Harnessing deep learning to monitor people's perceptions towards climate change on social media

. 2025 Apr 28 ; 15 (1) : 14924. [epub] 20250428

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40295576

Grantová podpora
10.54499/2022.06965.PTDC Fundação para a Ciência e a Tecnologia
UIDB/04033/2020 Fundação para a Ciência e a Tecnologia
RYC2023-043755-I Ramón y Cajal fellowship

Odkazy

PubMed 40295576
PubMed Central PMC12037856
DOI 10.1038/s41598-025-97441-1
PII: 10.1038/s41598-025-97441-1
Knihovny.cz E-zdroje

Social media has become a popular stage for people's views over climate change. Monitoring how climate change is perceived on social media is relevant for informed decision-making. This work advances the way social media users' perceptions and reactions towards climate change can be understood over time, by implementing a scalable methodological framework grounded on natural language processing. The framework was tested in over 1771 thousand X/Twitter posts of Spanish, Portuguese, and English discourses from Southwestern Europe. The employed models were successful (i.e., > 84% success rate) in detecting relevant climate change posts. The methodology detected specific climate phenomena in users' discourse, coinciding with the occurrence of major climatic events in the test area (e.g., wildfires, storms). The classification of sentiments, emotions, and irony was also efficient, with evaluation metrics ranging from 71 to 92%. Most users' reactions were neutral (> 35%) or negative (> 39%), mostly associated to sentiments of anger and sadness over climate impacts. Almost a quarter of posts showed ironic content, reflecting the common use of irony in social media communication. Our exploratory study holds potential to support climate decisions based on deep learning tools from monitoring people's perceptions towards climate issues in the online space.

Zobrazit více v PubMed

Austin, E. et al. Concerns about climate change among rural residents in Australia. J. Rural Stud.75, 98–109. 10.1016/j.jrurstud.2020.01.010 (2020).

Nations, U. Global sustainable development report 2023—times of crisis, times of change: science for accelerating transformations to sustainable development (2023).

Leonard, M., Pisani-Ferry, J., Shapiro, J., Tagliapietra, S. & Wolff, G. B. The Geopolitics of the European Green Deal (Bruegel policy contribution, 2021). https://www.econstor.eu/bitstream/10419/237660/1/1749375737.pdf.

Benansio, J. S. et al. Perceptions and attitudes towards climate change in fishing communities of the Sudd wetlands, South Sudan. Reg. Envriron. Chang.22(2), 78. 10.1007/s10113-022-01928-w (2022). PubMed PMC

Bechtoldt, M. N., Götmann, A., Moslener, U. & Pauw, W. P. Addressing the climate change adaptation puzzle: a psychological science perspective. Clim. Policy. 21(2), 186–202. 10.1080/14693062.2020.1807897 (2021).

Hornsey, M. J., Harris, E. A., Bain, P. G. & Fielding, K. Meta-analyses of the determinants and outcomes of belief in climate change. Nat. Clim. Change. 6(6), 622–626. 10.1038/nclimate2943 (2016).

Van der Linden, S. The social-psychological determinants of climate change risk perceptions: towards a comprehensive model. J. Environ. Psychol.41, 112–124. 10.1016/j.jenvp.2014.11.012 (2015).

Sisco, M. R., Bosetti, V. & Weber, E. U. When do extreme weather events generate attention to climate change? Clim. Change. 143, 227–241. 10.1007/s10584-017-1984-2 (2017).

Bradley, G. L., Babutsidze, Z., Chai, A. & Reser, J. P. The role of climate change risk perception, response efficacy, and psychological adaptation in pro-environmental behavior: a two Nation study. J. Environ. Psychol.68, 101410. 10.1016/j.jenvp.2020.101410 (2020).

Willaert, T., Van Eecke, P., Beuls, K. & Steels, L. Building social media observatories for monitoring online opinion dynamics. Social Media + Soc.6(2), 2056305119898778. 10.1177/2056305119898778 (2020).

Pedrero-Esteban, L. M. & Barrios-Rubio, A. Digital communication in the age of immediacy. Digital4(2), 302–315. 10.3390/digital4020015 (2024).

Brosch, T. Affect and emotions as drivers of climate change perception and action: a review. Curr. Opin. Behav. Sci.42, 15–21. 10.1016/j.cobeha.2021.02.001 (2021).

Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi, W. & Starnini, M. The echo chamber effect on social media. Proc. Natl. Acad. Sci.118(9), e2023301118. 10.1073/pnas.2023301118 (2021). PubMed PMC

Correia, R. et al. Inferring public interest from search engine data requires caution. Front. Ecol. Environ.17, 5. 10.1002/fee.2048 (2019).

Chen, K. et al. How climate movement actors and news media frame climate change and strike: evidence from analyzing twitter and news media discourse from 2018 to 2021. Int. J. Press/Politics28(2), 384–413. 10.1177/19401612221106405 (2023).

Su, L. Y. F., Akin, H. & Brossard, D. Methods for assessing online climate change communication, social media discussion, and behavior. In Oxford Research Encyclopedia of Climate Science. 10.1093/acrefore/9780190228620.013.492 (2017).

Bishop, L. & Gray, D. Ethical challenges of publishing and sharing social media research data. In The Ethics of Online Research, vol. 2 159–187 ( Emerald Publishing Limited, 2017). 10.1108/S2398-601820180000002007.

Upadhyaya, A., Fisichella, M. & Nejdl, W. A. Multi-task model for sentiment aided stance setection of climate change tweets. In Proceedings of the International AAAI Conference on Web and Social Media, vol. 17 854–865 (2023). 10.1609/icwsm.v17i1.22194.

Dahal, B., Kumar, S. A. & Li, Z. Topic modeling and sentiment analysis of global climate change tweets. Social Netw. Anal. Min.9, 1–20. 10.1007/s13278-019-0568-8 (2019).

Bryan-Smith, L. et al. Real-time social media sentiment analysis for rapid impact assessment of floods. Comput. Geosci.178, 105405. 10.1016/j.cageo.2023.105405 (2023).

Karimiziarani, M. & Moradkhani, H. Social response and disaster management: insights from Twitter data assimilation on hurricane Ian. Int. J. Disaster Risk Reduct.95, 103865. 10.1016/j.ijdrr.2023.103865 (2023).

Lydiri, M., El Mourabit, Y., Habouz, E., Fakir, M. & Y. & A performant deep learning model for sentiment analysis of climate change. Social Netw. Anal. Min.13(1), 8. 10.1007/s13278-022-01014-3 (2022).

Loureiro, M. L. & Alló, M. Sensing climate change and energy issues: sentiment and emotion analysis with social media in the UK and Spain. Energy Policy143, 111490. 10.1016/j.enpol.2020.111490 (2020).

Fagbola, T. M., Abayomi, A., Mutanga, M. B. & Jugoo, V. Lexicon-based sentiment analysis and emotion classification of climate change related tweets. In International Conference on Soft Computing and Pattern Recognition 637–646 (Springer International Publishing, 2022). 10.1007/978-3-030-96302-6_60.

Andrade, C., Contente, J. & Santos, J. A. Climate change projections of dry and wet events in Iberia based on the WASP-Index. Climate9(6), 94. 10.3390/cli9060094 (2021).

Pino, D. et al. Meteorological and hydrological analysis of major floods in NE Iberian Peninsula. J. Hydrol.541, 63–89. 10.1016/j.jhydrol.2016.02.008 (2016).

Moemken, J. & Pinto, J. G. Recurrence of drought events over Iberia. Part i: methodology and application for present climate conditions. Tellus A: Dyn. Meteorol. Oceanogr.74, 456. 10.16993/tellusa.50 (2022).

Nash, N., Capstick, S., Whitmarsh, L., Chaudhary, I. & Manandhar, R. Perceptions of local environmental issues and the relevance of climate change in Nepal’s Terai: perspectives from two communities. Front. Sociol.4, 60. 10.3389/fsoc.2019.00060 (2019). PubMed PMC

Owen, A. L., Conover, E., Videras, J. & Wu, S. Heat waves, droughts, and preferences for environmental policy. J. Policy Anal. Manag.31(3), 556–577. 10.1002/pam.21599 (2012).

Vaz, A. S. et al. Perceptions of public officers towards the effects of climate change on ecosystem services: A Case-Study from Northern Portugal. Front. Ecol. Evol.9, 710293. 10.3389/fevo.2021.710293 (2021).

Pinto, P. et al. Influence of convectively driven flows in the course of a large fire in Portugal: the case of Pedrógão Grande. Atmosphere13(3), 414. 10.3390/atmos13030414 (2022).

Ramos, A. M. et al. The compound event that triggered the destructive fires of October 2017 in Portugal. Iscience26, 3. 10.1016/j.isci.2023.106141 (2023). PubMed PMC

Rodrigues, M. et al. Drivers and implications of the extreme 2022 wildfire season in Southwest Europe. Sci. Total Environ.859, 160320. 10.1016/j.scitotenv.2022.160320 (2023). PubMed

Gonçalves, A. C., Nieto, R. & Liberato, M. L. Synoptic and dynamical characteristics of high-impact storms affecting the Iberian Peninsula during the 2018–2021 extended winters. Atmosphere14(9), 1353. 10.3390/atmos14091353 (2023).

Diaz-Hernandez, G., Mendez, F. J. & Mínguez, R. Numerical analysis and diagnosis of the hydrodynamic effects produced by hurricane Gordon along the Coast of Spain. Weather Forecast.29(3), 666–683. 10.1175/WAF-D-13-00130.1 (2014).

Gu, M., Guo, H., Zhuang, J., Du, Y. & Qian, L. Social media user behavior and emotions during crisis events. Int. J. Environ. Res. Public Health. 19(9), 5197. 10.3390/ijerph19095197 (2022). PubMed PMC

Cody, E. M., Reagan, A. J., Mitchell, L., Dodds, P. S. & Danforth, C. M. Climate change sentiment on Twitter: an unsolicited public opinion poll. PloS One. 10(8), e0136092. 10.1371/journal.pone.0136092 (2015). PubMed PMC

Bergquist, M., Nilsson, A. & Schultz, P. Experiencing a severe weather event increases concern about climate change. Front. Psychol.10, 220. 10.3389/fpsyg.2019.00220 (2019). PubMed PMC

Dong, Z. S., Meng, L., Christenson, L. & Fulton, L. Social media information sharing for natural disaster response. Nat. Hazards107, 2077–2104. 10.1007/s11069-021-04528-9 (2021).

Tyson, A., Kennedy, B., Funk, C. & Gen, Z. Millennials stand out for climate change activism, social media engagement with issue. Pew Res. Cent.2021, 26 (2021).

Becker, A. & Anderson, A. A. Using humor to engage the public on climate change: the effect of exposure to one-sided vs. two-sided satire on message discounting, elaboration and counterarguing. J. Sci. Commun.18(4), A07. 10.22323/2.18040207 (2019).

Paz, M. A., Mayagoitia-Soria, A. & González-Aguilar, J. M. From polarization to Hate: portrait of the Spanish political meme. Social media + Soc.7(4), 20563051211062920. 10.1177/20563051211062920 (2021).

Akhtyrska, K. Linguistic expression of irony in social media (2014). http://hdl.handle.net/10400.1/8365.

Boot, A. B., Kim Sang, T., Dijkstra, E., Zwaan, R. A. & K., & How character limit affects Language usage in tweets. Palgrave Commun.5, 1. 10.1057/s41599-019-0280-3 (2019).

Rosenberg, E. et al. Sentiment analysis on Twitter data towards climate action (2023). 10.1016/j.rineng.2023.101287.

Taylor, N. G. et al. The future for mediterranean wetlands: 50 key issues and 50 important conservation research questions. Reg. Envriron. Chang.21, 1–17. 10.1007/s10113-020-01743-1 (2021). PubMed PMC

Hargittai, E. Potential biases in big data: omitted voices on social media. Social Sci. Comput. Rev.38(1), 10–24. 10.1177/0894439318788322 (2020).

Liu, B. et al. Context-aware social media user sentiment analysis. Tsinghua Sci. Technol.25(4), 528–541. 10.26599/TST.2019.9010021 (2020).

Wankhade, M., Rao, A. C. S. & Kulkarni, C. A survey on sentiment analysis methods, applications, and challenges. Artif. Intell. Rev.55(7), 5731–5780. 10.1007/s10462-022-10144-1 (2022).

Wilkins, E. J., Howe, P. D. & Smith, J. W. Social media reveal ecoregional variation in how weather influences visitor behavior in US National park service units. Sci. Rep.11(1), 2403. 10.1038/s41598-021-82145-z (2021). PubMed PMC

Jane, S. F. et al. News media and fisheries-independent data reveal hidden impacts of hurricanes. Ambio51(10), 2169–2181. 10.1007/s13280-022-01732-0 (2022). PubMed PMC

Zhang, B. et al. Changes in public sentiment under the background of major emergencies—taking the Shanghai epidemic as an example. Int. J. Environ. Res. Public Health. 19(19), 12594. 10.3390/ijerph191912594 (2022). PubMed PMC

Funk, C. & Hefferon, M. US public views on climate and energy. Pew Res. Cent.2019, 25 (2019).

Eslen-Ziya, H. Humour and sarcasm: expressions of global warming on Twitter. Humanit. Social Sci. Commun.9(1), 1–8. 10.1057/s41599-022-01236-y (2022).

Wei, Y., Gong, P., Zhang, J. & Wang, L. Exploring public opinions on climate change policy in big data Era—a case study of the European union emission trading system (EU-ETS) based on Twitter. Energy Policy. 158, 112559. 10.1016/j.enpol.2021.112559 (2021).

Veltri, G. A. & Atanasova, D. Climate change on Twitter: content, media ecology and information sharing behaviour. Public. Underst. Sci.26(6), 721–737. 10.1177/0963662515613702 (2017). PubMed

Raymond, C. et al. Understanding and managing connected extreme events. Nat. Clim. Change10(7), 611–621. 10.1038/s41558-020-0790-4 (2020).

Capstick, S., Whitmarsh, L., Poortinga, W., Pidgeon, N. & Upham, P. International trends in public perceptions of climate change over the past quarter century. Wiley Interdiscipl. Rev.: Clim. Change. 6(1), 35–61. 10.1002/wcc.321 (2015).

Fernández-Palacios, J. M. et al. Climate change and human impact in Macaronesia (2016). 10.22498/pages.24.2.68.

Torres, C. et al. Climate change and its impacts in the Balearic Islands: a guide for policy design in mediterranean regions. Reg. Envriron. Chang.21(4), 107. 10.1007/s10113-021-01810-1 (2021). PubMed PMC

Abadi, M. et al. {TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) 265–283 (2016). 10.48550/arXiv.1605.08695.

Di Minin, E., Fink, C., Hausmann, A., Kremer, J. & Kulkarni, R. How to address data privacy concerns when using social media data in conservation science. Conserv. Biol.35(2), 437–446. 10.1111/cobi.13708 (2021). PubMed

Souza, F., Nogueira, R. & Lotufo, R. BERTimbau: pretrained BERT Models for Brazilian Portuguese. In Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science, vol 12319 (eds. Cerri, R. & Prati, R.C.) . 10.1007/978-3-030-61377-8_28 (2020).

Wu, S. Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT. arXiv preprint arXiv:1904.09077. 10.48550/arXiv.1904.09077 (2019).

Devlin, J., Chang, M. W., Lee, K., Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 10.48550/arXiv.1810.04805 (2018).

Varini, F. S., Boyd-Graber, J., Ciaramita, M. & Leippold, M. ClimaText: a dataset for climate change topic detection. arXiv preprint arXiv:2012.00483. 10.48550/arXiv.2012.00483 (2020).

Effrosynidis, D., Karasakalidis, A. I., Sylaios, G. & Arampatzis, A. The climate change Twitter dataset. Expert Syst. Appl.204, 117541. 10.1016/j.eswa.2022.117541 (2022).

Kingma, D. P., Ba, J. L. & Adam A method for stochastic optimization. In 3rd International Conference on Learning Representations, ICLR 2015— Conference Track Proceedings 1–15 (2015).

Tharwat, A. Classification assessment methods. Appl. Comput. Inf.17(1), 168–192. 10.1016/j.aci.2018.08.003 (2018).

Basha, S. M. & Fathima, A. S. Natural Language Processing: Practical Approach (MileStone Research, 2023).

Rout, J. K. et al. A model for sentiment and emotion analysis of unstructured social media text. Electron. Commer. Res.18, 181–199. 10.1007/s10660-017-9257-8 (2018).

Ekman, P. Are there basic emotions? Psychol. Rev.99(3), 550–553. 10.1037/0033-295X.99.3.550 (1992). PubMed

Demszky, D. et al. GoEmotions: A dataset of fine-grained emotions. arXiv preprint arXiv:2005.00547. 10.48550/arXiv.2005.00547 (2020).

Sam Abraham, S., Gangan, P. & VL, L., &, M Readers’ affect: predicting and Understanding readers’ emotions with deep learning. J. Big Data9(1), 1–31. 10.1186/s40537-022-00614-2 (2022).

Ghosh, A. & Veale, T. Fracking sarcasm using neural network. In Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis 161–169 (2016). 10.18653/v1/W16-0425.

Ghanem, B., Karoui, J., Benamara, F., Rosso, P. & Moriceau, V. Irony detection in a multilingual context. In Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part II 42 141–149 (Springer International Publishing, 2020). 10.1007/978-3-030-45442-5_18.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...