Niche similarity in diploid-autotetraploid contact zones of Arabidopsis arenosa across spatial scales
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32974906
DOI
10.1002/ajb2.1534
Knihovny.cz E-zdroje
- Klíčová slova
- Brassicaceae, cytotype distribution patterns, ecological niche model, flow cytometry, mixed-ploidy population, niche differentiation, ploidy coexistence, polyploidy, spatial statistics, triploid,
- MeSH
- Arabidopsis * genetika MeSH
- diploidie * MeSH
- lidé MeSH
- ploidie MeSH
- polyploidie MeSH
- tetraploidie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PREMISE: Whole genome duplication is a major evolutionary event, but its role in ecological divergence remains equivocal. When populations of different ploidy (cytotypes) overlap in space, "contact zones" are formed, allowing the study of evolutionary mechanisms contributing toward ploidy divergence. Multiple contact zones per species' range are often described but rarely leveraged as natural replicates. We explored whether the strength of niche differentiation of diploid and autotetraploid Arabidopsis arenosa varies over distinct contact zones and if the frequency of triploids decreases from seedling to adult stage. METHODS: We characterized ploidy composition and habitat preferences in 264 populations across three contact zones using climatic niche modeling. Ecological differences of cytotypes were also assessed using local vegetation surveys at 110 populations within two contact zones, and at the finer scale within five mixed-ploidy sites. This was complemented by flow cytometry of seedlings. RESULTS: We found no niche differences between diploid and tetraploid populations within contact zones for either climatic or local environmental variables. Comparisons of cytotypes within mixed-ploidy sites found weak niche differences that were inconsistent in direction. Triploid individuals were virtually absent (0.14%) in the field, and they were at a similarly low frequency (0.2%) in ex situ germinated seedlings. CONCLUSIONS: This study demonstrates the strength in investigating different spatial scales across several contact zones when addressing ecological niche differentiation between ploidies. The lack of consistent habitat differentiation of ploidies across the scales and locations supports the recently emerging picture that processes other than ecological differentiation may underlie ploidy coexistence in diploid-autopolyploid systems.
Institute of Botany The Czech Academy of Sciences Zámek 1 CZ 252 43 Průhonice Czech Republic
Institute of Botany University of Innsbruck Sternwartestrasse 15 AT 6020 Innsbruck Austria
Zobrazit více v PubMed
Alexander, L. 2020. Ploidy level influences pollen tube growth and seed viability in interploidy crosses of Hydrangea macrophylla. Frontiers in Plant Science 11: 100.
Araújo, M. B., and R. Alejandro. 2013. The geographic scaling of biotic interactions. Ecography 37: 406-415.
Arnold, B., S.-T. Kim, and K. Bomblies. 2015. Single geographic origin of a widespread autotetraploid Arabidopsis arenosa lineage followed by interploidy admixture. Molecular Biology and Evolution 32: 1382-1395.
Arrigo, N., M. de La Harpe, G. Litsios, J. Zozomová-Lihová, S. Španiel, K. Marhold, M. S. Barker, and N. Alvarez. 2016. Is hybridization driving the evolution of climatic niche in Alyssum montanum? American Journal of Botany 103: 1348-1357.
Baduel, P., B. Hunter, S. Yeola, and K. Bomblies. 2018. Genetic basis and evolution of rapid cycling in railway populations of tetraploid Arabidopsis arenosa. PLoS Genetics 14: e1007510.
Baniaga, A. E., H. E. Marx, N. Arrigo, and M. S. Barker. 2019. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecology Letters 23: 68-78.
Barker, M. S., N. Arrigo, A. E. Baniaga, Z. Li, and D. A. Levin. 2016. On the relative abundance of autopolyploids and allopolyploids. New Phytologist 210: 391-398.
Bivand, R. S., and D. W. S. Wong. 2018. Comparing implementations of global and local indicators of spatial association. TEST 27: 716-748.
Broennimann, O., M. C. Fitzpatrick, P. B. Pearman, B. Petitpierre, L. Pellissier, N. G. Yoccoz, W. Thuiller, et al. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21: 481-497.
Burton, T. L., and B. C. Husband. 1999. Population cytotype structure in the polyploid Galax urceolata (Diapensiaceae). Heredity 82: 381-390.
Castro, M., J. Loureiro, A. Figueiredo, M. Serrano, B. C. Husband, and S. Castro. 2020. Different patterns of ecological divergence between two tetraploids and their diploid counterpart in a parapatric linear coastal distribution polyploid complex. Frontiers in Plant Science 11: 315.
Castro, M., J. Loureiro, M. Serrano, D. Tavares, B. C. Husband, C. Siopa, and S. Castro. 2019. Mosaic distribution of cytotypes in a mixed-ploidy plant species, Jasione montana: Nested environmental niches but low geographical overlap. Botanical Journal of the Linnean Society 190: 51-66.
Čertner, M., E. Fenclová, P. Kúr, F. Kolář, P. Koutecký, A. Krahulcová, and J. Suda. 2017. Evolutionary dynamics of mixed-ploidy populations in an annual herb: Dispersal, local persistence and recurrent origins of polyploids. Annals of Botany 120: 303-315.
Čertner, M., P. Kúr, F. Kolář, and J. Suda. 2019. Climatic conditions and human activities shape diploid-tetraploid coexistence at different spatial scales in the common weed Tripleurospermum inodorum (Asteraceae). Journal of Biogeography 46: 1355-1366.
Chytrý, M., L. Tichý, P. Dřevojan, J. Sádlo, and D. Zelený. 2018. Ellenberg-type indicator values for the Czech flora. Preslia 90: 83-103.
Di Cola, V., O. Broennimann, B. Petitpierre, F. T. Breiner, M. D’amen, C. Randin, R. Engler, et al. 2017. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 40: 774-787.
Dormann, C. F., M. Bobrowski, D. M. Dehling, D. J. Harris, F. Hartig, H. Lischke, M. D. Moretti, et al. 2018. Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Global Ecology and Biogeography 27: 1004-1016.
Ellenberg, H., H. E. Weber, R. Düll, V. Wirth, and D. Paulißen. 1991. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1-248.
Fick, S. E., and R. J. Hijmans. 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302-4315.
Fischer, M. A., K. Oswald, and W. Adler. 2008. Exkursionsflora für Österreich, Liechtenstein und Südtirol, 3te aufl. Biologiezentrum der Oberösterreichischen Landesmuseen, Linz, Austria.
Gabriel, K. R., and R. R. Sokol. 1969. A new statistical approach to geographic variation analysis. Systematic Biology 18: 259-278.
Gaynor, M. L., D. B. Marchant, D. E. Soltis, and P. S. Soltis. 2018. Climatic niche comparison among ploidal levels in the classic autopolyploid system, Galax urceolata. American Journal of Botany 105: 1631-1642.
Glennon, K. L., M. E. Ritchie, and K. A. Segraves. 2014. Evidence for shared broad-scale climatic niches of diploid and polyploid plants. Ecology Letters 17: 574-582.
Grant, V. 1981. Plant Speciation, 2nd ed. Columbia University Press, New York, NY, USA.
Hanzl, M., F. Kolář, D. Nováková, and J. Suda. 2014. Nonadaptive processes governing early stages of polyploid evolution: insights from a primary contact zone of relict serpentine Knautia arvensis (Caprifoliaceae). American Journal of Botany 101: 935-945.
Henry, I. M., B. P. Dilkes, K. Young, B. Watson, H. Wu, and L. Comai. 2005. Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics 170: 1979-1988.
Hülber, K., M. Sonnleitner, J. Suda, J. Krejčíková, P. Schönswetter, G. M. Schneeweiss, and M. Winkler. 2015. Ecological differentiation, lack of hybrids involving diploids, and asymmetric gene flow between polyploids in narrow contact zones of Senecio carniolicus (syn. Jacobaea carniolica, Asteraceae). Ecology and Evolution 5: 1224-1234.
Husband, B. C., and D. W. Schemske. 1998. Cytotype distribution at a diploid-tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). American Journal of Botany 85: 1688-1694.
Husband, B. C., D. W. Schemske, T. L. Burton, and C. Goodwillie. 2002. Pollen competition as a unilateral reproductive barrier between sympatric diploid and tetraploid Chamerion angustifolium. Proceedings of the Royal Society B 269: 2565-2571.
Jiao, Y., N. J. Wickett, S. Ayyampalayam, A. S. Chanderbali, L. Landherr, P. E. Ralph, L. P. Tomsho, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97-100.
Johannessen, I. M. 2019. Endosperm-based post-zygotic hybridization barriers in Arabidopsis. Doctoral thesis, University of Oslo, Oslo, Norway.
Jombart, T. 2008. adegenet: An R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403-1405.
Kirchheimer, B., C. C. F. Schinkel, A. S. Dellinger, S. Klatt, D. Moser, M. Winkler, J. Lenoir, et al. 2016. A matter of scale: Apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis. Journal of Biogeography 43: 716-726.
Kirchheimer, B., J. Wessely, A. Gattringer, K. Hülber, D. Moser, C. C. F. Schinkel, M. Appelhans, et al. 2018. Reconstructing geographical parthenogenesis: Effects of niche differentiation and reproductive mode on Holocene range expansion of an alpine plant. Ecology Letters 21: 392-401.
Knotek, A., and F. Kolář. 2018. Different low-competition island habitats in Central Europe harbour similar levels of genetic diversity in relict populations of Galium pusillum agg. (Rubiaceae). Biological Journal of the Linnean Society 125: 491-507.
Köhler, C., O. Mittelsten Scheid, and A. Erilova. 2010. The impact of the triploid block on the origin and evolution of polyploid plants. Trends in Genetics 26: 142-148.
Kolář, F., M. Čertner, J. Suda, P. Schönswetter, and B. C. Husband. 2017. Mixed-ploidy species: Progress and opportunities in polyploid research. Trends in Plant Science 22: 1041-1055.
Kolář, F., G. Fuxová, E. Záveská, A. J. Nagano, L. Hyklová, M. Lučanová, H. Kudoh, and K. Marhold. 2016a. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa. Molecular Ecology 25: 3929-3949.
Kolář, F., M. Lučanová, E. Záveská, G. Fuxová, T. Mandáková, S. Španiel, D. Senko, et al. 2016b. Ecological segregation does not drive the intricate parapatric distribution of diploid and tetraploid cytotypes of the Arabidopsis arenosa group (Brassicaceae). Biological Journal of the Linnean Society 119: 673-688.
Kolář, F., M. Štech, P. Trávníček, J. Rauchová, T. Urfus, P. Vít, M. Kubešová, and J. Suda. 2009. Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: Primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Annals of Botany 103: 963-974.
Krejčíková, J., R. Sudová, M. Lučanová, P. Trávníček, T. Urfus, P. Vít, H. Weiss-Schneeweiss, et al. 2013. High ploidy diversity and distinct patterns of cytotype distribution in a widespread species of Oxalis in the Greater Cape Floristic Region. Annals of Botany 111: 641-649.
Lafon-Placette, C., I. M. Johannessen, K. S. Hornslien, M. F. Ali, K. N. Bjerkan, J. Bramsiepe, B. M. Glöckle, et al. 2017. Endosperm-based hybridization barriers explain the pattern of gene flow between Arabidopsis lyrata and Arabidopsis arenosa in Central Europe. Proceedings of the National Academy of Sciences, USA 114: E1027-E1035.
Landis, J. B., D. E. Soltis, Z. Li, H. E. Marx, M. S. Barker, D. C. Tank, and P. S. Soltis. 2018. Impact of whole-genome duplication events on diversification rates in angiosperms. American Journal of Botany 105: 348-363.
Laport, R. G., L. Hatem, R. L. Minckley, and J. Ramsey. 2013. Ecological niche modeling implicates climatic adaptation, competitive exclusion, and niche conservatism among Larrea tridentata cytotypes in North American deserts. The Journal of the Torrey Botanical Society 140: 349-363.
Leempoel, K., C. Parisod, C. Geiser, L. Dapra, P. Vittoz, and S. Joost. 2015. Very high-resolution digital elevation models: Are multi-scale derived variables ecologically relevant? Methods in Ecology and Evolution 6: 1373-1383.
Levin, D. A. 1975. Minority cytotype exclusion in local plant populations. Taxon 24: 35-43.
Levin, D. A. 2002. The role of chromosomal change in plant evolution. Oxford University Press, New York, NY, USA.
Levin, D. A. 2003. The ecological transition in speciation. New Phytologist 161: 91-96.
López-Jurado, J., E. Mateos-Naranjo, and F. Balao. 2019. Niche divergence and limits to expansion in the high polyploid Dianthus broteri complex. New Phytologist 222: 1076-1087.
Lumaret, R., J.-L. Guillerm, J. Delay, A. Ait Lhaj Loutfi, J. Izco, and M. Jay. 1987. Polyploidy and habitat differentiation in Dactylis glomerata L. from Galicia (Spain). Oecologia 73: 436-446.
Mallet, J. 2007. Hybrid speciation. Nature 446: 279-283.
Marchant, D. B., D. E. Soltis, and P. S. Soltis. 2016. Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytologist 212: 708-718.
Martinčič, A., T. Wraber, N. Jogan, V. Ravnik, A. Podobnik, B. Turk, and B. Vreš. 1999. Mala flora Slovenije. Ključ za določanje praprotnic in semenk. 3. izdaja. Tehniška založba Slovenije, Ljubljana, Slovenia.
McIntyre, P. J. 2012. Polyploidy associated with altered and broader ecological niches in the Claytonia perfoliata (Portulaceae) species complex. American Journal of Botany 99: 655-662.
Měsíček, J., and K. Goliašová. 2002. Cardaminopsis (C. A. Mey.) Hayek. In K. Goliašová and H. Šípošová [eds.], Flóra Slovenska, 388-415. Veda, Bratislava, Slovak Republic.
Molina-Henao, Y. F., and R. Hopkins. 2019. Autopolyploid lineage shows climatic niche expansion but not divergence in Arabidopsis arenosa. American Journal of Botany 106: 61-70.
Monnahan, P., F. Kolář, P. Baduel, C. Sailer, J. Koch, R. Horvath, B. Laenen, et al. 2019. Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nature Ecology & Evolution 3: 457-468.
Moran, P. A. P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17-23.
One Thousand Plant Transcriptomes Initiative. 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574: 679-685.
Otto, S. P. 2007. The evolutionary consequences of polyploidy. Cell 131: 452-462.
Otto, S. P., and J. Whitton. 2000. Polyploid incidence and evolution. Annual Review of Genetics 34: 401-437.
Parisod, C., and O. Broennimann. 2016. Towards unified hypotheses of the impact of polyploidy on ecological niches. New Phytologist 212: 540-542.
Parisod, C., R. Holderegger, and C. Brochmann. 2010. Evolutionary consequences of autopolyploidy. New Phytologist 186: 5-17.
Pearson, P. L. 2001. Triploidy. In S. Brenner and J. H. Miller [eds.], Encyclopedia of Genetics, 2055-56. Academic Press, Cambridge, Massachusetts, USA.
R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austriahttps://www.R-project.org/.
Ramsey, J. 2011. Polyploidy and ecological adaptation in wild yarrow. Proceedings of the National Academy of Sciences, USA 108: 7096-7101.
Ramsey, J., and D. W. Schemske.1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics 29: 467-501.
Rice, A., L. Glick, S. Abadi, M. Einhorn, N. M. Kopelman, A. Salman-Minkov, J. Mayzel, et al. 2015. The Chromosome Counts Database (CCDB)-a community resource of plant chromosome numbers. New Phytologist 206: 19-26.
Sabara, H. A., P. Kron, and B. C. Husband. 2013. Cytotype coexistence leads to triploid hybrid production in a diploid-tetraploid contact zone of Chamerion angustifolium (Onagraceae). American Journal of Botany 100: 962-970.
Săvulescu, T. 1960. Flora reipublicae popularis Romanicae, vol. 3. Editura Academiei Republicii Populare Romĭne, Bucharest, Romania.
Schoener, T. W. 1968. Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49: 704-726.
Schönswetter, P., M. Lachmayer, C. Lettner, D. Prehsler, S. Rechnitzer, D. S. Reich, M. Sonnleitner, et al. 2007. Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. Journal of Plant Research 120: 721-725.
Šingliarová, B., J. Zozomová-Lihová, and P. Mráz. 2019. Polytopic origin and scale-dependent spatial segregation of cytotypes in primary diploid-autopolyploid contact zones of Pilosella rhodopea (Asteraceae). Biological Journal of the Linnean Society 126: 360-379.
Soltis, D. E., V. A. Albert, J. Leebens-Mack, C. D. Bell, A. H. Paterson, C. Zheng, D. Sankoff, et al. 2009. Polyploidy and angiosperm diversification. American Journal of Botany 96: 336-348.
Soltis, D. E. 1984. Autopolyploidy in Tolmiea menziesii (Saxifragaceae). American Journal of Botany 71: 1171-1174.
Soltis, D. E., and P. S. Soltis. 1999. Polyploidy: Recurrent formation and genome evolution. Trends in Ecology & Evolution 14: 348-352.
Sonnleitner, M., R. Flatscher, P. Escobar García, J. Rauchová, J. Suda, G. M. Schneeweiss, K. Hülber, and P. Schönswetter. 2010. Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Annals of Botany 106: 967-977.
Sonnleitner, M., K. Hülber, R. Flatscher, P. Escobar García, M. Winkler, J. Suda, P. Schönswetter, and G. M. Schneeweiss. 2016. Ecological differentiation of diploid and polyploid cytotypes of Senecio carniolicus sensu lato (Asteraceae) is stronger in areas of sympatry. Annals of Botany 11: 269-276.
Spoelhof, J. P., P. S. Soltis, and D. E. Soltis. 2017. Pure polyploidy: Closing the gaps in autopolyploid research. Journal of Systematics and Evolution 55: 340-352.
Stebbins, L. 1985. Polyploidy, hybridization, and the invasion of new habitats. Annals of the Missouri Botanical Garden 72: 824-832.
Swanson, R. J., A. T. Hammond, A. L. Carlson, H. Gong, and T. K. Donovan. 2016. Pollen performance traits reveal prezygotic non-random mating and interference competition in Arabidopsis thaliana. American Journal of Botany 103: 498-513.
ter Braak, C. J. F. 1995. Ordination. In R. H. Jongman, C. J. F. ter Braak, and O. F. R. van Tongeren [eds.], Data analysis in community ecology, 91-173. Pudoc, Wageningen, The Netherlands.
ter Braak, C. J. F., and P. Šmilauer. 2012. Canoco reference manual and user's guide: Software for ordination, version 5.0. Microcomputer Power, Ithaca, NY, USA.
Thompson, K. A., B. C. Husband, and H. Maherali. 2014. Climatic niche differences between diploid and tetraploid cytotypes of Chamerion angustifolium (Onagraceae). American Journal of Botany 101: 1868-1875.
Tichý, L..2002. JUICE, software for vegetation classification. Journal of Vegetation Science 13: 451-453.
Trávníček, P., Z. Dočkalová, R. Rosenbaumová, B. Kubátová, Z. Szeląg, and J. Chrtek. 2011a. Bridging global and microregional scales: Ploidy distribution in Pilosella echioides (Asteraceae) in Central Europe. Annals of Botany 107: 443-454.
Trávníček, P., J. Jersáková, B. Kubátová, J. Krejčíková, R. M. Bateman, M. Lučanová, E. Krajníková, et al. 2012. Minority cytotypes in European populations of the Gymnadenia conopsea complex (Orchidaceae) greatly increase intraspecific and intrapopulation diversity. Annals of Botany 110: 977-986.
Trávníček, P., B. Kubátová, V. Curn, J. Rauchová, E. Krajníková, J. Jersáková, and J. Suda. 2011b. Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry. Annals of Botany 107: 77-87.
Vallejo-Marín, M., A. M. Cooley, M. Yuequi Lee, M. Folmer, M. R. McKain, and J. R. Puzey. 2016. Strongly asymmetric hybridization barriers shape the origin of a new polyploid species and its hybrid ancestor. American Journal of Botany 103: 1272-1288.
Visger, C. J., C. C. Germain-Aubrey, M. Patel, E. B. Sessa, P. S. Soltis, and D. E. Soltis. 2016. Niche divergence between diploid and autotetraploid Tolmiea. American Journal of Botany 103: 1396-1406.
Warren, D. L., R. E. Glor, and M. Turelli. 2008. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62: 2868-2883.
Wiens, J. J. 2011. The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society of London, B, Biological Sciences 366: 2336-2350.
Wolf, P. G., D. E. Soltis, and P. S. Soltis. 1990. Chloroplast-DNA and allozymic variation in diploid and autotetraploid Heuchera grossulariifolia (Saxifragaceae). American Journal of Botany 77: 232-244.
Wood, T. E., N. Takebayashi, M. S. Barker, I. Mayrose, P. B. Greenspoon, and L. H. Rieseberg. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, USA 106: 13875-13879.
Wos, G., J. Mořkovská, M. Bohutínská, G. Šrámková, A. Knotek, M. Lučanová, S. Španiel, et al. 2019. Role of ploidy in colonization of alpine habitats in natural populations of Arabidopsis arenosa. Annals of Botany 124: 255-268.
Wright, K. M., B. Arnold, K. Xue, M. Šurinová, J. O’Connell, and K. Bomblies. 2015. Selection on meiosis genes in diploid and tetraploid Arabidopsis arenosa. Molecular Biology and Evolution 32: 944-955.
Yant, L., and K. Bomblies. 2017. Genomic studies of adaptive evolution in outcrossing Arabidopsis species. Current Opinions in Plant Biology 36: 9-14.