Genome structural evolution in Brassica crops
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
BB/L002124/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/R019819/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
34045706
DOI
10.1038/s41477-021-00928-8
PII: 10.1038/s41477-021-00928-8
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- Brassica genetika MeSH
- genom rostlinný * MeSH
- genová introgrese MeSH
- polyploidie MeSH
- rostlinné geny MeSH
- zemědělské plodiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
The cultivated Brassica species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the Brassica species. With organizational errors (such as misplaced genome segments) corrected, we showed that the fundamental structure of each of the genomes is the same, irrespective of the species in which it occurs. This enabled us to clarify genome evolutionary pathways, including updating the Ancestral Crucifer Karyotype (ACK) block organization and providing support for the Brassica mesohexaploidy having occurred via a two-step process. We then constructed genus-wide pan-genomes, drawing from genes present in any species in which the respective genome occurs, which enabled us to provide a global gene nomenclature system for the cultivated Brassica species and develop a methodology to cost-effectively elucidate the genomic impacts of alien introgressions. Our advances not only underpin knowledge-based approaches to the more efficient breeding of Brassica crops but also provide an exemplar for the study of other polyploids.
Agriculture and Agri Food Canada Saskatoon Saskatchewan Canada
Department of Biology University of York York UK
Department of Horticulture Shenyang Agricultural University Shenyang China
Department of Plant Breeding and Genetics Punjab Agricultural University Ludhiana India
Department of Plant Breeding Justus Liebig University of Giessen Giessen Germany
Global Institute for Food Security University of Saskatchewan Saskatoon Saskatchewan Canada
Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
Selgen a s Plant breeding station Chlumec nad Cidlinou Czech Republic
Southern Cross Plant Science Southern Cross University Lismore New South Wales Australia
Zobrazit více v PubMed
USDA Oilseeds: World Markets and Trade (USDA-FAS, 2020).
Murat, F. et al. Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol. 16, 262 (2015). PubMed DOI PMC
Nagaharu, U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J. Bot. 7, 389–452 (1935).
Wang, X. et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035–1039 (2011). PubMed DOI
Liu, S. et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 5, 3930 (2014). PubMed DOI
Parkin, I. et al. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 15, R77 (2014). PubMed DOI PMC
Chalhoub, B. et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950–953 (2014). PubMed DOI
Yang, J. et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat. Genet. 48, 1225–1232 (2016). PubMed DOI
Lagercrantz, U. & Lydiate, D. J. Comparative genome mapping in Brassica. Genetics 144, 1903–1910 (1996). PubMed DOI PMC
O’Neill, C. M. & Bancroft, I. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 23, 233–243 (2000). PubMed DOI
Yang, T.-J. et al. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18, 1339–1347 (2006). PubMed DOI PMC
Town, C. D. et al. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18, 1348–1359 (2006). PubMed DOI PMC
Parkin, I. A., Sharpe, A. G., Keith, D. J. & Lydiate, D. J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38, 1122–1131 (1995). PubMed DOI
Rana, D. et al. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J. 40, 725–733 (2004). PubMed DOI
Cheung, F. et al. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21, 1912–1928 (2009). PubMed DOI PMC
Trick, M., Long, Y., Meng, J. & Bancroft, I. Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol. J. 7, 334–346 (2009). PubMed DOI
Bancroft, I. et al. Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat. Biotechnol. 29, 762–766 (2011). PubMed DOI
He, Z. & Bancroft, I. Organization of the genome sequence of the polyploid crop species Brassica juncea. Nat. Genet. 50, 1496–1497 (2018). PubMed DOI
Vernikos, G., Medini, D., Riley, D. R. & Tettelin, H. Ten years of pan-genome analyses. Curr. Opin. Microbiol. 23, 148–154 (2015). PubMed DOI
Golicz, A. A. et al. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. Commun. 7, 13390 (2016). PubMed DOI PMC
Dolatabadian, A. et al. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. Plant Biotechnol. J. 18, 969–982 (2019). PubMed DOI PMC
Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005). PubMed DOI
Arnold, M. L. Transfer and origin of adaptations through natural hybridization: were Anderson and Stebbins right? Plant Cell 16, 562–570 (2004). PubMed DOI PMC
Zamir, D. Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet. 2, 983–989 (2001). PubMed DOI
Delourme, R., Horvais, R., Vallée, P. & Renard, M. Double low restored F1 hybrids can be produced with the Ogu-INRA CMS in rapeseed. In Proc. 10th International Rapeseed Congress 26–29 (ACT, 1999).
Brown, G. G. et al. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J. 35, 262–272 (2003). PubMed DOI
Hu, X. et al. Mapping of the Ogura fertility restorer gene Rfo and development of Rfo allele-specific markers in canola (Brassica napus L.). Mol. Breed. 22, 663–674 (2008). DOI
Feng, J. et al. Physical localization and genetic mapping of the fertility restoration gene Rfo in canola (Brassica napus L.). Genome 52, 401–407 (2009). PubMed DOI
Yang, J., Ji, C., Liu, D., Wang, X. & Zhang, M. Reply to: ‘Organization of the genome sequence of the polyploid crop species Brassica juncea’. Nat. Genet. 50, 1497–1498 (2018). PubMed DOI
He, Z. et al. Extensive homoeologous genome exchanges in allopolyploid crops revealed by mRNAseq-based visualization. Plant Biotechnol. J. 15, 594–604 (2017). PubMed DOI
Crown, K. N., Miller, D. E., Sekelsky, J. & Hawley, R. S. Local inversion heterozygosity alters recombination throughout the genome. Curr. Biol. 28, 2984–2990.e3 (2018). PubMed DOI PMC
Bancroft, I., Fraser, F., Morgan, C. & Trick, M. Collinearity analysis of Brassica A and C genomes based on an updated inferred unigene order. Data Brief 3, 51–55 (2015). PubMed DOI PMC
Schranz, M., Lysak, M. & Mitchell-Olds, T. The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci. 11, 535–542 (2006). PubMed DOI
Lysak, M. A., Mandáková, T. & Schranz, M. E. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr. Opin. Plant Biol. 30, 108–115 (2016). PubMed DOI
Cheng, F. et al. Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25, 1541–1554 (2013). PubMed DOI PMC
Belser, C. et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat. Plants 4, 879–887 (2018). PubMed DOI
Perumal, S. et al. A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nat. Plants 6, 929–941 (2020). PubMed DOI PMC
Higgins, J., Magusin, A., Trick, M., Fraser, F. & Bancroft, I. Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genom. 13, 247 (2012). DOI
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009). DOI
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed DOI PMC
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). PubMed DOI PMC
Zhang, L. et al. Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic. Res. 5, 50 (2018). PubMed DOI PMC
Zou, J. et al. Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnol. J. 17, 1998–2010 (2019). PubMed DOI PMC
Song, J.-M. et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6, 34–45 (2020). PubMed DOI PMC
Lee, H. et al. Chromosome-scale assembly of winter oilseed rape Brassica napus. Front. Plant Sci. 11, 496 (2020). PubMed DOI PMC