Despite genetic isolation in sympatry, post-copulatory reproductive barriers have not evolved between bat- and human-associated common bedbugs (Cimex lectularius L.)
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-08468J
Grantová Agentura České Republiky
18-08468J
Grantová Agentura České Republiky
521/4-1
Deutsche Forschungsgemeinschaft
1666/4-1
Deutsche Forschungsgemeinschaft
PubMed
37950221
PubMed Central
PMC10636883
DOI
10.1186/s12983-023-00514-y
PII: 10.1186/s12983-023-00514-y
Knihovny.cz E-zdroje
- Klíčová slova
- Ecological speciation, Host adaptation, Host fidelity, Sperm storage,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The common bedbug Cimex lectularius is a widespread ectoparasite on humans and bats. Two genetically isolated lineages, parasitizing either human (HL) or bat (BL) hosts, have been suggested to differentiate because of their distinct ecology. The distribution range of BL is within that of HL and bedbugs live mostly on synanthropic bat hosts. This sympatric co-occurrence predicts strong reproductive isolation at the post-copulatory level. RESULTS: We tested the post-copulatory barrier in three BL and three HL populations in reciprocal crosses, using a common-garden blood diet that was novel to both lineages. We excluded pre-copulation isolation mechanisms and studied egg-laying rates after a single mating until the depletion of sperm, and the fitness of the resulting offspring. We found a higher sperm storage capability in BL, likely reflecting the different seasonal availability of HL and BL hosts. We also observed a notable variation in sperm function at the population level within lineages and significant differences in fecundity and offspring fitness between lineages. However, no difference in egg numbers or offspring fitness was observed between within- and between-lineage crosses. CONCLUSIONS: Differences in sperm storage or egg-laying rates between HL and BL that we found did not affect reproductive isolation. Neither did the population-specific variation in sperm function. Overall, our results show no post-copulatory reproductive isolation between the lineages. How genetic differentiation in sympatry is maintained in the absence of a post-copulatory barrier between BL and HL remains to be investigated.
Applied Zoology Department of Biology Technische Universität Dresden 01062 Dresden Germany
Genomics and Bioinformatics University of Bayreuth Universitätsstrasse 30 95440 Bayreuth Germany
Zobrazit více v PubMed
Butlin RK. The marie curie speciation network. What do we need to know about speciation? Trends Ecol Evol. 2012;27:27–39. doi: 10.1016/j.tree.2011.09.002. PubMed DOI
Coyne JA, Orr HA. Speciation. Sunderland, MA, USA: Sinauer Associates, Inc.; 2004.
Geiselhardt S, Otte T, Hilker M. Looking for a similar partner: host plants shape mating preferences of herbivorous insects by altering their contact pheromones. Ecol Lett. 2012;15:971–977. doi: 10.1111/j.1461-0248.2012.01816.x. PubMed DOI
Nosil P. Ecological Speciation. Oxford, UK: Oxford University Press; 2012.
Shaw KL, Lambert JM. Dissecting post-mating prezygotic speciation phenotypes. BioEssays. 2014;36:1050–1053. doi: 10.1002/bies.201400096. PubMed DOI
Eady PE. Postcopulatory, prezygotic reproductive isolation. J Zool. 2001;253:47–52. doi: 10.1017/S095283690100005X. DOI
Howard DJ, Palumbi SR, Birge LM, Manier MK. Sperm and speciation. In: Birkhead TR, Hosken TJ, Pitnick S, editors. Sperm biology: An evolutionary perspective. London, UK: Academic Press; 2009. s. 367–403.
Yeates SE, Diamond SE, Einum S, Emerson BC, Holt WV, Gage MJG. Cryptic choice of conspecific sperm controlled by the impact of ovarian fluid on sperm swimming behavior. Evolution. 2013;67:3523–3536. doi: 10.1111/evo.12208. PubMed DOI PMC
Dixon SM, Coyne JA, Noor MA. The evolution of conspecific sperm precedence in Drosophila. Mol Ecol. 2003;12:1179–1184. doi: 10.1046/j.1365-294X.2003.01742.x. PubMed DOI
Manier MK, Lüpold S, Belote JM, Starmer WT, Berben KS, Ala-Honkola O, et al. Postcopulatory sexual selection generates speciation phenotypes in Drosophila. Curr Biol. 2013;23:1853–1862. doi: 10.1016/j.cub.2013.07.086. PubMed DOI
Larson EL, Hume GL, Andrés JA, Harrison RG. Post-mating prezygotic barriers to gene exchange between hybridizing field crickets. J Evol Biol. 2011;25:174–186. doi: 10.1111/j.1420-9101.2011.02415.x. PubMed DOI
Rugman-Jones PF, Eady PE. Conspecific sperm precedence in Callosobruchus subinnotatus (Coleoptera: Bruchidae): mechanisms and consequences. Proc Biol Sci. 2007;274:983–988. PubMed PMC
Tyler F, Harrison XA, Bretman A, Veen T, Rodríguez-Muñoz R, Tregenza T. Multiple post-mating barriers to hybridization in field crickets. Mol Ecol. 2013;22:1640–1649. doi: 10.1111/mec.12187. PubMed DOI
Manier MK, Belote JM, Berben KS, Lüpold S, Ala-Honkola O, Collins WF, et al. Rapid diversification of sperm precedence traits and processes among three sibling Drosophila species. Evolution. 2013;67:2348–2362. doi: 10.1111/evo.12117. PubMed DOI
Manier MK, Lüpold S, Pitnick S, Starmer WT. An analytical framework for estimating fertilization bias and the fertilization set from multiple sperm-storage organs. Am Nat. 2013;182:552–561. doi: 10.1086/671782. PubMed DOI
Mayr N. Animal species and evolution. Cambridge, UK: Belknap Press of Harvard University Press; 1963.
Ritchie MG. Sexual selection and speciation. Annu Rev Ecol Evol Syst. 2007;38:79–102. doi: 10.1146/annurev.ecolsys.38.091206.095733. DOI
Barluenga M, Stölting KN, Salzburger W, Muschick M, Meyer A. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature. 2006;439:719–723. doi: 10.1038/nature04325. PubMed DOI
Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL, Dasgupta A, et al. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature. 2016;536:165–170. doi: 10.1038/nature18959. PubMed DOI PMC
Mehlhorn H. Encyclopedia of parasitology. Berlin, Germany: Springer; 2008.
Balvín O, Munclinger P, Kratochvíl L, Vilímova J. Mitochondrial DNA and morphology show independent evolutionary histories of bedbug Cimex lectularius (Heteroptera: Cimicidae) on bats and humans. Parasitol Res. 2012;111:457–469. doi: 10.1007/s00436-012-2862-5. PubMed DOI
Booth W, Balvín O, Vargo EL, Vilímová J, Schal C. Host association drives genetic divergence in the bed bug. Cimex lectularius Mol Ecol. 2015;24:980–992. doi: 10.1111/mec.13086. PubMed DOI
Bowen W, Gleeson R. The Evolution of Human Settlements. London, UK: Palgrave Macmillan Cham;2019.
Balvín O, Bartonička T, Simov N, Paunovic M, Vilímová J. Distribution and host relations of species of the genus Cimex on bats in Europe. Folia Zool. 2014;63.
Horáček I. Remarks on the causality of population decline in European bats. Myotis. 1983;21–22:138–147.
Wawrocka K, Bartonička T. Two different lineages of bedbug (Cimex lectularius) reflected in host specificity. Parasitol Res. 2013;112:3897–3904. doi: 10.1007/s00436-013-3579-9. PubMed DOI
Reinhardt K, Siva-Jothy MT, Naylor R. Situation exploitation: higher male mating succes when female resistance is reduced by feeding. Evolution. 2008;63:29–39. doi: 10.1111/j.1558-5646.2008.00502.x. PubMed DOI
Turnell BR, Reinhardt K. Sperm metabolic rate predicts female mating frequency across Drosophila species. Evolution. 2022;76:573–584. doi: 10.1111/evo.14435. PubMed DOI
Wawrocka K, Balvín O, Bartonička T. Reproduction barrier between two lineages of bed bug (Cimex lectularius) (Heteroptera: Cimicidae) Parasitol Res. 2015;114:3019–3025. doi: 10.1007/s00436-015-4504-1. PubMed DOI
Křemenová J, Bartonička T, Balvín O, Massino C, Reinhardt K, Sasínková M, et al. Male diet affects female fitness and sperm competition in human- and bat-associated lineages of the common bedbug. Cimex lectularius Sci Rep. 2021;11:15538. doi: 10.1038/s41598-021-94622-6. PubMed DOI PMC
DeVries Z, Mick R, Balvín O, Schal C. Aggregation behavior and reproductive compatibility in the family Cimicidae. Sci Rep. 2017;7:13163. doi: 10.1038/s41598-017-12735-3. PubMed DOI PMC
DeVries Z, Santangelo, Richard G., Booth W, Lawrence G, Balvín O, Bartonička T, Schal C.Reproductive compatibility among populations and host-associated lineages of the common bed bug (Cimex lectularius L.). Ecol Evol.. 2020;2020:11090–9. PubMed PMC
Reinhardt K, Naylor RA, Siva-Jothy MT. Ejaculate components delay reproductive senescence while elevating female reproductive rate in an insect. PNAS. 2009;106:21743–21747. doi: 10.1073/pnas.0905347106. PubMed DOI PMC
Otti O, McTighe AP, Reinhardt K. In vitro antimicrobial sperm protection by an ejaculate-like substance. Funct Ecol. 2013;27:219–226. doi: 10.1111/1365-2435.12025. DOI
Kaldun B, Otti O. Condition-dependent ejaculate production affects male mating behavior in the common bedbug Cimex lectularius. Ecol Evol. 2016;6:2548–2558. doi: 10.1002/ece3.2073. PubMed DOI PMC
Fountain T, Butlin RK, Reinhardt K, Otti O. Outbreeding effects in an inbreeding insect. Cimex lectularius Ecol Evol. 2015;5:409–418. doi: 10.1002/ece3.1373. PubMed DOI PMC
Ala-Honkola O, Manier MK. Multiple mechanisms of cryptic female choice act on intraspecific male variation in Drosophila simulans. Behav Ecol Sociobiol. 2016;70:519–532. doi: 10.1007/s00265-016-2069-3. DOI
Roth S, Reinhardt K. Facultative sperm storage in response to nutritional status in a female insect. Proc Biol Sci. 2003;270:S54–S56. doi: 10.1098/rsbl.2003.0008. PubMed DOI PMC
Fountain T, Duvaux L, Horsburgh G, Reinhardt K, Butlin RK. Human-facilitated metapopulation dynamics in an emerging pest species. Cimex lectularius Mol Ecol. 2014;23:1071–1084. doi: 10.1111/mec.12673. PubMed DOI PMC
Loye JE. The life history and ecology of the cliff swallow bug, Oeciacus vicarius (Hemiptera: Cimicidae) Entomologie médical et parasitologique. 1985;23:133–139.
Reinhardt K, Dobler R, Abbott J. An ecology of sperm: sperm diversification by natural selection. Annu Rev Ecol Evol Syst. 2015;46:435–459. doi: 10.1146/annurev-ecolsys-120213-091611. DOI
Coyne JA, Orr HA. Patterns of speciation in Drosophila. Evolution. 1989;43:362–381. doi: 10.2307/2409213. PubMed DOI
Balvín O, Bartonička T, Pilařová K, DeVries Z, Schal C. Discrimination between lineage-specific shelters by bat- and human-associated bed bugs does not constitute a stable reproductive barrier. Parasitol Res. 2017;116:237–242. doi: 10.1007/s00436-016-5284-y. PubMed DOI
Balvín O, Bartonička T. Cimicids and bat hosts in the Czech and Slovak Republics: ecology and distribution. Vespertilio. 2014;17:23–36.
Balvín O, Ševčík M, Jahelková H, Bartonička T, Orlova M, Vilímová J. Transport of bugs of the genus Cimex (Heteroptera: Cimicidae) by bats in western Palaearctic. Vespertilio. 2012;16:43–54.
Booth W, Saenz VL, Santangelo RG, Wang C, Schal C, Vargo EL. Molecular markers reveal infestation dynamics of the bed bug (Hemiptera: Cimicidae) within apartment buildings. J Med Entomol. 2012;49:535–546. doi: 10.1603/ME11256. PubMed DOI
Křemenová J. The role of ecological speciation in the reproduction isolation of bugs [Ph.D. Thesis]. [Brno, Czech Republic]: Masaryk University; 2020.
Montes C, Cuadrillero C, Vilella D. Maintenance of a laboratory colony of Cimex lectularius (Hemiptera: Cimicidae) using an artificial feeding technique. J Med Entomol. 2002;39:675–679. doi: 10.1603/0022-2585-39.4.675. PubMed DOI
Siva-Jothy MT, Stutt AD. A matter of taste: direct detection of mating status in the bed bug. Proc Biol Sci. 2003;270:649–652. doi: 10.1098/rspb.2002.2260. PubMed DOI PMC
Omori N. Experimental studies on the cohabitation and crossing of bed-bugs (Cimex lectularius L. and C. hemipterus F.). Preliminary report. In: Uschmann G, editor. VII International Kongres der Entomologie. 1939. s. 895–915.
Walpole DE. Cross-mating studies between two species of bedbugs (Hemiptera: Cimicidae) with a description of a marker of interspecific mating. S Afri J Sci. 1988;84:215–216.
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2021. https://www.R-project.org/. Accessed 10 Jan 2022.
Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2015;67:1–48.
Kuznetsova A, Brockhoff P, Christensen R. lmerTest package: Tests in linear mixed effects models. J Stat Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13. DOI
Therneau T. coxme: Mixed effects cox models. 2019. https://cran.r-project.org/package=coxme. Accessed 10 Jan 2022.
Hartig F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.3.3.0. 2020. https://CRAN.R-project.org/package=DHARMa. Accessed 10 Jan 2022.
Bretz F, Hothorn T, Westfall P. Multiple comparisons using R. 1. London: Chapman and Hall; 2011.
PROSize. Waldbronn, Germany: Agilent Technologies; 2019. www.agilent.com. Accessed 10 Jan 2022.
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x. DOI
Peakall R, Smouse P. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x. PubMed DOI PMC