Male diet affects female fitness and sperm competition in human- and bat-associated lineages of the common bedbug, Cimex lectularius

. 2021 Jul 30 ; 11 (1) : 15538. [epub] 20210730

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34330972
Odkazy

PubMed 34330972
PubMed Central PMC8324850
DOI 10.1038/s41598-021-94622-6
PII: 10.1038/s41598-021-94622-6
Knihovny.cz E-zdroje

Sperm performance can vary in ecologically divergent populations, but it is often not clear whether the environment per se or genomic differences arising from divergent selection cause the difference. One powerful and easily manipulated environmental effect is diet. Populations of bedbugs (Cimex lectularius) naturally feed either on bat or human blood. These are diverging genetically into a bat-associated and a human-associated lineage. To measure how male diet affects sperm performance, we kept males of two HL and BL populations each on either their own or the foreign diet. Then we investigated male reproductive success in a single mating and sperm competition context. We found that male diet affected female fecundity and changed the outcome of sperm competition, at least in the human lineage. However, this influence of diet on sperm performance was moulded by an interaction. Bat blood generally had a beneficial effect on sperm competitiveness and seemed to be a better food source in both lineages. Few studies have examined the effects of male diet on sperm performance generally, and sperm competition specifically. Our results reinforce the importance to consider the environment in which sperm are produced. In the absence of gene flow, such differences may increase reproductive isolation. In the presence of gene flow, however, the generally better sperm performance after consuming bat blood suggests that the diet is likely to homogenise rather than isolate populations.

Zobrazit více v PubMed

Coyne, J. A. & Orr, A. H. Speciation. (Sinauer associates, Inc., 2004).

Nosil, P. Ecological speciation. (Oxford University Press, 2012). 10.1093/acprof:osobl/9780199587100.001.0001

Parker GA. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 1970;45:525–567. doi: 10.1111/j.1469-185X.1970.tb01176.x. DOI

Almbro M, Dowling DK, Simmons LW. Effects of vitamin E and beta-carotene on sperm competitiveness. Ecol. Lett. 2011;14:891–895. doi: 10.1111/j.1461-0248.2011.01653.x. PubMed DOI

Sutter A, Immler S. Within-ejaculate sperm competition. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2020;375:20200066. doi: 10.1098/rstb.2020.0066. PubMed DOI PMC

Balfour VL, Black D, Shuker DM. Mating failure shapes the patterns of sperm precedence in an insect. Behav. Ecol. Sociobiol. 2020;74:1–14. doi: 10.1007/s00265-020-2801-x. DOI

Reinhardt K, Dobler R, Abbott J. An ecology of sperm: Sperm diversification by natural selection. Annu. Rev. Ecol. Evol. Syst. 2015;46:435–459. doi: 10.1146/annurev-ecolsys-120213-091611. DOI

Dobler R, Reinhardt K. Heritability, evolvability, phenotypic plasticity and temporal variation in sperm-competition success of Drosophila melanogaster. J. Evol. Biol. 2016;29:929–941. doi: 10.1111/jeb.12858. PubMed DOI

Evans JP, Lymbery RA, Wiid KS, Rahman MM, Gasparini C. Sperm as moderators of environmentally induced paternal effects in a livebearing fish. Biol. Lett. 2017;13:20170087. doi: 10.1098/rsbl.2017.0087. PubMed DOI PMC

Alavi SMH, Cosson J. Sperm motility in fishes. I. Effects of temperature and pH: A review. Cell Biol. Int. 2005;29:101–110. doi: 10.1016/j.cellbi.2004.11.021. PubMed DOI

Foresta C, et al. Human papillomavirus found in sperm head of young adult males affects the progressive motility. Fertil. Steril. 2010;93:802–806. doi: 10.1016/j.fertnstert.2008.10.050. PubMed DOI

Mann, T. The biochemistry of semen and the male reproductive tract. (London: Methuen & Co (1964), 1964).

Otti O, McTighe AP, Reinhardt K. In vitro antimicrobial sperm protection by an ejaculate-like substance. Funct. Ecol. 2013;27:219–226. doi: 10.1111/1365-2435.12025. DOI

Valdebenito I, Fletcher C, Vera V, Fernández J. Physical-chemical factors that regulate spermatic motility in fish: Basic and applied aspects. A review. Arch. Med. Vet. 2009;41:97–106. doi: 10.4067/S0301-732X2009000200002. DOI

Werner M, Simmons LW. Insect sperm motility. Biol. Rev. 2008;83:191–208. doi: 10.1111/j.1469-185X.2008.00039.x. PubMed DOI

Barros CM, Pegorer MF, Vasconcelos JLM, Eberhardt BG, Monteiro FM. Importance of sperm genotype (indicus versus taurus) for fertility and embryonic development at elevated temperatures. Theriogenology. 2006;65:210–218. doi: 10.1016/j.theriogenology.2005.09.024. PubMed DOI

Blanco JM, Gee G, Wildt DE, Donoghue AM. Species variation in osmotic, cryoprotectant, and cooling rate tolerance in poultry, eagle, and peregrine falcon spermatozoa. Biol. Reprod. 2000;63:1164–1171. doi: 10.1095/biolreprod63.4.1164. PubMed DOI

Chacur MGM, Mizusaki KT, Filho LRAG, Oba E, Ramos AA. Seasonal effects on semen and testosterone in zebu and taurine bulls. Acta Sci. Vet. 2013;41:1110.

Lewis SM, Tigreros N, Fedina T, Ming QL. Genetic and nutritional effects on male traits and reproductive performance in Tribolium flour beetles. J. Evol. Biol. 2012;25:438–451. doi: 10.1111/j.1420-9101.2011.02408.x. PubMed DOI

Schramm G-P. Studies on genotype specific modified methods for cryopreservation of cock semen. Züchtungskunde. 2008;80:137–145.

Rohmer C, David JR, Moreteau B, Joly D. Heat induced male sterility in Drosophila melanogaster: Adaptive genetic variations among geographic populations and role of the Y chromosome. J. Exp. Biol. 2004;207:2735–2743. doi: 10.1242/jeb.01087. PubMed DOI

Reinhardt K, Otti O. Comparing sperm swimming speed. Evol. Ecol. Res. 2012;14:1–8.

Öst A, et al. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell. 2014;159:1352–1364. doi: 10.1016/j.cell.2014.11.005. PubMed DOI

Wathes DC, Abayasekara DRE, Aitken RJ. Polyunsaturated fatty acids in male and female reproduction. Biol. Reprod. 2007;77:190–201. doi: 10.1095/biolreprod.107.060558. PubMed DOI

Diaz-Fontdevila M, Bustos-Obregon E. Cholesterol and polyunsaturated acid enriched diet: Effect on kinetics of the acrosome reaction in rabbit spermatozoa. Mol. Reprod. Dev. 1993;35:176–180. doi: 10.1002/mrd.1080350211. PubMed DOI

Keber R, Rozman D, Horvat S. Sterols in spermatogenesis and sperm maturation. J. Lipid Res. 2013;54:20–33. doi: 10.1194/jlr.R032326. PubMed DOI PMC

Guo R, Reinhardt K. Dietary polyunsaturated fatty acids affect volume and metabolism of Drosophila melanogaster sperm. J. Evol. Biol. 2020 doi: 10.1111/jeb.13591. PubMed DOI

Rato L, Alves MG, Cavaco JE, Oliveira PF. High-energy diets: a threat for male fertility? Obes. Rev. 2014;15:996–1007. doi: 10.1111/obr.12226. PubMed DOI

Ferramosca A, Moscatelli N, Di Giacomo M, Zara V. Dietary fatty acids influence sperm quality and function. Andrology. 2017;5:423–430. doi: 10.1111/andr.12348. PubMed DOI

Paynter E, et al. Insights into the molecular basis of long-term storage and survival of sperm in the honeybee (Apis mellifera) Sci. Rep. 2017;7:1–9. doi: 10.1038/srep40236. PubMed DOI PMC

Chinoy NJ, Mehta D, Jhala D. Effects of fluoride ingestion with protein deficient or protein enriched diets on sperm function of mice. Fluoride. 2006;39:11–16.

Watkins AJ, et al. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. Proc. Natl. Acad. Sci. U. S. A. 2018;115:10064–10069. doi: 10.1073/pnas.1806333115. PubMed DOI PMC

Ferramosca A, Zara V. Bioenergetics of mammalian sperm capacitation. Biomed Res. Int. 2014;2014:902953. doi: 10.1155/2014/902953. PubMed DOI PMC

Vawda AI, Mandlwana JG. The effects of dietary protein deficiency on rat testicular function. Andrologia. 1990;22:575–583. doi: 10.1111/j.1439-0272.1990.tb02058.x. PubMed DOI

Carvalho M, et al. Effects of diet and development on the Drosophila lipidome. Mol. Syst. Biol. 2012;8:600. doi: 10.1038/msb.2012.29. PubMed DOI PMC

Macartney EL, Crean AJ, Nakagawa S, Bonduriansky R. Effects of nutrient limitation on sperm and seminal fluid: a systematic review and meta-analysis. Biol. Rev. 2019;94:1722–1739. doi: 10.1111/brv.12524. PubMed DOI

Avila FW, Sirot LK, LaFlamme BA, Rubinstein CD, Wolfner MF. Insect seminal fluid proteins: Identification and function. Annu. Rev. Entomol. 2011;56:21–40. doi: 10.1146/annurev-ento-120709-144823. PubMed DOI PMC

Wainwright MS, et al. Drosophila Sex Peptide controls the assembly of lipid microcarriers in seminal fluid. Proc. Natl. Acad. Sci. USA. 2021;118:e2019622118. doi: 10.1073/pnas.2019622118. PubMed DOI PMC

Elofsson H, Van Look K, Borg B, Mayer I. Influence of salinity and ovarian fluid on sperm motility in the fifteen-spined stickleback. J. Fish Biol. 2003;63:1429–1438. doi: 10.1111/j.1095-8649.2003.00256.x. DOI

Otti O, Johnston PR, Horsburgh GJ, Galindo J, Reinhardt K. Female transcriptomic response to male genetic and nongenetic ejaculate variation. Behav. Ecol. 2015;26:681–688. doi: 10.1093/beheco/aru209. DOI

Balvín O, Munclinger P, Kratochvíl L, Vilímová J. Mitochondrial DNA and morphology show independent evolutionary histories of bedbug Cimex lectularius (Heteroptera: Cimicidae) on bats and humans. Parasitol. Res. 2012;111:457–469. doi: 10.1007/s00436-012-2862-5. PubMed DOI

Booth W, Balvín O, Vargo EL, Vilímová J, Schal C. Host association drives genetic divergence in the bed bug. Cimex lectularius. Mol. Ecol. 2015;24:980–992. doi: 10.1111/mec.13086. PubMed DOI

Wawrocka K, Bartonička T. Two different lineages of bedbug (Cimex lectularius) reflected in host specificity. Parasitol. Res. 2013;112:3897–3904. doi: 10.1007/s00436-013-3579-9. PubMed DOI

Aak A, Rukke BA. Bed bugs, their blood sources and life history parameters: A comparison of artificial and natural feeding. Med. Vet. Entomol. 2014;28:50–59. doi: 10.1111/mve.12015. PubMed DOI

Reinhardt K, Naylor R, Siva-Jothy MT. Reducing a cost of traumatic insemination: Female bedbugs evolve a unique organ. Proc. R. Soc. B Biol. Sci. 2003;270:2371–2375. doi: 10.1098/rspb.2003.2515. PubMed DOI PMC

Reinhardt K, Naylor RA, Siva-Jothy MT. Situation exploitation: Higher male mating success when female resistance is reduced by feeding. Evolution (N. Y.). 2009;63:29–39. PubMed

Siva-Jothy MT, Stutt AD. A matter of taste: Direct detection of female mating status in the bedbug. Proc. R. Soc. B Biol. Sci. 2003;270:649–652. doi: 10.1098/rspb.2002.2260. PubMed DOI PMC

Davis NT. Studies of the reproductive physiology of Cimicidae (Hemiptera)-II. Artificial insemination and the function of the seminal fluid. J. Insect. Physiol. 1965;11:355–366. doi: 10.1016/0022-1910(65)90083-1. PubMed DOI

Kaldun B, Otti O. Condition-dependent ejaculate production affects male mating behavior in the common bedbug Cimex lectularius. Ecol. Evol. 2016;6:2548–2558. doi: 10.1002/ece3.2073. PubMed DOI PMC

Reinhardt K, Naylor RA, Siva-Jothy MT. Ejaculate components delay reproductive senescence while elevating female reproductive rate in an insect. Proc. Natl. Acad. Sci. USA. 2009;106:21743–21747. doi: 10.1073/pnas.0905347106. PubMed DOI PMC

Reinhardt K, Naylor R, Siva-Jothy MT. Male mating rate is constrained by seminal fluid availability in bedbugs, Cimex lectularius. PLoS ONE. 2011;6:282. doi: 10.1371/journal.pone.0022082. PubMed DOI PMC

Fountain T, Duvaux L, Horsburgh G, Reinhardt K, Butlin RK. Human-facilitated metapopulation dynamics in an emerging pest species. Cimex lectularius. Mol. Ecol. 2014;23:1071–1084. doi: 10.1111/mec.12673. PubMed DOI PMC

R Core Team. R: A language and environment for statistical computing. (2020).

Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13. DOI

Brooks ME, et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9:378–400. doi: 10.32614/RJ-2017-066. DOI

Therneau, T. M. coxme: Mixed effects cox models. (2019).

Harrison XA. A comparison of observation-level randomeffect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution. PeerJ. 2015;2015:114. PubMed PMC

Clark AG, Aguadé M, Prout TR, Harshman LG, Langley CH. Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics. 1995;139:189–201. doi: 10.1093/genetics/139.1.189. PubMed DOI PMC

Friberg U, Lew TA, Byrne PG, Rice WR. Assessing the potential for an ongoing arms race within and between the sexes: selection and heritable variation. Evol. (N.Y.) 2005;59:1540. PubMed

Morimoto J, Wigby S. Differential effects of male nutrient balance on pre-and post-copulatory traits, and consequences for female reproduction in Drosophila melanogaster. Sci. Rep. 2016;6:27673. doi: 10.1038/srep27673. PubMed DOI PMC

Rahman MM, Gasparini C, Turchini GM, Evans JP. Experimental reduction in dietary omega-3 polyunsaturated fatty acids depresses sperm competitiveness. Biol. Lett. 2014;10:20140623. doi: 10.1098/rsbl.2014.0623. PubMed DOI PMC

Hawkey, C. M. Comparative mammalian haematology : cellular components and blood coagulation of captive wild animals. (Butterworth-Heinemann, 2017).

Wawrocka K, Bartonička T. Erythrocyte size as one of potential causes of host preferences in cimicids (Heteroptera: Cimicidae: Cimex) Vespertilio. 2014;17:215–220.

Bunning H, et al. Protein and carbohydrate intake influence sperm number and fertility in male cockroaches, but not sperm viability. Proc. R. Soc. B Biol. Sci. 2015;282:1. PubMed PMC

Perez-Staples D, Harmer AMT, Collins SR, Taylor PW. Potential for pre-release diet supplements to increase the sexual performance and longevity of male Queensland fruit flies. Agric. For. Entomol. 2008;10:255–262. doi: 10.1111/j.1461-9563.2008.00385.x. DOI

Dàvila F, Aron S. Protein restriction affects sperm number but not sperm viability in male ants. J. Insect. Physiol. 2017;100:71–76. doi: 10.1016/j.jinsphys.2017.05.012. PubMed DOI

Olsen J, Ramlau-Hansen CH. Dietary fats may impact semen quantity and quality. Asian J. Androl. 2012;14:511–512. doi: 10.1038/aja.2012.52. PubMed DOI PMC

Birkhead TR, Martínez JG, Burke T, Froman DP. Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc. R. Soc. B Biol. Sci. 1999;266:1759–1764. doi: 10.1098/rspb.1999.0843. PubMed DOI PMC

Colegrave N, Birkhead TR, Lessells CM. Sperm precedence in zebra finches does not require special mechanisms of sperm competition. Proc. R. Soc. B Biol. Sci. 1995;259:223–228. doi: 10.1098/rspb.1995.0033. DOI

Simmons, L. W. Sperm competition and its evolutionary consequences in the insects. (Princeton University Press, 2001).

Tsubaki Y, Yamagishi M. ‘Longevity’ of sperm within the female of the melon fly, Dacus cucurbitae (Diptera: Tephritidae), and its relevance to sperm competition. J. Insect. Behav. 1991;4:243–250. doi: 10.1007/BF01054616. DOI

Yamagishi M, Itô Y, Tsubaki Y. Sperm competition in the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae): Effects of sperm ‘longevity’ on sperm precedence. J. Insect. Behav. 1992;5:599–608. doi: 10.1007/BF01048007. DOI

Reinhardt K. Evolutionary consequences of sperm cell aging. Q. Rev. Biol. 2007;82:375–393. doi: 10.1086/522811. PubMed DOI

Frankham R, Ralls K. Inbreeding leads to extinction. Nature. 1998;392:441–442. doi: 10.1038/33022. DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.12046896

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...