The evolution of the additive variance of a trait under stabilizing selection after autopolyploidization

. 2022 Jun ; 35 (6) : 891-897. [epub] 20220504

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35506572

Whole-genome duplication is a common mutation in eukaryotes with far-reaching phenotypic effects. The resulting morphological, physiological and fitness consequences and how they affect the survival probability of polyploid lineages are intensively studied, but little is known about the effect of genome doubling on the evolutionary potential of populations. Historically, it has been argued polyploids should be less able to adapt because gene duplication dilutes the effects of alleles, such that polyploids are less likely to evolve new adaptive gene complexes compared with diploids. In this paper, I investigate the short- and long-term consequences of genome doubling on the additive genetic variance of populations. To do so, I extended the classical models of quantitative traits under stabilizing selection to study the evolution of the additive variance of the trait under study after a shift from diploidy to tetraploidy. I found that, for realistic allele-dosage effects, polyploidization is associated with an initial decrease in adaptive potential. In the long term, the better masking of recessive deleterious mutations associated with polyploidy compensates for the initial decrease in additive variance. The time for the tetraploid populations to reach or exceed the additive variance of their diploid progenitors is generally lower than 200 generations. These results highlight that polyploidization per se has a negligible negative effect on the adaptive potential of populations in the short term, and a substantial positive effect in the long term.

Zobrazit více v PubMed

Alexander, H. K. , Lambert, A. , & Stadler, T. (2016). Quantifying age‐dependent extinction from species phylogenies. Systematic Biology, 65, 35–50. 10.1093/sysbio/syv065 PubMed DOI PMC

Arrigo, N. , & Barker, M. S. (2012). Rarely successful polyploids and their legacy in plant genomes. Current Opinion in Plant Biology, 15, 140–146. 10.1016/j.pbi.2012.03.010 PubMed DOI

Baduel, P. , Bray, S. , Vallejo‐Marin, M. , Kolář, F. , & Yant, L. (2018). The “Polyploid Hop”: Shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Frontiers in Ecology and Evolution, 6, 117. 10.3389/fevo.2018.00117 DOI

Barker, M. S. , Arrigo, N. , Baniaga, A. E. , Li, Z. , & Levin, D. A. (2016). On the relative abundance of autopolyploids and allopolyploids. New Phytologist, 210, 391–398. 10.1111/nph.13698 PubMed DOI

Barringer, B. C. (2007). Polyploidy and self‐fertilization in flowering plants. American Journal of Botany, 94, 1527–1533. 10.3732/ajb.94.9.1527 PubMed DOI

Bomblies, K. (2020). When everything changes at once: finding a new normal after genome duplication. Proceedings of the Royal Society B, 287, 20202154. 10.1098/rspb.2020.2154 PubMed DOI PMC

Bürger, R. , Wagner, G. P. , & Stettinger, F. (1989). How much heritable variation can be maintained in finite populations by mutation–selection balance? Evolution, 43, 1748–1766. 10.1111/j.1558-5646.1989.tb02624.x PubMed DOI

Burgess, K. S. , Etterson, J. R. , & Galloway, L. F. (2007). Artificial selection shifts flowering phenology and other correlated traits in an autotetraploid herb. Heredity, 99, 641–648. 10.1038/sj.hdy.6801043 PubMed DOI

Clo, J. , Gay, L. , & Ronfort, J. (2019). How does selfing affect the genetic variance of quantitative traits? An updated meta‐analysis on empirical results in angiosperm species. Evolution, 73, 1578–1590. 10.1111/evo.13789 PubMed DOI

Clo, J. , & Kolář, F. (2021). Short‐ and long‐term consequences of genome doubling: A meta‐analysis. American Journal of Botany, 108(11), 2315–2322. 10.1002/ajb2.1759 PubMed DOI

Clo, J. , & Opedal, Ø. H. (2021). Genetics of quantitative traits with dominance under stabilizing and directional selection in partially selfing species. Evolution, 75, 1920–1935. 10.1111/evo.14304 PubMed DOI

Comai, L. (2005). The advantages and disadvantages of being polyploid. Nature Reviews Genetics, 6, 836–846. 10.1038/nrg1711 PubMed DOI

Doyle, J. J. , & Coate, J. E. (2019). Polyploidy, the nucleotype, and novelty: The impact of genome doubling on the biology of the cell. International Journal of Plant Sciences, 180(1), 1–52. 10.1086/700636 DOI

Falconer, D. S. , & Mackay, T. F. C. (1996). Introduction to quantitative genetics. Longman Group.

Gallais, A. (2003). Quantitative genetics and breeding methods in autopolyploid plants. Editions Quae.

Gauzere, J. , Teuf, B. , Davi, H. , Chevin, L.‐M. , Caignard, T. , Leys, B. , Delzon, S. , Ronce, O. , & Chuine, I. (2020). Where is the optimum? Predicting the variation of selection along climatic gradients and the adaptive value of plasticity. A case study on tree phenology. Evolution Letters, 4, 109–123. 10.1002/evl3.160 PubMed DOI PMC

Haldane, J. B. S. (1927). A mathematical theory of natural and artificial selection, Part V: Selection and mutation. Mathematical Proceedings of the Cambridge Philosophical Society, 23(7), 838–844. 10.1017/S0305004100015644 DOI

Halligan, D. L. , & Keightley, P. D. (2009). Spontaneous mutation accumulation studies in evolutionary genetics. Annual Review of Ecology, Evolution, and Systematics, 40, 151–172.

Husband, B. C. , Ozimec, B. , Martin, S. L. , & Pollock, L. (2008). Mating consequences of polyploid evolution in flowering plants: Current trends and insights from synthetic polyploids. International Journal of Plant Sciences, 169, 195–206. 10.1086/523367 DOI

Levin, D. A. (1975). Minority cytotype exclusion in local plant populations. Taxon, 24, 35–43. 10.2307/1218997 DOI

Levin, D. A. (2019). Why polyploid exceptionalism is not accompanied by reduced extinction rates. Plant Systematics and Evolution, 305, 1–11. 10.1007/s00606-018-1552-x DOI

Mable, B. K. (2004). ‘Why polyploidy is rarer in animals than in plants’: myths and mechanisms. Biological Journal of the Linnean Society, 82, 453–466. 10.1111/j.1095-8312.2004.00332.x DOI

Manna, F. , Martin, G. , & Lenormand, T. (2011). Fitness landscapes: An alternative theory for the dominance of mutation. Genetics, 189, 923–937. 10.1534/genetics.111.132944 PubMed DOI PMC

Martin, G. , & Lenormand, T. (2006). A general multivariate extension of fisher’s geometrical model and the distribution of mutation fitness effects across species. Evolution, 60, 893–907. 10.1111/j.0014-3820.2006.tb01169.x PubMed DOI

Martin, S. L. , & Husband, B. C. (2012). Whole genome duplication affects evolvability of flowering time in an autotetraploid plant. PLoS One, 7, e44784. 10.1371/journal.pone.0044784 PubMed DOI PMC

Martínez‐Padilla, J. , Estrada, A. , Early, R. , & García‐González, F. (2017). Evolvability meets biogeography: Evolutionary potential decreases at high and low environmental favourability. Proceedings of the Royal Society B: Biological Sciences, 284(1856), 20170516. 10.1098/rspb.2017.0516 PubMed DOI PMC

Mayrose, I. , Zhan, S. H. , Rothfels, C. J. , Arrigo, N. , Barker, M. S. , & Rieseberg, L. H. (2015). Methods for studying polyploid diversification and the dead end hypothesis: A reply to Soltis et al(2014). New Phytologist, 206: 27–35. PubMed

Mayrose, I. , Zhan, S. H. , Rothfels, C. J. , Magnuson‐Ford, K. , Barker, M. S. , Rieseberg, L. H. , & Otto, S. P. (2011). Recently formed polyploid plants diversify at lower rates. Science, 333, 1257. 10.1126/science.1207205 PubMed DOI

Monnahan, P. , & Brandvain, Y. (2020). The effect of autopolyploidy on population genetic signals of hard sweeps. Biology Letters, 16, 20190796. 10.1098/rsbl.2019.0796 PubMed DOI PMC

O’Neil, P. (1997). Natural selection on genetically correlated phenological characters in Lythrum salicaria L. (Lythraceae). Evolution, 267–274. PubMed

Oswald, B. P. , & Nuismer, S. L. (2011). A unified model of autopolyploid establishment and evolution. The American Naturalist, 178, 687–700. 10.1086/662673 PubMed DOI PMC

Otto, S. P. (2007). The evolutionary consequences of polyploidy. Cell, 131, 452–462. 10.1016/j.cell.2007.10.022 PubMed DOI

Otto, S. P. , & Whitton, J. (2000). Polyploid incidence and evolution. Annual Review of Genetics, 34, 401–437. 10.1146/annurev.genet.34.1.401 PubMed DOI

Parisod, C. , Holderegger, R. , & Brochmann, C. (2010). Evolutionary consequences of autopolyploidy. New Phytologist, 186, 5–17. 10.1111/j.1469-8137.2009.03142.x PubMed DOI

Pennington, L. K. , Slatyer, R. A. , Ruiz‐Ramos, D. V. , Veloz, S. D. , & Sexton, J. P. (2021). How is adaptive potential distributed within species ranges? Evolution, 75, 2152–2166. 10.1111/evo.14292 PubMed DOI

Porturas, L. D. , Anneberg, T. J. , Curé, A. E. , Wang, S. , Althoff, D. M. , & Segraves, K. A. (2019). A meta‐analysis of whole genome duplication and the effects on flowering traits in plants. American Journal of Botany, 106, 469–476. PubMed

Ramsey, J. , & Schemske, D. W. (2002). Neopolyploidy in flowering plants. Annual Review of Ecology and Systematics, 33(1), 589–639. 10.1146/annurev.ecolsys.33.010802.150437 DOI

Rice, A. , Šmarda, P. , Novosolov, M. , Drori, M. , Glick, L. , Sabath, N. , Meiri, S. , Belmaker, J. , & Mayrose, I. (2019). The global biogeography of polyploid plants. Nature Ecology & Evolution, 3, 265–273. 10.1038/s41559-018-0787-9 PubMed DOI

Ronce, O. , Shaw, F. H. , Rousset, F. , & Shaw, R. G. (2009). Is inbreeding depression lower in maladapted populations? A quantitative genetics model. Evolution, 63, 1807–1819. 10.1111/j.1558-5646.2009.00678.x PubMed DOI

Ronfort, J. (1999). The mutation load under tetrasomic inheritance and its consequences for the evolution of the selfing rate in autotetraploid species. Genetics Research, 74, 31–42.

Soltis, D. E. , Segovia‐Salcedo, M. C. , Jordon‐Thaden, I. , Majure, L. , Miles, N. M. , & Mavrodiev, E. V. (2014a). Are polyploids really evolutionary dead‐ends (again)? A critical reappraisal of Mayrose et al(2011). New Phytologist, 202: 1105–1117. PubMed

Soltis, D. E. , Soltis, P. S. , Schemske, D. W. , Hancock, J. F. , Thompson, J. N. , Husband, B. C. (2007). Autopolyploidy in angiosperms: Have we grossly underestimated the number of species? Taxon, 56, 13–30.

Soltis, D. E. , Visger, C. J. , & Soltis, P. S. (2014b). The polyploidy revolution then… and now: Stebbins revisited. American Journal of Botany, 101, 1057–1078. 10.3732/ajb.1400178 PubMed DOI

Soltis, P. S. , Liu, X. , Marchant, D. B. , Visger, C. J. , & Soltis, D. E. (2014c). Polyploidy and novelty: Gottlieb’s legacy. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130351. 10.1098/rstb.2013.0351 PubMed DOI PMC

Stebbins, G. L. (1971). Processes of organic evolution.

Vamosi, J. C. , Goring, S. J. , Kennedy, B. F. , Mayberry, R. J. , Moray, C. M. , Neame, L. A. (2007). Pollination, floral display, and the ecological correlates of polyploidy. Functional Ecosystems and Communities, 1, 1–9.

Van de Peer, Y. , Ashman, T.‐L. , Soltis, P. S. , & Soltis, D. E. (2021). Polyploidy: An evolutionary and ecological force in stressful times. The Plant Cell, 33, 11–26. 10.1093/plcell/koaa015 PubMed DOI PMC

Van de Peer, Y. , Mizrachi, E. , & Marchal, K. (2017). The evolutionary significance of polyploidy. Nature Reviews Genetics, 18, 411. 10.1038/nrg.2017.26 PubMed DOI

Walsh, B. (2005). The struggle to exploit non‐additive variation. Australian Journal of Agricultural Research, 56, 873–881. 10.1071/AR05152 DOI

Walsh, B. , & Lynch, M. (2018). Evolution and selection of quantitative traits. Oxford University Press.

Wolak, M. E. , & Keller, L. F. (2014). Dominance genetic variance and inbreeding in natural populations. Quantitative Genetics in the Wild, 104–127.

Wright, S. (1938). The distribution of gene frequencies in populations of polyploids. Proceedings of the National Academy of Sciences of the United States of America, 24, 372. 10.1073/pnas.24.9.372 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace