Aggregation behavior and reproductive compatibility in the family Cimicidae

. 2017 Oct 13 ; 7 (1) : 13163. [epub] 20171013

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid29030574

Grantová podpora
P30 ES025128 NIEHS NIH HHS - United States

Odkazy

PubMed 29030574
PubMed Central PMC5640654
DOI 10.1038/s41598-017-12735-3
PII: 10.1038/s41598-017-12735-3
Knihovny.cz E-zdroje

Bed bugs (Cimex lectularius) provide a unique opportunity to understand speciation and host-associated divergence in parasites. Recently, two sympatric but genetically distinct lineages of C. lectularius were identified: one associated with humans and one associated with bats. We investigated two mechanisms that could maintain genetic differentiation in the field: reproductive compatibility (via mating crosses) and aggregation fidelity (via two-choice sheltering assays). Effects were assessed at the intra-lineage level (within human-associated bed bugs), inter-lineage level (between human- and bat-associated bed bugs), and inter-species level (between C. lectularius and Cimex pipistrelli [bat bug]). Contrary to previous reports, bed bugs were found to be reproductively compatible at both the intra- and inter-lineage levels, but not at the inter-species level (although three hybrids were produced, one of which developed into an adult). Lineage- and species-specific aggregation fidelity was only detected in 8% (4 out of 48) of the aggregation fidelity assays run. These results indicate that under laboratory conditions, host-associated lineages of bed bugs are reproductively compatible, and aggregation pheromones are not capable of preventing gene flow between lineages.

Zobrazit více v PubMed

Saenz VL, Booth W, Schal C, Vargo EL. Genetic analysis of bed bug populations reveals small propagule size within individual infestations but high genetic diversity across infestations from the eastern United States. J. Med. Entomol. 2012;49:865–875. doi: 10.1603/ME11202. PubMed DOI

Booth W, et al. Molecular markers reveal infestation dynamics of the bed bug (Hemiptera: Cimicidae) within apartment buildings. J. Med. Entomol. 2012;49:535–546. doi: 10.1603/ME11256. PubMed DOI

Fountain T, Butlin RK, Reinhardt K, Otti O. Outbreeding effects in an inbreeding insect, Cimex lectularius. Ecol. Evol. 2015;5:409–418. doi: 10.1002/ece3.1373. PubMed DOI PMC

Barton NH, Charlesworth B. Genetic revolutions, founder effects, and speciation. Annu. Rev. Ecol. Syst. 1984;15:133–164. doi: 10.1146/annurev.es.15.110184.001025. DOI

Usinger, R. L. Monograph of Cimicidae (Hemiptera, Heteroptera). 585 (Entomological Society of America, 1966).

Bush GL. Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae) Evolution. 1969;23:237–251. doi: 10.1111/j.1558-5646.1969.tb03508.x. PubMed DOI

Feder, J. L. & Bush, G. L. A field test of differential host-plant usage between two sibling species of Rhagoletis pomonella fruit flies (Diptera: Tephritidae) and its consequences for sympatric models of speciation. Evolution, 1813–1819 (1989). PubMed

Balvín O, Munclinger P, Kratochvíl L, Vilímová J. Mitochondrial DNA and morphology show independent evolutionary histories of bedbug Cimex lectularius (Heteroptera: Cimicidae) on bats and humans. Parasitol. Res. 2012;111:457–469. doi: 10.1007/s00436-012-2862-5. PubMed DOI

Wawrocka K, Bartonička T. Two different lineages of bedbug (Cimex lectularius) reflected in host specificity. Parasitol. Res. 2013;112:3897–3904. doi: 10.1007/s00436-013-3579-9. PubMed DOI

Booth W, Balvín O, Vargo EL, Vilímová J, Schal C. Host association drives genetic divergence in the bed bug. Cimex lectularius. Mol. Ecol. 2015;24:980–992. doi: 10.1111/mec.13086. PubMed DOI

Wawrocka K, Balvín O, Bartonička T. Reproduction barrier between two lineages of bed bug (Cimex lectularius) (Heteroptera: Cimicidae) Parasitol. Res. 2015;114:3019–3025. doi: 10.1007/s00436-015-4504-1. PubMed DOI

Via S. Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol. Evol. 2001;16:381–390. doi: 10.1016/S0169-5347(01)02188-7. PubMed DOI

Benoit JB, Del Grosso NA, Yoder JA, Denlinger DL. Resistance to dehydration between bouts of blood feeding in the bed bug, Cimex lectularius, is enhanced by water conservation, aggregation, and quiescence. Am. J. Trop. Med. Hyg. 2007;76:987–993. PubMed

Saenz VL, Santangelo RG, Vargo EL, Schal C. Group living accelerates bed bug (Hemiptera: Cimicidae) development. J. Med. Entomol. 2014;51:293–295. doi: 10.1603/ME13080. PubMed DOI

Kopanic RJ, Holbrook GL, Sevala V. An adaptive benefit of facultative coprophagy in the German cockroach Blattella germanica. Ecol. Entomol. 2001;26:154–162. doi: 10.1046/j.1365-2311.2001.00316.x. DOI

Uzsák A, Schal C. Differential physiological responses of the German cockroach to social interactions during the ovarian cycle. J. Exp. Biol. 2012;215:3037–3044. doi: 10.1242/jeb.069997. PubMed DOI

Gries R, et al. Bed bug aggregation pheromone finally identified. Angewandte Chemie. 2015;127:1151–1154. doi: 10.1002/ange.201409890. PubMed DOI

Balvín O, Bartonička T, Pilařová K, DeVries Z, Schal C. Discrimination between lineage-specific shelters by bat-and human-associated bed bugs does not constitute a stable reproductive barrier. Parasitol. Res. 2017;116:237–242. doi: 10.1007/s00436-016-5284-y. PubMed DOI

SAS Institute. SAS User’s Guide: Statistics. (SAS Institute, Inc., 1985).

Scriber JM. The effects of sequentially switching foodplants upon biomass and nitrogen utilization by polyphagous and stenophagous Papilio larvae. Entomol Exp Appl. 1979;25:203–215. doi: 10.1111/j.1570-7458.1979.tb02872.x. DOI

Karowe DN. Facultative monophagy as a consequence of prior feeding experience: behavioral and physiological specialization in Colias philodice larvae. Oecologia. 1989;78:106–111. doi: 10.1007/BF00377204. PubMed DOI

Sharon G, et al. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 2010;107:20051–20056. doi: 10.1073/pnas.1009906107. PubMed DOI PMC

Werren JH. Biology of wolbachia. Annu. Rev. Entomol. 1997;42:587–609. doi: 10.1146/annurev.ento.42.1.587. PubMed DOI

Stouthamer R, Breeuwer JA, Hurst GD. Wolbachia pipientis: microbial manipulator of arthropod reproduction . Annual Reviews in Microbiology. 1999;53:71–102. doi: 10.1146/annurev.micro.53.1.71. PubMed DOI

Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology. 2008;6:741–751. doi: 10.1038/nrmicro1969. PubMed DOI

Newberry K. Production of a hybrid between the bedbugs Cimex hemipterus and Cimex lectularius. Med. Vet. Entomol. 1988;2:297–300. doi: 10.1111/j.1365-2915.1988.tb00199.x. PubMed DOI

Wada-Katsumata A, et al. Gut bacteria mediate aggregation in the German cockroach. Proceedings of the National Academy of Sciences. 2015;112:15678–15683. PubMed PMC

Woodbury N, Gries G. Firebrats, Thermobia domestica, aggregate in response to the microbes Enterobacter cloacae and Mycotypha microspora. Entomol Exp Appl. 2013;147:154–159. doi: 10.1111/eea.12054. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...