Genome structural evolution in Brassica crops

. 2021 Jun ; 7 (6) : 757-765. [epub] 20210527

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34045706

Grantová podpora
BB/L002124/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/R019819/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 34045706
DOI 10.1038/s41477-021-00928-8
PII: 10.1038/s41477-021-00928-8
Knihovny.cz E-zdroje

The cultivated Brassica species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the Brassica species. With organizational errors (such as misplaced genome segments) corrected, we showed that the fundamental structure of each of the genomes is the same, irrespective of the species in which it occurs. This enabled us to clarify genome evolutionary pathways, including updating the Ancestral Crucifer Karyotype (ACK) block organization and providing support for the Brassica mesohexaploidy having occurred via a two-step process. We then constructed genus-wide pan-genomes, drawing from genes present in any species in which the respective genome occurs, which enabled us to provide a global gene nomenclature system for the cultivated Brassica species and develop a methodology to cost-effectively elucidate the genomic impacts of alien introgressions. Our advances not only underpin knowledge-based approaches to the more efficient breeding of Brassica crops but also provide an exemplar for the study of other polyploids.

Zobrazit více v PubMed

USDA Oilseeds: World Markets and Trade (USDA-FAS, 2020).

Murat, F. et al. Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol. 16, 262 (2015). PubMed DOI PMC

Nagaharu, U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J. Bot. 7, 389–452 (1935).

Wang, X. et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035–1039 (2011). PubMed DOI

Liu, S. et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 5, 3930 (2014). PubMed DOI

Parkin, I. et al. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 15, R77 (2014). PubMed DOI PMC

Chalhoub, B. et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950–953 (2014). PubMed DOI

Yang, J. et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat. Genet. 48, 1225–1232 (2016). PubMed DOI

Lagercrantz, U. & Lydiate, D. J. Comparative genome mapping in Brassica. Genetics 144, 1903–1910 (1996). PubMed DOI PMC

O’Neill, C. M. & Bancroft, I. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 23, 233–243 (2000). PubMed DOI

Yang, T.-J. et al. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18, 1339–1347 (2006). PubMed DOI PMC

Town, C. D. et al. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18, 1348–1359 (2006). PubMed DOI PMC

Parkin, I. A., Sharpe, A. G., Keith, D. J. & Lydiate, D. J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38, 1122–1131 (1995). PubMed DOI

Rana, D. et al. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J. 40, 725–733 (2004). PubMed DOI

Cheung, F. et al. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21, 1912–1928 (2009). PubMed DOI PMC

Trick, M., Long, Y., Meng, J. & Bancroft, I. Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol. J. 7, 334–346 (2009). PubMed DOI

Bancroft, I. et al. Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat. Biotechnol. 29, 762–766 (2011). PubMed DOI

He, Z. & Bancroft, I. Organization of the genome sequence of the polyploid crop species Brassica juncea. Nat. Genet. 50, 1496–1497 (2018). PubMed DOI

Vernikos, G., Medini, D., Riley, D. R. & Tettelin, H. Ten years of pan-genome analyses. Curr. Opin. Microbiol. 23, 148–154 (2015). PubMed DOI

Golicz, A. A. et al. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. Commun. 7, 13390 (2016). PubMed DOI PMC

Dolatabadian, A. et al. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. Plant Biotechnol. J. 18, 969–982 (2019). PubMed DOI PMC

Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005). PubMed DOI

Arnold, M. L. Transfer and origin of adaptations through natural hybridization: were Anderson and Stebbins right? Plant Cell 16, 562–570 (2004). PubMed DOI PMC

Zamir, D. Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet. 2, 983–989 (2001). PubMed DOI

Delourme, R., Horvais, R., Vallée, P. & Renard, M. Double low restored F1 hybrids can be produced with the Ogu-INRA CMS in rapeseed. In Proc. 10th International Rapeseed Congress 26–29 (ACT, 1999).

Brown, G. G. et al. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J. 35, 262–272 (2003). PubMed DOI

Hu, X. et al. Mapping of the Ogura fertility restorer gene Rfo and development of Rfo allele-specific markers in canola (Brassica napus L.). Mol. Breed. 22, 663–674 (2008). DOI

Feng, J. et al. Physical localization and genetic mapping of the fertility restoration gene Rfo in canola (Brassica napus L.). Genome 52, 401–407 (2009). PubMed DOI

Yang, J., Ji, C., Liu, D., Wang, X. & Zhang, M. Reply to: ‘Organization of the genome sequence of the polyploid crop species Brassica juncea’. Nat. Genet. 50, 1497–1498 (2018). PubMed DOI

He, Z. et al. Extensive homoeologous genome exchanges in allopolyploid crops revealed by mRNAseq-based visualization. Plant Biotechnol. J. 15, 594–604 (2017). PubMed DOI

Crown, K. N., Miller, D. E., Sekelsky, J. & Hawley, R. S. Local inversion heterozygosity alters recombination throughout the genome. Curr. Biol. 28, 2984–2990.e3 (2018). PubMed DOI PMC

Bancroft, I., Fraser, F., Morgan, C. & Trick, M. Collinearity analysis of Brassica A and C genomes based on an updated inferred unigene order. Data Brief 3, 51–55 (2015). PubMed DOI PMC

Schranz, M., Lysak, M. & Mitchell-Olds, T. The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci. 11, 535–542 (2006). PubMed DOI

Lysak, M. A., Mandáková, T. & Schranz, M. E. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr. Opin. Plant Biol. 30, 108–115 (2016). PubMed DOI

Cheng, F. et al. Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25, 1541–1554 (2013). PubMed DOI PMC

Belser, C. et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat. Plants 4, 879–887 (2018). PubMed DOI

Perumal, S. et al. A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nat. Plants 6, 929–941 (2020). PubMed DOI PMC

Higgins, J., Magusin, A., Trick, M., Fraser, F. & Bancroft, I. Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genom. 13, 247 (2012). DOI

Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009). DOI

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed DOI PMC

Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). PubMed DOI PMC

Zhang, L. et al. Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic. Res. 5, 50 (2018). PubMed DOI PMC

Zou, J. et al. Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnol. J. 17, 1998–2010 (2019). PubMed DOI PMC

Song, J.-M. et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6, 34–45 (2020). PubMed DOI PMC

Lee, H. et al. Chromosome-scale assembly of winter oilseed rape Brassica napus. Front. Plant Sci. 11, 496 (2020). PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Impact of whole-genome duplications on structural variant evolution in Cochlearia

. 2024 Jun 25 ; 15 (1) : 5377. [epub] 20240625

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace