Quantification of the Surface Coverage of Gold Nanoparticles with Mercaptosulfonates Using Isothermal Titration Calorimetry (ITC)
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39472103
PubMed Central
PMC11551951
DOI
10.1021/acs.jpcb.4c03365
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This manuscript presents a comprehensive study on the quantification of modifier molecules adsorbed on gold nanoparticles (AuNPs) using two complementary techniques Ellman's method (UV-vis spectroscopy) and isothermal titration calorimetry (ITC). In this paper, we compare the feasibility of using the ITC technique and Ellman's method to study the interactions of mercaptosulfonate compounds (sodium mercaptoethanesulfonate, MES, and sodium mercaptoundecanesulfonate, MUS) with the surface of AuNPs of various sizes. The thermodynamic functions of the attachment of mercaptosulfonates to AuNPs were determined, revealing a linear relationship between the number of adsorbed molecules and the surface area of the nanoparticles. The amount of MES and MUS determined by Ellman's method (7 and 11 molecules per square nm, respectively) is more than twice that measured by the ITC technique (3 and 4 molecules per square nm, respectively). The slight differences in the adsorption of MES and MUS on the gold surface are due to differences in the carbon chain length of the ligand molecules. In the case of MES, the formation of the Au-S bond is the dominant stage of the adsorption process, whereas for MUS, the ordering process and self-assembly of molecules on the gold surface are dominant.
Zobrazit více v PubMed
Jazayeri M. H.; Aghaie T.; Avan A.; Vatankhah A.; Ghaffari M. R. S. Colorimetric Detection Based on Gold Nano Particles (Gnps): An Easy, Fast, Inexpensive, Low-Cost and Short Time Method in Detection of Analytes (Protein, DNA, and Ion). Sens. Biosensing. Res. 2018, 20, 1–8. 10.1016/j.sbsr.2018.05.002. DOI
Aldewachi H.; Chalati T.; Woodroofe M. N.; Bricklebank N.; Sharrack B.; Gardiner P. Gold Nanoparticle-Based Colorimetric Biosensors. Nanoscale 2018, 10, 18–33. 10.1039/C7NR06367A. PubMed DOI
Beik J.; Khateri M.; Khosravi Z.; Kamrava S. K.; Kooranifar S.; Ghaznavi H.; Shakeri-Zadeh A. Gold Nanoparticles in Combinatorial Cancer Therapy Strategies. Coord. Chem. Rev. 2019, 387, 299–324. 10.1016/j.ccr.2019.02.025. DOI
Vines J. B.; Yoon J.-H.; Ryu N.-E.; Lim D.-J.; Park H. Gold nanoparticles for photothermal cancer therapy; Front. Chem. 2019, 7, 167.10.3389/fchem.2019.00167. PubMed DOI PMC
Chandrakala V.; Aruna V.; Angajala G. Review on Metal Nanoparticles as Nanocarriers: Current Challenges and Perspectives in Drug Delivery Systems. Emergent Mater. 2022, 5, 1593–1615. 10.1007/s42247-021-00335-x. PubMed DOI PMC
Siddique S.; Chow J. C. L. Gold Nanoparticles for Drug Delivery and Cancer Therapy. Appl. Sci. 2020, 10 (11), 3824.10.3390/app10113824. DOI
Maduray K.; Parboosing R. Metal Nanoparticles: a Promising Treatment for Viral and Arboviral Infections. Biol. Trace. Elem. Res. 2021, 199 (8), 3159–3176. 10.1007/s12011-020-02414-2. PubMed DOI PMC
Jeevanandam J.; Krishnan S.; Hii Y. S.; Pan S.; Chan Y. S.; Acquah C.; Danquah M. K.; Rodrigues J. Synthesis Approach-Dependent Antiviral Properties of Silver Nanoparticles and Nanocomposites. J. Nanostruct. Chem. 2022, 12, 809–831. 10.1007/s40097-021-00465-y. PubMed DOI PMC
Tomaszewska E.; Ranoszek-Soliwoda K.; Bednarczyk K.; Lech A.; Janicka M.; Chodkowski M.; Psarski M.; Celichowski G.; Krzyzowska M.; Grobelny J. Anti-HSV Activity of Metallic Nanoparticles Functionalized with Sulfonates vs. Polyphenols. Int. J. Mol. Sci. 2022, 23, 13104.10.3390/ijms232113104. PubMed DOI PMC
Chen N.; Zheng Y.; Yin J.; Li X.; Zheng C. Inhibitory Effects of Silver Nanoparticles Against Adenovirus Type 3 in vitro. J. Virol. Methods 2013, 193 (2), 470–477. 10.1016/j.jviromet.2013.07.020. PubMed DOI
Dung T. T. N.; Thuy N. T. T.; Hau V. T. B.; Nhan T. T.; Chi N. T. Y.; Quang D. V. Potential Application of Chitosan Stabilized Silver Nanoparticles for Simultaneous Control of Dengue Virus and Mosquito Vectors. Nanotechnology 2023, 34, 02510110.1088/1361-6528/ac97a2. PubMed DOI
Lin Z.; Li Y.; Guo M.; Xu T.; Wang C.; Zhao M.; Wang H.; Chen T.; Zhu B. The Inhibition of H1N1 Influenza Virus-Induced Apoptosis by Silver Nanoparticles Functionalized with Zanamivir. RSC Adv. 2017, 7, 742.10.1039/C6RA25010F. DOI
He Q.; Lu J.; Liu N.; Lu W.; Li Y.; Shang C.; Li X.; Hu L.; Jiang G. Antiviral Properties of Silver Nanoparticles Against SARS-CoV-2: Effects of Surface Coating and Particle Size. Nanomaterials 2022, 12, 990.10.3390/nano12060990. PubMed DOI PMC
Etemadzade M.; Ghamarypour A.; Zabihollahi R.; Shabbak G.; Shirazi M.; Sahebjamee H.; Vaziri A. Z.; Assadi A.; Ardestani M. S.; Shandiz S. A. S.; et al. Synthesis and Evaluation of Antiviral Activities of Novel Sonochemical Silver Nanorods Against HIV and HSV Viruses. Asian Pac. J. Trop. Dis. 2016, 6 (11), 854–858. 10.1016/S2222-1808(16)61145-3. DOI
Orłowski P.; Kowalczyk A.; Tomaszewska E.; Ranoszek-Soliwoda K.; Węgrzyn A.; Grzesiak J.; Celichowski G.; Grobelny J.; Eriksson K.; Krzyzowska M. Antiviral Activity of Tannic Acid Modified Silver Nanoparticles: Potential to Activate Immune Response in Herpes Genitalis. Viruses 2018, 10 (10), 524.10.3390/v10100524. PubMed DOI PMC
Halder A.; Das S.; Ojha D.; Chattopadhyay D.; Mukherjee A. Highly Monodispersed Gold Nanoparticles Synthesis and Inhibition of Herpes Simplex Virus Infections. Mater. Sci. Eng.: C 2018, 89, 413–421. 10.1016/j.msec.2018.04.005. PubMed DOI
Cagno V.; Andreozzi P.; D’Alicarnasso M.; Silva P. J.; Mueller M.; Galloux M.; Le Goffic R.; Jones S. T.; Vallino M.; Hodek J.; et al. Broad-Spectrum Non-Toxic Antiviral Nanoparticles with a Virucidal Inhibition Mechanism. Nat. Mater. 2018, 17, 195–203. 10.1038/nmat5053. PubMed DOI
Baram-Pinto D.; Shukla S.; Perkas N.; Gedanken A.; Sarid R. Inhibition of Herpes Simplex Virus Type 1 Infection by Silver Nanoparticles Capped with Mercaptoethane Sulfonate. Bioconjugate Chem. 2009, 20 (8), 1497–1502. 10.1021/bc900215b. PubMed DOI
Orlowski P.; Tomaszewska E.; Ranoszek-Soliwoda K.; Gniadek M.; Labedz O.; Malewski T.; Nowakowska J.; Chodaczek G.; Celichowski G.; Grobelny J.; et al. Tannic Acid-Modified Silver and Gold Nanoparticles as Novel Stimulators of Dendritic Cells Activation. Frontiers in Immunology 2018, 9, 1115.10.3389/fimmu.2018.01115. PubMed DOI PMC
Porta F.; Krpetic Z.; Prati L.; Gaiassi A.; Scarı G. Gold-Ligand Interaction Studies of Water-Soluble Aminoalcohol Capped Gold Nanoparticles by NMR. Langmuir 2008, 24, 7061–7064. 10.1021/la8008392. PubMed DOI
Selvakannan P. R.; Mandal S.; Phadtare S.; Pasricha R.; Sastry M. Capping of Gold Nanoparticles by the Amino Acid Lysine Renders Them Water-Dispersible. Langmuir 2003, 19, 3545–3549. 10.1021/la026906v. DOI
Ranoszek-Soliwoda K.; Tomaszewska E.; Socha E.; Krzyczmonik P.; Ignaczak A.; Orlowski P.; Krzyżowska M.; Celichowski G.; Grobelny J. The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J. Nanopart. Res. 2017, 19, 273.10.1007/s11051-017-3973-9. PubMed DOI PMC
Zakaria H. M.; Shah A.; Konieczny M.; Hoffmann J. A.; Nijdam A. J.; Reeves M. E. Small Molecule- and Amino Acid-Induced Aggregation of Gold Nanoparticles. Langmuir 2013, 29, 7661–7673. 10.1021/la400582v. PubMed DOI
Ashton J. R.; Gottlin E. B.; Patz E. F. Jr.; West J. L.; Badea C. T. A Comparative Analysis of EGFR-Targeting Antibodies for Gold Nanoparticle CT Imaging of Lung Cancer. PLoS One 2018, 13 (11), e020695010.1371/journal.pone.0206950. PubMed DOI PMC
Sen G. T.; Ozkemahli G.; Shahbazi R.; Erkekoglu P.; Ulubayram K.; Kocer-Gumusel B. The Effects of Polymer Coating of Gold Nanoparticles on Oxidative Stress and DNA Damage. Int. J. Toxicol. 2020, 39 (4), 328–340. 10.1177/1091581820927646. PubMed DOI
Poblete H.; Agarwal A.; Thomas S. S.; Bohne C.; Ravichandran R.; Phopase J.; Comer J.; Alarcon E. I. New Insights into Peptide–Silver Nanoparticle Interaction: Deciphering the Role of Cysteine and Lysine in the Peptide Sequence. Langmuir 2016, 32, 265–273. 10.1021/acs.langmuir.5b03601. PubMed DOI
Liu C.-P.; Chen K.-C.; Su C.-F.; Yu P.-Y.; Lee P.-W. Revealing the Active Site of Gold Nanoparticles for the Peroxidase-Like Activity: The Determination of Surface Accessibility. Catalysts 2019, 9 (6), 517.10.3390/catal9060517. DOI
Patra C. R.; Bhattacharya R.; Wang E.; Katarya A.; Lau J. S.; Dutta S.; Muders M.; Wang S.; Buhrow S. A.; Safgren S. L.; et al. Targeted Delivery of Gemcitabine to Pancreatic Adenocarcinoma Using Cetuximab as a Targeting Agent. Cancer Res. 2008, 68 (6), 1970–1978. 10.1158/0008-5472.CAN-07-6102. PubMed DOI
Tkacz-Szczesna B.; Soliwoda K.; Rosowski M.; Tomaszewska E.; Celichowski G.; Grobelny J. Modification of Gold and Silver Nanoparticles with n-Dialkyldithiophosphates. Colloids Surface A 2015, 468, 219–225. 10.1016/j.colsurfa.2014.12.033. DOI
Shao Q.; Hall C. K. Binding Preferences of Amino Acids for Gold Nanoparticles: A Molecular Simulation Study. Langmuir 2016, 32, 7888–7896. 10.1021/acs.langmuir.6b01693. PubMed DOI PMC
Tomaszewska E.; Ranoszek-Soliwoda K.; Sztandera K.; Błażałek P.; Głowacki R.; Janaszewska A.; Janasik B.; Celichowski G.; Wąsowicz W.; Klajnert-Maculewicz B.; et al. Systematic Studies of Gold Nanoparticles Functionalised with Thioglucose and its Cytotoxic Effect. Chemistry Select 2021, 6, 1230–1237. 10.1002/slct.202100034. DOI
Patra C. R.; Cao S.; Safgren S.; Bhattacharya R.; Ames M. M.; Shah V.; Reid J. M.; Mukherjee P. Intracellular Fate of a Targeted Delivery System. J. Biomed. Nanotechnol. 2008, 4, 508–514. 10.1166/jbn.2008.016. DOI
Smith M. C.; Crist R. M.; Clogston J. D.; McNeil S. E. Quantitative Analysis of PEG-Functionalized Colloidal Gold Nanoparticles Using Charged Aerosol Detection. Anal. Bioanal. Chem. 2015, 407, 3705–3716. 10.1007/s00216-015-8589-2. PubMed DOI
Tovar-Sánchez J. Y.; de la Mora M. B.; García-Fernández T.; Villagrán-Muniz M. A Colorimetric Study of Thiolation in Gold Nanoparticles Synthesized by Laser Ablation in Liquids. Mater. Lett. 2023, 337, 13392310.1016/j.matlet.2023.133923. DOI
Moser M.; Schneider R.; Behnke T.; Schneider T.; Falkenhagen J.; Resch-Genger U. Ellman’s and Aldrithiol Assay as Versatile and Complementary Tools for the Quantification of Thiol Groups and Ligands on Nanomaterials. Anal. Chem. 2016, 88 (17), 8624–8631. 10.1021/acs.analchem.6b01798. PubMed DOI
Ranoszek-Soliwoda K.; Czechowska E.; Tomaszewska E.; Celichowski G.; Kowalczyk T.; Sakowicz T.; Szemraj J.; Grobelny J. Catalase-modified gold nanoparticles: Determination of the degree of protein adsorption by gel electrophoresis. Colloid Surface B 2017, 159, 533–539. 10.1016/j.colsurfb.2017.08.019. PubMed DOI
Qian W.; Murakami M.; Ichikawa Y.; Che Y. Highly Efficient and Controllable PEGylation of Gold Nanoparticles Prepared by Femtosecond Laser Ablation in Water. J. Phys. Chem. C 2011, 115 (47), 23293–23298. 10.1021/jp2079567. DOI
Bastos M.; Abian O.; Johnson C. M.; Ferreira-da-Silva F.; Vega S.; Jimenez-Alesanco A.; Ortega-Alarcon D.; Velazquez-Campoy A. Isothermal Titration Calorimetry. Nat. Rev. Methods Primers 2023, 3 (17), 1–28. 10.1038/s43586-023-00199-x. DOI
Prozeller D.; Morsbach S.; Landfester K. Isothermal Titration Calorimetry as a Complementary Method for Investigating Nanoparticle–Protein Interactions. Nanoscale 2019, 11, 19265–19273. 10.1039/C9NR05790K. PubMed DOI
Cedervall T.; Lynch I.; Lindman S.; Berggård T.; Thulin E.; Nilsson H.; Dawson K. A.; Linse S. Understanding the Nanoparticle–Protein Corona Using Methods to Quantify Exchange Rates and Affinities of Proteins for Nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2007, 104 (7), 2050–2055. 10.1073/pnas.0608582104. PubMed DOI PMC
De M.; You C.-C.; Srivastava S.; Rotello V. M. Biomimetic Interactions of Proteins with Functionalized Nanoparticles: A Thermodynamic Study. J. Am. Chem. Soc. 2007, 129 (35), 10747–10753. 10.1021/ja071642q. PubMed DOI
Goel K.; Zuñiga-Bustos M.; Lazurko C.; Jacques E.; Galaz-Araya C.; Valenzuela-Henriquez F.; Pacioni N. L.; Couture J.-F.; Poblete H.; Alarcon E. I. Nanoparticle Concentration vs Surface Area in the Interaction of Thiol-Containing Molecules: Toward a Rational Nanoarchitectural Design of Hybrid Materials; CS Appl. Mater. Interfaces 2019, 11 (19), 17697–17705. 10.1021/acsami.9b03942. PubMed DOI
Joshi H.; Shirude P. S.; Bansal V.; Ganesh K. N.; Sastry M. (2004) Isothermal Titration Calorimetry Studies on the Binding of Amino Acids to Gold Nanoparticles. J. Phys. Chem. B 2004, 108, 11535–11540. 10.1021/jp048766z. DOI
Ravi V.; Binz J. M.; Rioux R. M. Thermodynamic Profiles at the Solvated Inorganic–Organic Interface: The Case of Gold–Thiolate Monolayers. Nano Lett. 2013, 13, 4442–4448. 10.1021/nl402315z. PubMed DOI
Wrzesińska A.; Tomaszewska E.; Ranoszek-Soliwoda K.; Bobowska I.; Grobelny J.; Ulański J.; Wypych-Puszkarz A. Gold Nanoparticles as Effective ion Traps in Poly(dimethylsiloxane) Cross-Linked by Metal-Ligand Coordination. Molecules 2022, 27 (11), 3579.10.3390/molecules27113579. PubMed DOI PMC
Lunardi C. N.; Gomes A. J.; Rocha F. S.; De Tommaso J.; Patience G. S. Experimental Methods in Chemical Engineering: Zeta Potential. Can. J. Chem. Eng. 2021, 99 (3), 627–639. 10.1002/cjce.23914. DOI
Himmelhaus M.; Eisert F.; Buck M.; Grunze M. Self-Assembly of n-Alkanethiol Monolayers. A Study by IR–Visible Sum Frequency Spectroscopy (SFG); Phys. Chem. B 2000, 104, 576–584. 10.1021/jp992073e. DOI
Bedford E.; Humblot V.; Méthivier C.; Pradier C.-M.; Gu F.; Tielens F.; Boujday S. An Experimental and Theoretical Approach to Investigate the Effect of Chain Length on Aminothiol Adsorption and Assembly on Gold. Chem. - Eur. J. 2015, 21 (41), 14555–14561. 10.1002/chem.201500653. PubMed DOI
Rouhana L. L.; Moussallem M. D.; Schlenoff J. B. Adsorption of Short-Chain Thiols and Disulfides onto Gold under Defined Mass Transport Conditions: Coverage, Kinetics, and Mechanism. J. Am. Chem. Soc. 2011, 133 (40), 16080–16091. 10.1021/ja2041833. PubMed DOI
Love J. C.; Estroff L. A.; Kriebel J. K.; Nuzzo R. G.; Whitesides G. M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105 (4), 1103–1170. 10.1021/cr0300789. PubMed DOI