Microsatellite Markers: A Tool to Assess the Genetic Diversity of Yellow Mustard (Sinapis alba L.)

. 2023 Nov 29 ; 12 (23) : . [epub] 20231129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38068661

Grantová podpora
QK1910225 Ministry of Agriculture

Microsatellite markers were used for the assessment of genetic diversity and genetic structure in a germplasm collection of yellow mustard, Sinapis alba L. The comprehensive collection of genetic resources represented 187 registered varieties, landraces, and breeding materials. Microsatellites generated 44 polymorphic alleles in 15 loci. Eleven of them were medium to highly polymorphic, and the high levels of observed heterozygosity (0.12-0.83) and Nei's gene diversity index (0.11-0.68) indicated a high level of polymorphism. Based on PCoA and neighbor joining analyses, the genetic resources were divided into two groups. The range of genetic dissimilarity in the analysed collection was in the range of 0.00-1.00. The high level of dissimilarity between the accessions was documented by the high WAM value (33.82%). Bayesian clustering algorithms were performed in the STRUCTURE 2.3.4 software. The number of clusters was estimated at K = 2. The accessions were classified according to Q1/Q2 values. The low average values of the parameters Fst_1 (0.3482), Fst_2 (0.1916), and parameter alpha (0.0602) indicated substantial mating barriers between varieties and reproductive isolation due to the limited exchange of genetic resources between breeders. These results demonstrated the importance of extensive collections of genetic resources for the maintenance of genetic diversity and indicated considerable genetic differentiation among accessions.

Zobrazit více v PubMed

Hemingway J.S. The mustard species: Condiment and food ingredient use and potential as oilseed crops. In: Kimber D., McGregor D.I., editors. Brassica Oilseeds Production and Utilization. CAB International; Wallingford, UK: 1995. pp. 373–383.

Ruan S.F., Wang Z.X., Xiang S.J., Chen H.J., Shen Q., Liu L., Wu W.F., Cao S.W., Wang Z.W., Yang Z.J., et al. Mechanisms of white mustard seed (Sinapis alba L.) volatile oils as transdermal penetration enhancers. Fitoterapia. 2019;138:104195. doi: 10.1016/j.fitote.2019.104195. PubMed DOI

Bodnaryk R.P., Lamb R.J. Mechanisms of resistance to the flea beetle, Phyllotreta cruciferae (Goeze), in mustard seedlings, Sinapis alba L. Can. J. Plant Sci. 1991;71:13–20. doi: 10.4141/cjps91-002. DOI

Kumari P., Singh K.P., Rai P.K. Draft genome of multiple resistance donor plant Sinapis alba: An insight into SSRs, annotations and phylogenetics. PLoS ONE. 2020;15:e0231002. doi: 10.1371/journal.pone.0231002. PubMed DOI PMC

Valdes Y., Viaene N., Moens M. Effects of yellow mustard amendments on the soil nematode community in a potato field with focus on Globodera rostochiensis. Appl. Soil Ecol. 2012;59:39–47. doi: 10.1016/j.apsoil.2012.03.011. DOI

Krasnodębska-Ostręga B., Sadowska M., Biaduń E., Mazur R., Kowalska J. Sinapis alba as a useful plant in bioremediation—Studies of defense mechanisms and accumulation of As, Tl and PGEs. Int. J. Phytoremediat. 2022;24:1475–1490. doi: 10.1080/15226514.2022.2036098. PubMed DOI

Masierowska M. Floral nectaries and nectar production in brown mustard (Brassica juncea) and white mustard (Sinapis alba) (Brassicaceae) Plant Syst. Evol. 2003;238:97–107. doi: 10.1007/s00606-002-0273-2. DOI

Katepa-Mupondwa F., Gugel R.K., Raney J.P. Genetic diversity for agronomic, morphological and seed quality traits in Sinapis alba L. (yellow mustard) Can. J. Plant Sci. 2006;86:1015–1025. doi: 10.4141/P05-185. DOI

Khoury C.K., Brush S., Costich D.E., Curry H.A., de Haan S., Engels J.M.M., Guarino L., Hoban S., Mercer K.L., Miller A.J., et al. Crop genetic erosion: Understanding and responding to loss of crop diversity. New Phytol. 2022;233:84–118. doi: 10.1111/nph.17733. PubMed DOI

Yu J.K., Chung Y.S. Plant Variety Protection: Current Practices and Insights. Genes. 2021;12:1127. doi: 10.3390/genes12081127. PubMed DOI PMC

Govindaraj M., Vetriventhan M., Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet. Res. Int. 2015;2015:431487. doi: 10.1155/2015/431487. PubMed DOI PMC

Garland S., Curry H.A. Turning promise into practice: Crop biotechnology for increasing genetic diversity and climate resilience. PLoS Biol. 2022;20:e3001716. doi: 10.1371/journal.pbio.3001716. PubMed DOI PMC

McCallum C.M., Comai L., Greene E.A., Henikoff S. Targeted screening for induced mutations. Nat. Biotechnol. 2000;18:455–457. doi: 10.1038/74542. PubMed DOI

Tsai H., Howell T., Nitcher R., Missirian V., Watson B., Ngo K.J., Lieberman M., Fass J., Uauy C., Tran R.K., et al. Discovery of Rare Mutations in Populations: TILLING by Sequencing. Plant Physiol. 2011;156:1257–1268. doi: 10.1104/pp.110.169748. PubMed DOI PMC

El-Esawi M.A. Genetic diversity and evolution of Brassica genetic resources: From morphology to novel genomic technologies—A review. Plant Genet. Resour. 2017;15:388–399. doi: 10.1017/S1479262116000058. DOI

Granot D., Shabelsky E., Schaffermann D., Yaniv Z. Analysis of genetic variability between populations of Sinapis alba and the effect of cultivation on the variability. Acta Hortic. 1996;407:67–74. doi: 10.17660/ActaHortic.1996.407.6. DOI

Fu Y.B., Gugel R.K., Katepa-Mupondwa F. Genetic diversity of Sinapis alba germplasm as revealed by AFLP markers. Plant Genet. Resour. 2006;4:87–95. doi: 10.1079/PGR2005100. DOI

Yadav M., Rana J.S. ISSR markers assisted studies on genetic diversity in Brassica juncea. Int. J. Pharma Bio Sci. 2012;3:402–411.

Plieske J., Struss D. Microsatellite markers for genome analysis in Brassica. I. Development in Brassica napus and abundance in Brassicaceae species. Theor. Appl. Genet. 2001;102:689–694. doi: 10.1007/s001220051698. DOI

Javidfar F., Cheng B. Construction of a genetic linkage map and QTL analysis of erucic acid content and glucosinolate components in yellow mustard (Sinapis alba L.) BMC Plant Biol. 2013;13:142. doi: 10.1186/1471-2229-13-142. PubMed DOI PMC

Fu Y.B., Cheng B., Peterson G.W. Genetic diversity analysis of yellow mustard (Sinapis alba L.) germplasm based on genotyping by sequencing. Genet. Resour. Crop Evol. 2013;61:579–594. doi: 10.1007/s10722-013-0058-1. DOI

Karp A., Edwards K.J. Molecular Techniques in the Analysis of the Extent and Distribution of Genetic Diversity. International Plant Genetic Resources Institute; Rome, Italy: 1997. pp. 11–38.

Singh K.H., Singh L., Parmar N., Kumar S., Nanjundan J., Singh G., Thakur A.K. Molecular characterization and genetic diversity analysis in Indian mustard (Brassica juncea L. Czern & Coss.) varieties using SSR markers. PLoS ONE. 2022;17:e0272914. doi: 10.1371/journal.pone.0272914. PubMed DOI PMC

Pradhan A., Nelson M.N., Plummer J.A., Cowling W.A., Yan G. Characterization of Brassica nigra collections using simple sequence repeat markers reveals distinct groups associated with geographical location, and frequent mislabelling of species identity. Genome. 2011;54:50–63. doi: 10.1139/G10-092. PubMed DOI

Tesfaye M., Feyissa T., Hailesilassie T., Kanagarajan S., Zhu L.-H. Genetic diversity and population structure in ethiopian mustard (Brassica carinata A. Braun) as revealed by single nucleotide polymorphism markers. Genes. 2023;14:1757. doi: 10.3390/genes14091757. PubMed DOI PMC

Guichoux E., Lagashe L., Wagner S., Chaumeil P., Léger P., Lepais O., Lepoitteiven C., Malausa T., Revardel E., Salin F., et al. Current trends in microsatellite genotyping. Mol. Ecol. Resour. 2011;11:591–611. doi: 10.1111/j.1755-0998.2011.03014.x. PubMed DOI

Mondini L., Noorani A., Pagnotta M. Assessing plant genetic diversity by molecular tools. Diversity. 2009;1:19–35. doi: 10.3390/d1010019. DOI

Varshney R.K. Designing future crops: Genomics-assisted breeding comes of age. Trends Plant. Sci. 2021;26:631–649. doi: 10.1016/j.tplants.2021.03.010. PubMed DOI

Olsson G. Self-incompatibility and outcrossing in rape and white mustard. Hereditas. 1960;46:241–252. doi: 10.1111/j.1601-5223.1960.tb03085.x. DOI

Treccarichi S., Ben Ammar H., Amari M., Cali R., Tribulato A., Branca F. Molecular markers for detecting inflorescence size of Brassica oleracea L. crops and B. oleracea complex species (n = 9) useful for breeding of broccoli (B. oleracea var. italica) and cauliflower (B. oleracea var. botrytis) Plants. 2023;12:407. doi: 10.3390/plants12020407. PubMed DOI PMC

Cui X., Dong Y., Hou X., Cheng Y., Zhang J., Jin M. Development and characterization of microsatellite markers in Brassica rapa ssp. chinensis and transferabillity among related species. Agric. Sci. China. 2008;7:19–31. doi: 10.1016/S1671-2927(08)60018-8. DOI

Havlickova L., Jozova E., Rychla A., Klima M., Kucera V., Curn V. Genetic diversity assessment in winter oilseed rape (Brassica napus L.) collection using AFLP, ISSR and SSR markers. Czech J. Genet. Plant Breed. 2014;50:216–225. doi: 10.17221/220/2013-CJGPB. DOI

Vazhakkannadi V., Singh N., Vasudev S., Yadava D., Kumar S., Naresh S., Bhat S., Prabhu K. Assessment of genetic diversity in Brassica juncea (Brassicaceae) genotypes using phenotypic differences and SSR markers. Rev. Biol. Trop. 2013;61:1919–1934. PubMed

Khedikar Y., Clarke W., Chen L., Higgins E., Kagale S., Koh C., Bennett R., Parkin I. Narrow genetic base shapes population structure and linkage disequilibrium in an industrial oilseed crop, Brassica carinata A. Braun. Sci. Rep. 2020;10:12629. doi: 10.1038/s41598-020-69255-w. PubMed DOI PMC

Sobotka R., Dolanská L., Čurn V., Ovesná J. Fluorescence-based AFLPs occur as the most suitable marker system for oilseed rape cultivar identification. J. Appl. Genet. 2004;45:161–173. PubMed

Cowling W.A. Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field Crops Res. 2007;104:103–111. doi: 10.1016/j.fcr.2006.12.014. DOI

Chikkaputtaiah C., Debbarma J., Baruah I., Havlickova L., Deka Boruah H.P., Curn V. Molecular genetics and functional genomics of abiotic stress-responsive genes in oilseed rape (Brassica napus L.): A review of recent advances and future. Plant Biotechnol. Rep. 2017;11:365–384. doi: 10.1007/s11816-017-0458-3. DOI

Kolář F., Fér T., Štěch M., Trávníček P., Dušková E., Schönswetter P., Suda J. Bringing together evolution on serpentine and polyploidy: Spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae) PLoS ONE. 2012;7:e39988. doi: 10.1371/journal.pone.0039988. PubMed DOI PMC

Pritchard J.K., Stehens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC

Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI

Bird C., Karl S.A., Smouse P.E., Toonen R.J. Detecting and measuring genetic differentiation. In: Koenemann S., Held C., Schubart C., editors. Phylogeography and Population Genetics in Crustacea. CRC Press; Boca Raton, FL, USA: 2011. pp. 31–55. DOI

Yao Q.L., Chen F.B., Fang P., Zhou G.F., Fan Y.H., Zhang Z.R. Genetic diversity of Chinese vegetable mustard (Brassica juncea Coss) landraces based on SSR data. Biochem. Syst. Ecol. 2012;45:41–48. doi: 10.1016/j.bse.2012.05.006. DOI

Ofori A., Becker H.C., Kopisch-Obuch F.J. Effect of crop improvement on genetic diversity in oilseed Brassica rapa (turnip-rape) cultivars, detected by SSR markers. J. Appl. Genet. 2008;49:207–212. doi: 10.1007/BF03195615. PubMed DOI

Abdel-haleem H., Luo Z., Szczepanek A. Genetic diversity and population structure of the USDA collection of Brassica juncea L. Ind. Crops Prod. 2022;187:115379. doi: 10.1016/j.indcrop.2022.115379. DOI

Sanchez D., Sadoun S.B., Mary-Huard T., Allier A., Moreau L., Charcosset A. Improving the use of plant genetic resources to sustain breeding programs’ efficiency. Proc. Natl. Acad. Sci. USA. 2023;120:e2205780119. doi: 10.1073/pnas.2205780119. PubMed DOI PMC

Bhandari H., Bhanu A., Srivastava K., Singh M., Shreya, Hemantaranjan A. Assessment of genetic diversity in crop plants: An overview. Adv. Plants Agric. Res. 2017;7:279–286. doi: 10.15406/apar.2017.07.00255. DOI

Begna T. Role and economic importance of crop genetic diversity in food security. Int. J. Agric. Sci. Food Technol. 2021;7:164–169. doi: 10.17352/2455-815X.000104. DOI

Kurowska M., Daszkowska-Golec A., Gruszka D., Marzec M., Szurman M., Szarejko I., Maluszynski M. TILLING: A shortcut in functional genomics. J. Appl. Genet. 2011;52:371–390. doi: 10.1007/s13353-011-0061-1. PubMed DOI PMC

Mba C. Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy. 2013;3:200–231. doi: 10.3390/agronomy3010200. DOI

Doyle J. DNA Protocols for Plants. In: Hewitt G.M., Johnston A.W.B., Young J.P.W., editors. Molecular Techniques in Taxonomy. Springer; Berlin/Heidelberg, Germany: 1991. pp. 283–293. DOI

Louarn S., Torp A., Holme I., Andersen S.B., Jensen B. Database derived microsatellite markers (SSRs) for cultivar differentiation in Brassica oleracea. Genet. Resour. Crop Evol. 2007;54:1717–1725. doi: 10.1007/s10722-006-9181-6. DOI

Jozová E., Čurn V. Microsatellite genotyping with 4-color fluorescent detection using multiple-tailed primers in oilseed rape. Úroda. 2014;12:191–194.

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 30 October 2022)]. Available online: https://www.R-project.org/

Jombart T., Ahmed I. Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–3071. doi: 10.1093/bioinformatics/btr521. PubMed DOI PMC

Excoffier L., Smouse P.E., Quattro J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–491. doi: 10.1093/genetics/131.2.479. PubMed DOI PMC

Paradis E. pegas: An R package for population genetics with an integrated–modular approach. Bioinformatics. 2010;26:419–420. doi: 10.1093/bioinformatics/btp696. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...