Short- and long-term consequences of genome doubling: a meta-analysis

. 2021 Nov ; 108 (11) : 2315-2322. [epub] 20211121

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34618350

PREMISE: Whole-genome duplication (WGD) is ubiquitous in plants. Recent reviews and meta-analyses, aiming to understand how such phenotypic transition could facilitate neopolyploid establishment, demonstrated multifarious immediate effects of WGD on fitness and reproductive traits. Yet, little is known about how short-term modifications evolve through time. Such a comparison among new and established polyploid lineages is crucial to understand which effects of WGD promote or impede polyploid survival. METHODS: We performed a meta-analysis to determine how WGD affects morphological, cellular, and fitness traits in autotetraploid individuals compared to their diploid progenitors. We studied how established tetraploids differed from diploids compared to neotetraploids, to further learn about the fate of WGD-associated phenotypic effects during polyploid establishment. RESULTS: The short-term effects of WGD were an increase in size of morphological traits and cells, accompanied by a decrease in fitness and the number of cells. After establishment, the morphological effect persisted, but cellular and fitness components reverted back to the values observed in the diploid ancestors. CONCLUSIONS: Our results suggest that the larger morphology of autotetraploids is not a constraint to establishment. However, other observable effects of genome doubling disappeared with time, suggesting that solving cellular and fitness constraints are critical aspects for polyploid establishment.

Zobrazit více v PubMed

Allario, T., J. Brumos, J. M. Colmenero-Flores, F. Tadeo, Y. Froelicher, M. Talon, L. Navarro, et al. 2011. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. Journal of Experimental Botany 62: 2507-2519.

Aversano, R., I. Caruso, G. Aronne, V. D. Micco, N. Scognamiglio, and D. Carputo. 2013. Stochastic changes affect Solanum wild species following autopolyploidization. Journal of Experimental Botany 64: 625-635.

Barker, M. S., N. Arrigo, A. E. Baniaga, Z. Li, and D. A. Levin. 2016. On the relative abundance of autopolyploids and allopolyploids. New Phytologist 210: 391-398.

Bomblies, K. 2020. When everything changes at once: finding a new normal after genome duplication. Proceedings of the Royal Society, B, Biological Sciences 287: 20202154.

Brodribb, T. J., F. Sussmilch, and S. A. McAdam. 2020. From reproduction to production, stomata are the master regulators. Plant Journal 101: 756-767.

Büssis, D., U. von Groll, J. Fisahn, and T. Altmann. 2006. Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. Functional Plant Biology 33: 1037-1043.

Castro, M., J. Loureiro, B. C. Husband, and S. Castro. 2020. The role of multiple reproductive barriers: strong post-pollination interactions govern cytotype isolation in a tetraploid-octoploid contact zone. Annals of Botany 126: 991-1003.

Cavalier-Smith, T. 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. Journal of Cell Science 34: 247-278.

Čertner, M., R. Sudová, M. Weiser, J. Suda, and F. Kolář. 2019. Ploidy-altered phenotype interacts with local environment and may enhance polyploid establishment in Knautia serpentinicola (Caprifoliaceae). New Phytologist 221: 1117-1127.

Chamberlain, S. A., S. M. Hovick, C. J. Dibble, N. L. Rasmussen, B. G. Van Allen, B. S. Maitner, J. R. Ahern, et al. 2012. Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecology Letters 15: 627-636.

Chao, D.-Y., B. Dilkes, H. Luo, A. Douglas, E. Yakubova, B. Lahner, and D. E. Salt. 2013. Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341: 658-659.

Clo, J., L. Gay, and J. Ronfort. 2019. How does selfing affect the genetic variance of quantitative traits? An updated meta-analysis on empirical results in angiosperm species. Evolution 73: 1578-1590.

Comai, L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6: 836-846.

Corneillie, S., N. De Storme, R. Van Acker, J. U. Fangel, M. De Bruyne, R. De Rycke, D. Geelen, et al. 2019. Polyploidy affects plant growth and alters cell wall composition. Plant Physiology 179: 74-87.

Doyle, J. J., and J. E. Coate. 2019. Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. International Journal of Plant Sciences 180: 1-52.

Doyle, J. J., and J. E. Coate. 2020. Autopolyploidy: an epigenetic macromutation. American Journal of Botany 107: 1097-1100.

Drake, P. L., R. H. Froend, and P. J. Franks. 2013. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany 64: 495-505.

Husband, B. C. 2000. Constraints on polyploid evolution: a test of the minority cytotype exclusion principle. Proceedings of the Royal Society, B, Biological Sciences 267: 217-223.

Husband, B. C., and H. A. Sabara. 2003. Reproductive isolation and their diploid autotetraploids Chamerion progenitors in fireweed, Chamerion angustifolium (Onagraceae). New Phytologist 161: 703-713.

Huwaldt, J. A. & S. Steinhorst 2015. Plot digitizer, version 2.6. 8. [computer software]. Website: https://sourceforge.net/projects/plotdigitizer

Jersáková, J., S. Castro, N. Sonk, K. Milchreit, I. Schödelbauerová, T. Tolasch, and S. Dötterl. 2010. Absence of pollinator-mediated premating barriers in mixed-ploidy populations of Gymnadenia conopsea sl (Orchidaceae). Evolutionary Ecology 24: 1199-1218.

Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547.

Kumar, S., G. Stecher, M. Suleski, and S. B. Hedges. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution 34: 1812-1819.

Levin, D. A. 1975. Minority cytotype exclusion in local plant populations. Taxon 24: 35-43.

Levin, D. A. 2019. Why polyploid exceptionalism is not accompanied by reduced extinction rates. Plant Systematics and Evolution 305: 1-11.

Li, X., E. Yu, C. Fan, C. Zhang, T. Fu, and Y. Zhou. 2012. Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis. Planta 236: 579-596.

Müntzing, A. 1936. The evolutionary significance of autopolyploidy. Hereditas 21: 363-378.

Münzbergová, Z. 2017. Colchicine application significantly affects plant performance in the second generation of synthetic polyploids and its effects vary between populations. Annals of Botany 120: 329-339.

Oswald, B. P., and S. L. Nuismer. 2011. A unified model of autopolyploid establishment and evolution. American Naturalist 178: 687-700.

Otto, S. P. 2007. The evolutionary consequences of polyploidy. Cell 131: 452-462.

Parisod, C., R. Holderegger, and C. Brochmann. 2010. Evolutionary consequences of autopolyploidy. New Phytologist 186: 5-17.

Porturas, L. D., T. J. Anneberg, A. E. Curé, S. Wang, D. M. Althoff, and K. A. Segraves. 2019. A meta-analysis of whole genome duplication and the effects on flowering traits in plants. American Journal of Botany 106: 469-476.

Porturas, L. D., and K. A. Segraves. 2020. Whole genome duplication does not promote common modes of reproductive isolation in Trifolium pratense. American Journal of Botany 107: 833-841.

Ramsey, J., and T. S. Ramsey. 2014. Ecological studies of polyploidy in the 100 years following its discovery. Proceedings of the Royal Society B 369: 20130352.

Ramsey, J., and D. W. Schemske. 2002. Neopolyploidy in flowering plants. Annual Review of Ecology and Systematics 33: 589-639.

Robinson, D. O., J. E. Coate, A. Singh, L. Hong, M. Bush, J. J. Doyle, and A. H. Roeder. 2018. Ploidy and size at multiple scales in the Arabidopsis sepal. Plant Cell 30: 2308-2329.

Roccaforte, K., S. E. Russo, and D. Pilson. 2015. Hybridization and reproductive isolation between diploid Erythronium mesochoreum and its tetraploid congener E. albidum (Liliaceae). Evolution 69: 1375-1389.

Segraves, K. A. 2017. The effects of genome duplications in a community context. New Phytologist 215: 57-69.

Soltis, D. E., P. S. Soltis, D. W. Schemske, J. F. Hancock, J. N. Thompson, B. C. Husband, and W. S. Judd. 2007. Autopolyploidy in angiosperms: Have we grossly underestimated the number of species? Taxon 56: 13-30.

Vamosi, J. C., S. J. Goring, B. F. Kennedy, R. J. Mayberry, C. M. Moray, L. A. Neame, N. D. Tunbridge, and E. Elle. 2007. Pollination, floral display, and the ecological correlates of polyploidy. Functional Ecosystems and Communities 1: 1-9.

Van de Peer, Y., T.-L. Ashman, P. S. Soltis, and D. E. Soltis. 2021. Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 33: 11-26.

Van de Peer, Y., E. Mizrachi, and K. Marchal. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics 18: 411.

Viechtbauer, W. 2010. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 36: 1-48.

Wei, N., Z. Du, A. Liston, and T.-L. Ashman. 2020. Genome duplication effects on functional traits and fitness are genetic context and species dependent: studies of synthetic polyploid Fragaria. American Journal of Botany 107: 262-272.

Yang, P.-M., Q.-C. Huang, G.-Y. Qin, S.-P. Zhao, and J.-G. Zhou. 2014. Different drought-stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice. Photosynthetica 52: 193-202.

Yao, Y., L. Carretero-Paulet, and Y. Van de Peer. 2019. Using digital organisms to study the evolutionary consequences of whole genome duplication and polyploidy. PLoS One 14: e0220257.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace