitus. This review is intended to provide clinicians who wish to implement knowledge of circadian disruption in diagnosis and strategies to avoid cardio-metabolic disease with a general overview of this topic.
1st Faculty of Medicine Charles University Prague Czechia
Diabetes Centre Institute for Clinical and Experimental Medicine Prague Czechia
Institute of Physiology The Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. (2017) 18:164–79. doi: 10.1038/nrg.2016.150 PubMed DOI PMC
Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. (2020) 21:67–84. doi: 10.1038/s41580-019-0179-2 PubMed DOI
Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. (2010) 72:551–77. doi: 10.1146/annurev-physiol-021909-135919 PubMed DOI PMC
Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. (2000) 14:2950–61. doi: 10.1101/gad.183500 PubMed DOI PMC
Aschoff J, Fatranská M, Giedke H, Doerr P, Stamm D, Wisser H. Human circadian rhythms in continuous darkness: entrainment by social cues. Science. (1971) 171:213–5. doi: 10.1126/science.171.3967.213 PubMed DOI
Colelli DR, Cruz Dela GR, Kendzerska T, Murray BJ, Boulos MI. Impact of sleep chronotype on in-laboratory polysomnography parameters. J Sleep Res. (2023) 32:e13922. doi: 10.1111/jsr.13922 PubMed DOI
Fabbri M, Beracci A, Martoni M, Meneo D, Tonetti L, Natale V. Measuring subjective sleep quality: A review. Int J Environ Res Public Health. (2021) 18. doi: 10.3390/ijerph18031082 PubMed DOI PMC
Bradley J, O'Neill B, Kent L, Hulzebos EH, Arets B, Hebestreit H. Physical activity assessment in cystic fibrosis: A position statement. J Cyst Fibros. (2015) 14:e25–32. doi: 10.1016/j.jcf.2015.05.011 PubMed DOI
Telford O, Diamantidis CJ, Bosworth HB, Patel UD, Davenport CA, Oakes MM, et al. . The relationship between Pittsburgh Sleep Quality Index subscales and diabetes control. Chronic Illn. (2019) 15:210–9. doi: 10.1177/1742395318759587 PubMed DOI PMC
Patterson RE, Laughlin GA, LaCroix AZ, Hartman SJ, Natarajan L, Senger CM, et al. . Intermittent fasting and human metabolic health. J Acad Nutr Diet. (2015) 115:1203–12. doi: 10.1016/j.jand.2015.02.018 PubMed DOI PMC
Lunsford-Avery JR, Engelhard MM, Navar AM, et al. . Validation of the sleep regularity index in older adults and associations with cardiometabolic risk. Sci Rep. (2018) 8:14158. doi: 10.1038/s41598-018-32402-5 PubMed DOI PMC
Kuhl W. History of clinical research on the sleep apnea syndrome. The early days of polysomnography. Respiration. (1997) 64 Suppl 1:5–10. doi: 10.1159/000196728 PubMed DOI
Smith MT, McCrae CS, Cheung J, Martin JL, Harrod CG, Heald JL, et al. . Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: an american academy of sleep medicine clinical practice guideline. J Clin Sleep Med. (2018) 14:1231–7. doi: 10.5664/jcsm.7230 PubMed DOI PMC
Weissova K, Bartoš A, Sládek M, Nováková M, Sumová A. Moderate changes in the circadian system of alzheimer’s disease patients detected in their home environment. PloS One. (2016) 11:e0146200. doi: 10.1371/journal.pone.0146200 PubMed DOI PMC
Matricciani L, Dumuid D, Paquet C, Fraysse F, Wang Y, Baur LA, et al. . Sleep and cardiometabolic health in children and adults: examining sleep as a component of the 24-h day. Sleep Med. (2021) 78:63–74. doi: 10.1016/j.sleep.2020.12.001 PubMed DOI
Chinoy ED, Cuellar JA, Huwa KE, Jameson JT, Watson CH, Bessman SC, et al. . Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep. (2021) 44. doi: 10.1093/sleep/zsaa291 PubMed DOI PMC
Lee HA, Lee HJ, Moon JH, Lee T, Kim MG, In H, et al. . Comparison of wearable activity tracker with actigraphy for sleep evaluation and circadian rest-activity rhythm measurement in healthy young adults. Psychiatry Investig. (2017) 14:179–85. doi: 10.4306/pi.2017.14.2.179 PubMed DOI PMC
Asgari Mehrabadi M, Azimi I, Sarhaddi F, Axelin A, Niela-Vilén H, Myllyntausta S, et al. . Sleep tracking of a commercially available smart ring and smartwatch against medical-grade actigraphy in everyday settings: instrument validation study. JMIR Mhealth Uhealth. (2020) 8:e20465. doi: 10.2196/20465 PubMed DOI PMC
Rutters F, Nefs G. Sleep and circadian rhythm disturbances in diabetes: A narrative review. Diabetes Metab Syndr Obes. (2022) 15:3627–37. doi: 10.2147/DMSO.S354026 PubMed DOI PMC
Sladek M, Kudrnáčová Röschová M, Adámková V, Hamplová D, Sumová A. Chronotype assessment via a large scale socio-demographic survey favours yearlong Standard time over Daylight Saving Time in central Europe. Sci Rep. (2020) 10:1419. doi: 10.1038/s41598-020-58413-9 PubMed DOI PMC
Roenneberg T, Wirz-Justice A, Merrow M. Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms. (2003) 18:80–90. doi: 10.1177/0748730402239679 PubMed DOI
Pagani L, Semenova EA, Moriggi E, Revell VL, Hack LM, Lockley SW, et al. . The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts. PloS One. (2010) 5:e13376. doi: 10.1371/journal.pone.0013376 PubMed DOI PMC
Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, et al. . Epidemiology of the human circadian clock. Sleep Med Rev. (2007) 11:429–38. doi: 10.1016/j.smrv.2007.07.005 PubMed DOI
Barclay NL, Eley TC, Buysse DJ, Archer SN, Gregory AM. Diurnal preference and sleep quality: same genes? A study of young adult twins. Chronobiol Int. (2010) 27:278–96. doi: 10.3109/07420521003663801 PubMed DOI
Roenneberg T, Kuehnle T, Pramstaller PP, Ricken J, Havel M, Guth A, et al. . A marker for the end of adolescence. Curr Biol. (2004) 14:R1038–9. doi: 10.1016/j.cub.2004.11.039 PubMed DOI
Sladek M, Klusáček J, Hamplová D, Sumová A. Population-representative study reveals cardiovascular and metabolic disease biomarkers associated with misaligned sleep schedules. Sleep. (2023) 46. doi: 10.1093/sleep/zsad037 PubMed DOI PMC
Ghotbi N, Pilz LK, Winnebeck EC, Vetter C, Zerbini G, Lenssen D, et al. . The microMCTQ: an ultra-short version of the munich chronoType questionnaire. J Biol Rhythms. (2020) 35:98–110. doi: 10.1177/0748730419886986 PubMed DOI
Martinez-Nicolas A, Martinez-Madrid MJ, Almaida-Pagan PF, Bonmati-Carrion MA, Madrid JA, Rol MA. Assessing chronotypes by ambulatory circadian monitoring. Front Physiol. (2019) 10:1396. doi: 10.3389/fphys.2019.01396 PubMed DOI PMC
Dubocovich ML. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med. (2007) 8 Suppl 3:34–42. doi: 10.1016/j.sleep.2007.10.007 PubMed DOI
Garaulet M, Qian J, Florez JC, Arendt J, Saxena R, Scheer FAJL. Melatonin effects on glucose metabolism: time to unlock the controversy. Trends Endocrinol Metab. (2020) 31:192–204. doi: 10.1016/j.tem.2019.11.011 PubMed DOI PMC
Gnocchi D, Bruscalupi G. Circadian rhythms and hormonal homeostasis: pathophysiological implications. Biol (Basel). (2017) 6. doi: 10.3390/biology6010010 PubMed DOI PMC
Baldanzi G, Hammar U, Fall T, Lindberg E, Lind L, Elmståhl S, et al. . Evening chronotype is associated with elevated biomarkers of cardiometabolic risk in the EpiHealth cohort: a cross-sectional study. Sleep. (2022) 45. doi: 10.1093/sleep/zsab226 PubMed DOI PMC
Knutson KL, Spiegel K, Penev P, Van Cauter E. The metabolic consequences of sleep deprivation. Sleep Med Rev. (2007) 11:163–78. doi: 10.1016/j.smrv.2007.01.002 PubMed DOI PMC
Docimo A, Verde L, Barrea L, Vetrani C, Memoli P, Accardo G, et al. . Type 2 diabetes: also a “Clock matter”? Nutrients. (2023) 15. doi: 10.3390/nu15061427 PubMed DOI PMC
Finn L, Young T, Palta M, Fryback DG. Sleep-disordered breathing and self-reported general health status in the Wisconsin Sleep Cohort Study. Sleep. (1998) 21:701–6. doi: 10.1371/journal.pone.0133761 PubMed DOI
Merikanto I, Lahti T, Puolijoki H, Vanhala M, Peltonen M, Laatikainen T, et al. . Associations of chronotype and sleep with cardiovascular diseases and type 2 diabetes. Chronobiol Int. (2013) 30:470–7. doi: 10.3109/07420528.2012.741171 PubMed DOI
Vetter C, Devore EE, Ramin CA, Speizer FE, Willett WC, Schernhammer ES. Mismatch of sleep and work timing and risk of type 2 diabetes. Diabetes Care. (2015) 38:1707–13. doi: 10.2337/dc15-0302 PubMed DOI PMC
Santhi N, Lazar AS, McCabe PJ, Lo JC, Groeger JA, Dijk DJ. Sex differences in the circadian regulation of sleep and waking cognition in humans. Proc Natl Acad Sci U.S.A. (2016) 113:E2730–9. doi: 10.1073/pnas.1521637113 PubMed DOI PMC
Green R, Polotsky AJ, Wildman RP, McGinn AP, Lin J, Derby C, et al. . Menopausal symptoms within a Hispanic cohort: SWAN, the Study of Women’s Health Across the Nation. Climacteric. (2010) 13:376–84. doi: 10.3109/13697130903528272 PubMed DOI PMC
Peplonska B, Bukowska A, Sobala W. Association of rotating night shift work with BMI and abdominal obesity among nurses and midwives. PloS One. (2015) 10:e0133761. doi: 10.1371/journal.pone.0133761 PubMed DOI PMC
Cho K, Ennaceur A, Cole JC, Suh CK. Chronic jet lag produces cognitive deficits. J Neurosci. (2000) 20:RC66. doi: 10.1523/JNEUROSCI.20-06-j0005.2000 PubMed DOI PMC
Haufe A, Leeners B. Sleep disturbances across a woman’s lifespan: what is the role of reproductive hormones? J Endocr Soc. (2023) 7:bvad036. doi: 10.1210/jendso/bvad036 PubMed DOI PMC
Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. . UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PloS Med. (2015) 12:e1001779. doi: 10.1371/journal.pmed.1001779 PubMed DOI PMC
Vetter C, Dashti HS, Lane JM, Anderson SG, Schernhammer ES, Rutter MK, et al. . Night shift work, genetic risk, and type 2 diabetes in the UK biobank. Diabetes Care. (2018) 41:762–9. doi: 10.2337/dc17-1933 PubMed DOI PMC
Wang M, Zhou T, Li X, Ma H, Liang Z, Fonseca VA, et al. . Baseline vitamin D status, sleep patterns, and the risk of incident type 2 diabetes in data from the UK biobank study. Diabetes Care. (2020) 43:2776–84. doi: 10.2337/dc20-1109 PubMed DOI PMC
Scott RA, Scott LJ, Mägi R, Marullo L, Gaulton KJ, Kaakinen M, et al. . An expanded genome-wide association study of type 2 diabetes in europeans. Diabetes. (2017) 66:2888–902. doi: 10.2337/db16-1253 PubMed DOI PMC
Poggiogalle E, Jamshed H, Peterson CM. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism. (2018) 84:11–27. doi: 10.1016/j.metabol.2017.11.017 PubMed DOI PMC
Saad A, Dalla Man C, Nandy DK, Levine JA, Bharucha AE, Rizza RA, et al. . Diurnal pattern to insulin secretion and insulin action in healthy individuals. Diabetes. (2012) 61:2691–700. doi: 10.2337/db11-1478 PubMed DOI PMC
Panda S. Circadian physiology of metabolism. Science. (2016) 354:1008–15. doi: 10.1126/science.aah4967 PubMed DOI PMC
Scheer FA, Hu K, Evoniuk H, Kelly EE, Malhotra A, Hilton MF, et al. . Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci U.S.A. (2010) 107:20541–6. doi: 10.1073/pnas.1006749107 PubMed DOI PMC
Westerterp-Plantenga MS, Drummen M, Tischmann L, Swindell N, Stratton G, Raben A, et al. . Circadian rhythm parameters and physical activity associated with cardiometabolic risk factors in the PREVIEW lifestyle study. Obes (Silver Spring). (2023) 31:744–56. doi: 10.1002/oby.23670 PubMed DOI
Estrella MA, Du J, Chen L, Rath S, Prangley E, Chitrakar A, et al. . The metabolites NADP(+) and NADPH are the targets of the circadian protein Nocturnin (Curled). Nat Commun. (2019) 10:2367. doi: 10.1038/s41467-019-10125-z PubMed DOI PMC
Green CB, Douris N, Kojima S, Strayer CA, Fogerty J, Lourim D, et al. . Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc Natl Acad Sci U.S.A. (2007) 104:9888–93. doi: 10.1073/pnas.0702448104 PubMed DOI PMC
Eckel-Mahan KL, Patel VR, de Mateo S, Orozco-Solis R, Ceglia NJ, Sahar S, et al. . Reprogramming of the circadian clock by nutritional challenge. Cell. (2013) 155:1464–78. doi: 10.1016/j.cell.2013.11.034 PubMed DOI PMC
Gnocchi D, Custodero C, Sabbà C, Mazzocca A. Circadian rhythms: a possible new player in non-alcoholic fatty liver disease pathophysiology. J Mol Med (Berl). (2019) 97:741–59. doi: 10.1007/s00109-019-01780-2 PubMed DOI
Gnocchi D, Pedrelli M, Hurt-Camejo E, Parini P. Lipids around the clock: focus on circadian rhythms and lipid metabolism. Biol (Basel). (2015) 4:104–32. doi: 10.3390/biology4010104 PubMed DOI PMC
Yanagihara H, Ando H, Hayashi Y, Obi Y, Fujimura A. High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues. Chronobiol Int. (2006) 23:905–14. doi: 10.1080/07420520600827103 PubMed DOI
Kubota Y, Evenson KR, Maclehose RF, Roetker NS, Joshu CE, Folsom AR. Physical activity and lifetime risk of cardiovascular disease and cancer. Med Sci Sports Exerc. (2017) 49:1599–605. doi: 10.1249/MSS.0000000000001274 PubMed DOI PMC
Rubio-Sastre P, Scheer FA, Gómez-Abellán P, Madrid JA, Garaulet M. Acute melatonin administration in humans impairs glucose tolerance in both the morning and evening. Sleep. (2014) 37:1715–9. doi: 10.5665/sleep.4088 PubMed DOI PMC
Jarrin DC, Ivers H, Lamy M, Chen IY, Harvey AG, Morin CM. Cardiovascular autonomic dysfunction in insomnia patients with objective short sleep duration. J Sleep Res. (2018) 27:e12663. doi: 10.1111/jsr.12663 PubMed DOI PMC
Gauthier P, Desir C, Plombas M, Joffray E, Benhamou PY, Borel AL. Impact of sleep and physical activity habits on real-life glycaemic variability in patients with type 2 diabetes. J Sleep Res. (2023) 32:e13799. doi: 10.1111/jsr.13799 PubMed DOI
Tranel HR, Schroder EA, England J, Black WS, Bush H, Hughes ME, et al. . Physical activity, and not fat mass is a primary predictor of circadian parameters in young men. Chronobiol Int. (2015) 32:832–41. doi: 10.3109/07420528.2015.1043011 PubMed DOI PMC
Menek MY, Budak M. Effect of exercises according to the circadian rhythm in type 2 diabetes: Parallel-group, single-blind, crossover study. Nutr Metab Cardiovasc Dis. (2022) 32:1742–52. doi: 10.1016/j.numecd.2022.04.017 PubMed DOI
van Moorsel D, Hansen J, Havekes B, Scheer FAJL, Jörgensen JA, Hoeks J, et al. . Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Mol Metab. (2016) 5:635–45. doi: 10.1016/j.molmet.2016.06.012 PubMed DOI PMC
Bruce CR, Anderson MJ, Carey AL, Newman DG, Bonen A, Kriketos AD, et al. . Muscle oxidative capacity is a better predictor of insulin sensitivity than lipid status. J Clin Endocrinol Metab. (2003) 88:5444–51. doi: 10.1210/jc.2003-030791 PubMed DOI
Pickel L, Sung HK. Feeding rhythms and the circadian regulation of metabolism. Front Nutr. (2020) 7:39. doi: 10.3389/fnut.2020.00039 PubMed DOI PMC
Dickmeis T, Weger BD, Weger M. The circadian clock and glucocorticoids–interactions across many time scales. Mol Cell Endocrinol. (2013) 380:2–15. doi: 10.1016/j.mce.2013.05.012 PubMed DOI
Dijk DJ, Duffy JF, Silva EJ, Shanahan TL, Boivin DB, Czeisler CA. Amplitude reduction and phase shifts of melatonin, cortisol and other circadian rhythms after a gradual advance of sleep and light exposure in humans. PloS One. (2012) 7:e30037. doi: 10.1371/journal.pone.0030037 PubMed DOI PMC
Doane LD, Kremen WS, Eaves LJ, Eisen SA, Hauger R, Hellhammer D, et al. . Associations between jet lag and cortisol diurnal rhythms after domestic travel. Health Psychol. (2010) 29:117–23. doi: 10.1037/a0017865 PubMed DOI PMC
Leproult R, Holmback U, Van Cauter E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes. (2014) 63:1860–9. doi: 10.2337/db13-1546 PubMed DOI PMC
Schiavo-Cardozo D, Lima MM, Pareja JC, Geloneze B. Appetite-regulating hormones from the upper gut: disrupted control of xenin and ghrelin in night workers. Clin Endocrinol (Oxf). (2013) 79:807–11. doi: 10.2337/db13-1546 PubMed DOI
Mosavat M, Mirsanjari M, Arabiat D, Smyth A, Whitehead L. The role of sleep curtailment on leptin levels in obesity and diabetes mellitus. Obes Facts. (2021) 14:214–21. doi: 10.1159/000514095 PubMed DOI PMC
Sakai R, Hashimoto Y, Ushigome E, Miki A, Okamura T, Matsugasumi M, et al. . Late-night-dinner is associated with poor glycemic control in people with type 2 diabetes: The KAMOGAWA-DM cohort study. Endocr J. (2018) 65:395–402. doi: 10.1507/endocrj.EJ17-0414 PubMed DOI
Kelly KP, McGuinness OP, Buchowski M, Hughey JJ, Chen H, Powers J, et al. . Eating breakfast and avoiding late-evening snacking sustains lipid oxidation. PloS Biol. (2020) 18:e3000622. doi: 10.1371/journal.pbio.3000622 PubMed DOI PMC
Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. (2014) 20:991–1005. doi: 10.1016/j.cmet.2014.11.001 PubMed DOI PMC
Acosta-Rodriguez V, Rijo-Ferreira F, Izumo M, Xu P, Wight-Carter M, Green CB, et al. . Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science. (2022) 376:1192–202. doi: 10.1126/science.abk0297 PubMed DOI PMC
Odegaard AO, Jacobs DR, Jr, Steffen LM, Van Horn L, Ludwig DS, Pereira MA, et al. . Breakfast frequency and development of metabolic risk. Diabetes Care. (2013) 36:3100–6. doi: 10.2337/dc13-0316 PubMed DOI PMC
Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. (2018) 27:1212–1221 e3. doi: 10.1016/j.cmet.2018.04.010 PubMed DOI PMC
In Het Panhuis W, Schönke M, Modder M, Tom HE, Lalai RA, Pronk ACM, et al. . Time-restricted feeding attenuates hypercholesterolaemia and atherosclerosis development during circadian disturbance in APOE *3-Leiden.CETP mice. EBioMedicine. (2023) 93:104680. doi: 10.1016/j.ebiom.2023.104680 PubMed DOI PMC
Liu D, Huang Y, Huang C, Yang S, Wei X, Zhang P, et al. . Calorie restriction with or without time-restricted eating in weight loss. N Engl J Med. (2022) 386:1495–504. doi: 10.1056/NEJMoa2114833 PubMed DOI
Wilkinson MJ, Manoogian ENC, Zadourian A, Lo H, Fakhouri S, Shoghi A, et al. . Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. (2020) 31:92–104 e5. doi: 10.1016/j.cmet.2019.11.004 PubMed DOI PMC
Mortas H, Bilici S, Karakan T. The circadian disruption of night work alters gut microbiota consistent with elevated risk for future metabolic and gastrointestinal pathology. Chronobiol Int. (2020) 37:1067–81. doi: 10.1080/07420528.2020.1778717 PubMed DOI
Yin L, Wu N, Lazar MA. Nuclear receptor Rev-erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. Nucl Recept Signal. (2010) 8:e001. doi: 10.1621/nrs.08001 PubMed DOI PMC
Chaput JP, McHill AW, Cox RC, Broussard JL, Dutil C, da Costa BGG, et al. . The role of insufficient sleep and circadian misalignment in obesity. Nat Rev Endocrinol. (2023) 19:82–97. doi: 10.1038/s41574-022-00747-7 PubMed DOI PMC
Huang Q, Tian C, Zeng XT. Poor sleep quality in nurses working or having worked night shifts: A cross-sectional study. Front Neurosci. (2021) 15:638973. doi: 10.3389/fnins.2021.638973 PubMed DOI PMC
Xie Z, Sun Y, Ye Y, Hu D, Zhang H, He Z, et al. . Randomized controlled trial for time-restricted eating in healthy volunteers without obesity. Nat Commun. (2022) 13:1003. doi: 10.1038/s41467-022-28662-5 PubMed DOI PMC
Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, et al. . Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. (2014) 159:514–29. doi: 10.1016/j.cell.2014.09.048 PubMed DOI
Poroyko VA, Carreras A, Khalyfa A, Khalyfa AA, Leone V, Peris E, et al. . Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep. (2016) 6:35405. doi: 10.1038/srep35405 PubMed DOI PMC
Framnes SN, Arble DM. The bidirectional relationship between obstructive sleep apnea and metabolic disease. Front Endocrinol (Lausanne). (2018) 9:440. doi: 10.3389/fendo.2018.00440 PubMed DOI PMC
Manin G, Pons A, Baltzinger P, Moreau F, Iamandi C, Wilhelm JM, et al. . Obstructive sleep apnoea in people with Type 1 diabetes: prevalence and association with micro- and macrovascular complications. Diabetes Med. (2015) 32:90–6. doi: 10.1111/dme.12582 PubMed DOI
Borel AL, Benhamou PY, Baguet JP, Halimi S, Levy P, Mallion JM, et al. . High prevalence of obstructive sleep apnoea syndrome in a Type 1 diabetic adult population: a pilot study. Diabetes Med. (2010) 27:1328–9. doi: 10.1111/j.1464-5491.2010.03096.x PubMed DOI
Larcher S, Gauchez AS, Lablanche S, Pépin JL, Benhamou PY, Borel AL. Impact of sleep behavior on glycemic control in type 1 diabetes: the role of social jetlag. Eur J Endocrinol. (2016) 175:411–9. doi: 10.1530/EJE-16-0188 PubMed DOI
Chakradeo P, Rasmussen HE, Swanson GR, Swanson B, Fogg LF, Bishehsari Fv, et al. . Psychometric testing of a food timing questionnaire and food timing screener. Curr Dev Nutr. (2022) 6:nzab148. doi: 10.1093/cdn/nzab148 PubMed DOI PMC
Dose B, Yalçin M, Dries SPM, Relógio A. TimeTeller for timing health: The potential of circadian medicine to improve performance, prevent disease and optimize treatment. Front Digit Health. (2023) 5:1157654. doi: 10.3389/fdgth.2023.1157654 PubMed DOI PMC
Harding BN, Skene DJ, Espinosa A, Middleton B, Castaño-Vinyals G, Papantoniou K, et al. . Metabolic profiling of night shift work - The HORMONIT study. Chronobiol Int. (2022) 39:1508–16. doi: 10.1080/07420528.2022.2131562 PubMed DOI PMC
Isherwood CM, Van der Veen DR, Johnston JD, Skene DJ. Twenty-four-hour rhythmicity of circulating metabolites: effect of body mass and type 2 diabetes. FASEB J. (2017) 31:5557–67. doi: 10.1096/fj.201700323R PubMed DOI PMC
Woelders T, Revell VL, Middleton B, Ackermann K, Kayser M, Raynaud FI, et al. . Machine learning estimation of human body time using metabolomic profiling. Proc Natl Acad Sci U.S.A. (2023) 120:e2212685120. doi: 10.1073/pnas.2212685120 PubMed DOI PMC