Whole-Genome Duplication Reshapes Adaptation: Autotetraploid Arabidopsis arenosa Leverages its High Genetic Variation to Compensate for Selection Constraints
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
243-252135
Charles University
European Research Council - International
ERC-StG 850852
European Union's Horizon 2020
23-07204M
the Czech Science Foundation
RVO 67985939
Czech Academy of Sciences
National Grid Infrastructure MetaCentrum
CESNET LM2015042
"Projects of Large Research, Development, and Innovations Infrastructures"
PubMed
41306061
PubMed Central
PMC12709285
DOI
10.1093/molbev/msaf298
PII: 8345034
Knihovny.cz E-zdroje
- Klíčová slova
- polyploids evolution, soil adaptation, whole genome duplication,
- MeSH
- Arabidopsis * genetika MeSH
- biologická adaptace genetika MeSH
- duplikace genu * MeSH
- fyziologická adaptace * genetika MeSH
- genetická variace MeSH
- genom rostlinný * MeSH
- polyploidie MeSH
- selekce (genetika) * MeSH
- tetraploidie MeSH
- Publikační typ
- časopisecké články MeSH
Whole-genome duplication (WGD), a widespread macromutation across eukaryotes, is predicted to affect the tempo and modes of evolutionary processes. By theory, the additional set(s) of chromosomes present in polyploid organisms may reduce the efficiency of selection while, simultaneously, increasing heterozygosity and buffering deleterious mutations. Despite the theoretical significance of WGD, empirical genomic evidence from natural polyploid populations is scarce and direct comparisons of selection footprints between autopolyploids and closely related diploids remains completely unexplored. We therefore combined locally sampled soil data with resequenced genomes of 76 populations of diploid-autotetraploid Arabidopsis arenosa and tested whether the genomic signatures of adaptation to distinct siliceous and calcareous soils differ between the ploidies. Leveraging multiple independent transitions between these soil types in each ploidy, we identified a set of genes associated with ion transport and homeostasis that were repeatedly selected for across the species' range. Notably, polyploid populations have consistently retained greater variation at candidate loci compared with diploids, reflecting lower fixation rates. In tetraploids, positive selection predominantly acts on such a large pool of standing genetic variation, rather than targeting de novo mutations. Finally, selection in tetraploids targets genes that are more central within the protein-protein interaction network, potentially impacting a greater number of downstream fitness-related traits. In conclusion, both ploidies thrive across a broad gradient of substrate conditions, but WGD fundamentally alters the ploidies adaptive strategies: tetraploids leverage their greater genetic variation and redundancy to compensate for the predicted constraints on the efficacy of positive selection.
Czech Academy of Sciences Institute of Botany Průhonice Czech Republic
Department of Botany Faculty of Science Charles University Prague Czech Republic
Institute of Integrative Biology ETH Zurich Zurich Switzerland
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Alexa A, Rahnenführer J. 2024. topGO: enrichment analysis for gene ontology. http://bioconductor.org/packages/topGO/
Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JSP. Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot. 2017:120:183–194. 10.1093/aob/mcx079. PubMed DOI PMC
Alvarez N et al. History or ecology? Substrate type as a major driver of spatial genetic structure in alpine plants. Ecol Lett. 2009:12:632–640. 10.1111/j.1461-0248.2009.01312.x. PubMed DOI
Alves JM et al. Parallel adaptation of rabbit populations to myxoma virus. Science. 2019:363:1319–1326. 10.1126/science.aau7285. PubMed DOI PMC
Anjali C, Vanisri S, Himabindu K. Insilico analysis of Arabidopsis ferric reductase oxidases (FRO) proteins associated with iron homeostasis. Pharma Innov. 2021:10:303–310. 10.22271/tpi.2021.v10.i8e.7178. DOI
Arnold B, Kim S-T, Bomblies K. Single geographic origin of a widespread autotetraploid Arabidopsis arenosa lineage followed by interploidy admixture. Mol Biol Evol. 2015:32:1382–1395. 10.1093/molbev/msv089. PubMed DOI
Arnold BJ et al. Borrowed alleles and convergence in serpentine adaptation. Proc Natl Acad Sci U S A. 2016:113:8320–8325. 10.1073/pnas.1600405113. PubMed DOI PMC
Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L. The “polyploid hop”: shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front Ecol Evol. 2018a:6:117. 10.3389/fevo.2018.00117. DOI
Baduel P, Hunter B, Yeola S, Bomblies K. Genetic basis and evolution of rapid cycling in railway populations of tetraploid Arabidopsis arenosa. PLoS Genet. 2018b:14:e1007510. 10.1371/journal.pgen.1007510. PubMed DOI PMC
Baniaga AE, Marx HE, Arrigo N, Barker MS. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecol Lett. 2020:23:68–78. 10.1111/ele.13402. PubMed DOI
Barrett R, Schluter D. Adaptation from standing genetic variation. Trends Ecol Evol. 2008:23:38–44. 10.1016/j.tree.2007.09.008. PubMed DOI
Bastida JM, Rey PJ, Alcántara JM. Plant performance and morpho-functional differentiation in response to edaphic variation in Iberian columbines: cues for range distribution? J Plant Ecol. 2014:7:403–412. 10.1093/jpe/rtt046. DOI
Berardini TZ et al. The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis. 2015:53:474–485. 10.1002/dvg.22877. PubMed DOI PMC
Bohutínská M et al. Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Proc Natl Acad Sci U S A. 2021:118:e2022713118. 10.1073/pnas.2022713118. PubMed DOI PMC
Bohutínská M, Peichel CL. Divergence time shapes gene reuse during repeated adaptation. Trends Ecol Evol. 2024:39:396–407. 10.1016/j.tree.2023.11.007. PubMed DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014:30:2114–2120. 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bontpart T et al. Growing on calcareous soils and facing climate change. Trends Plant Sci. 2024:29:1319–1330. 10.1016/j.tplants.2024.03.013. PubMed DOI
Booker TR, Yeaman S, Whitlock MC. Using genome scans to identify genes used repeatedly for adaptation. Evolution. 2023:77:801–811. 10.1093/evolut/qpac063. PubMed DOI
Bothe H. The lime–silicate question. Soil Biol Biochem. 2015:89:172–183. 10.1016/j.soilbio.2015.07.004. DOI
Bothe H, Ferguson S, Newton WE. Biology of the nitrogen cycle. Elsevier; 2006.
Bray SM et al. Kinetochore and ionomic adaptation to whole-genome duplication in Cochlearia shows evolutionary convergence in three autopolyploids. Cell Rep. 2024:43:114576. 10.1016/j.celrep.2024.114576. PubMed DOI
Carretero-Paulet L, Van de Peer Y. The evolutionary conundrum of whole-genome duplication. Am J Bot. 2020:107:1101–1105. 10.1002/ajb2.1520. PubMed DOI PMC
Caye K, Jumentier B, Lepeule J, François O. LFMM 2: fast and accurate inference of gene-environment associations in genome-wide studies. Mol Biol Evol. 2019:36:852–860. 10.1093/molbev/msz008. PubMed DOI PMC
Chaturvedi S et al. Climatic similarity and genomic background shape the extent of parallel adaptation in Timema stick insects. Nat Ecol Evol. 2022:6:1952–1964. 10.1038/s41559-022-01909-6. PubMed DOI PMC
Choi JY et al. Ancestral polymorphisms shape the adaptive radiation of Metrosideros across the Hawaiian Islands. Proc Natl Acad Sci U S A. 2021:118:e2023801118. 10.1073/pnas.2023801118. PubMed DOI PMC
Clark R, Baligar V. Acidic and alkaline soil constraints on plant mineral nutrition. In: Plant-environment interactions. CRC Press; 2000. p. 133–178.
Clo J. Polyploidization: consequences of genome doubling on the evolutionary potential of populations. Am J Bot. 2022:109:1213–1220. 10.1002/ajb2.16029. PubMed DOI
Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005:6:836–846. 10.1038/nrg1711. PubMed DOI
Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal Complex Syst. 2006:1695:1–9.
Cuypers TD, Hogeweg P. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation. PLoS Comput Biol. 2014:10:e1003547. 10.1371/journal.pcbi.1003547. PubMed DOI PMC
DePristo MA et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011:43:491–498. 10.1038/ng.806. PubMed DOI PMC
Dukić M, Bomblies K. Male and female recombination landscapes of diploid Arabidopsis arenosa. Genetics. 2022:220:iyab236. 10.1093/genetics/iyab236. PubMed DOI PMC
Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nat Protoc. 2009:4:1184–1191. 10.1038/nprot.2009.97. PubMed DOI PMC
Ebadi M et al. The duplication of genomes and genetic networks and its potential for evolutionary adaptation and survival during environmental turmoil. Proc Natl Acad Sci U S A. 2023:120:e2307289120. 10.1073/pnas.2307289120. PubMed DOI PMC
Fourcroy P, Tissot N, Gaymard F, Briat J-F, Dubos C. Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe(2+) transport system. Mol Plant. 2016:9:485–488. 10.1016/j.molp.2015.09.010. PubMed DOI
Fox DT, Soltis DE, Soltis PS, Ashman T-L, Van de Peer Y. Polyploidy: a biological force from cells to ecosystems. Trends Cell Biol. 2020:30:688–694. 10.1016/j.tcb.2020.06.006. PubMed DOI PMC
Frachon L et al. Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time. Nat Ecol Evol. 2017:1:1551–1561. 10.1038/s41559-017-0297-1. PubMed DOI
Garsmeur O et al. Two evolutionarily distinct classes of paleopolyploidy. Mol Biol Evol. 2014:31:448–454. 10.1093/molbev/mst230. PubMed DOI
Grosjean P. 2022. SciViews-R: a GUI API for R. UMONS. http://www.sciviews.org/SciViews-R
Guggisberg A et al. The genomic basis of adaptation to calcareous and siliceous soils in Arabidopsis lyrata. Mol Ecol. 2018:27:5088–5103. 10.1111/mec.14930. PubMed DOI
Gutiérrez-Guerrero YT, Phifer-Rixey M, Nachman MW. Across two continents: the genomic basis of environmental adaptation in house mice (Mus musculus domesticus) from the Americas. PLoS Genet. 2024:20:e1011036. 10.1371/journal.pgen.1011036. PubMed DOI PMC
Hämälä T et al. Impact of whole-genome duplications on structural variant evolution in Cochlearia. Nat Commun. 2024:15:5377. 10.1038/s41467-024-49679-y. PubMed DOI PMC
Hämälä T, Gorton AJ, Moeller DA, Tiffin P. Pleiotropy facilitates local adaptation to distant optima in common ragweed (Ambrosia artemisiifolia). PLoS Genet. 2020:16:e1008707. 10.1371/journal.pgen.1008707. PubMed DOI PMC
Hedrich R. Ion channels in plants. Physiol Rev. 2012:92:1777–1811. 10.1152/physrev.00038.2011. PubMed DOI
Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation: molecular population genetics of adaptation from standing genetic variation. Genetics. 2005:169:2335–2352. 10.1534/genetics.104.036947. PubMed DOI PMC
Hill WG, Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966:8:269–294. 10.1017/S0016672300010156. PubMed DOI
Hollister JD et al. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet. 2012:8:e1003093. 10.1371/journal.pgen.1003093. PubMed DOI PMC
Hu TT et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet. 2011:43:476–481. 10.1038/ng.807. PubMed DOI PMC
Innan H, Kim Y. Pattern of polymorphism after strong artificial selection in a domestication event. Proc Natl Acad Sci U S A. 2004:101:10667–10672. 10.1073/pnas.0401720101. PubMed DOI PMC
Jeong H, Mason SP, Barabási A-L, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001:411(6833):41–42. 10.1038/35075138. PubMed DOI
Ji Y et al. Gene reuse facilitates rapid radiation and independent adaptation to diverse habitats in the Asian honeybee. Sci Adv. 2020:6:eabd3590. 10.1126/sciadv.abd3590. PubMed DOI PMC
Jones FC et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012:484:55–61. 10.1038/nature10944. PubMed DOI PMC
Kang JG, Pyo YJ, Cho JW, Cho MH. Comparative proteome analysis of differentially expressed proteins induced by K+ deficiency in Arabidopsis thaliana. Proteomics. 2004:4:3549–3559. 10.1002/pmic.200400898. PubMed DOI
Keane OM, Toft C, Carretero-Paulet L, Jones GW, Fares MA. Preservation of genetic and regulatory robustness in ancient gene duplicates of Saccharomyces cerevisiae. Genome Res. 2014:24:1830–1841. 10.1101/gr.176792.114. PubMed DOI PMC
Keightley PD, Jackson BC. Inferring the probability of the derived vs. The ancestral allelic state at a polymorphic site. Genetics. 2018:209:897–906. 10.1534/genetics.118.301120. PubMed DOI PMC
Kim PM, Korbel JO, Gerstein MB. Positive selection at the protein network periphery: evaluation in terms of structural constraints and cellular context. Proc Natl Acad Sci U S A. 2007:104:20274–20279. 10.1073/pnas.0710183104. PubMed DOI PMC
Kim SA, Guerinot ML. Mining iron: iron uptake and transport in plants. FEBS Lett. 2007:581:2273–2280. 10.1016/j.febslet.2007.04.043. PubMed DOI
Koch M. The plant model system Arabidopsis set in an evolutionary, systematic, and spatio-temporal context. J Exp Bot. 2018:70:55–67. 10.1093/jxb/ery340 PubMed DOI
Kolář F et al. Serpentine ecotypic differentiation in a polyploid plant complex: shared tolerance to Mg and Ni stress among di- and tetraploid serpentine populations of Knautia arvensis (Dipsacaceae). Plant Soil. 2014:374:435–447. 10.1007/s11104-013-1813-y. DOI
Kolář F et al. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa. Mol Ecol. 2016:25:3929–3949. 10.1111/mec.13721. PubMed DOI
Konečná V et al. Parallel adaptation in autopolyploid Arabidopsis arenosa is dominated by repeated recruitment of shared alleles. Nat Commun. 2021:12:4979. 10.1038/s41467-021-25256-5. PubMed DOI PMC
Lee I, Ambaru B, Thakkar P, Marcotte EM, Rhee SY. Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nat Biotechnol. 2010:28:149–156. 10.1038/nbt.1603. PubMed DOI PMC
Lee KM, Coop G. Distinguishing among modes of convergent adaptation using population genomic data. Genetics. 2017:207:1591–1619. 10.1534/genetics.117.300417. PubMed DOI PMC
Lee KM, Coop G. Population genomics perspectives on convergent adaptation. Philos Trans R Soc Lond B Biol Sci. 2019:374:20180236. 10.1098/rstb.2018.0236. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009:25:1754–1760. 10.1093/bioinformatics/btp324. PubMed DOI PMC
Lipánová V, Kabátová KN, Zeisek V, Kolář F, Chrtek J. Evolution of the Sabulina verna group (Caryophyllaceae) in Europe: a deep split, followed by secondary contacts, multiple allopolyploidization and colonization of challenging substrates. Mol Phylogenet Evol. 2023:189:107940. 10.1016/j.ympev.2023.107940. PubMed DOI
Llorente F, López-Cobollo RM, Catalá R, Martínez-Zapater JM, Salinas J. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J. 2002:32:13–24. 10.1046/j.1365-313X.2002.01398.x. PubMed DOI
Louis M et al. Selection on ancestral genetic variation fuels repeated ecotype formation in bottlenose dolphins. Sci Adv. 2021:7:eabg1245. 10.1126/sciadv.abg1245. PubMed DOI PMC
Mancini I, Domingo G, Bracale M, Loreto F, Pollastri S. Isoprene emission influences the proteomic profile of Arabidopsis plants under well-watered and drought-stress conditions. Int J Mol Sci. 2022:23:3836. 10.3390/ijms23073836. PubMed DOI PMC
Marad DA, Buskirk SW, Lang GI. Altered access to beneficial mutations slows adaptation and biases fixed mutations in diploids. Nat Ecol Evol. 2018:2:882–889. 10.1038/s41559-018-0503-9. PubMed DOI
Masalia RR, Bewick AJ, Burke JM. Connectivity in gene coexpression networks negatively correlates with rates of molecular evolution in flowering plants. PLoS One. 2017:12:e0182289. 10.1371/journal.pone.0182289. PubMed DOI PMC
McKenna A et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010:20:1297–1303. 10.1101/gr.107524.110. PubMed DOI PMC
Meirmans PG, Liu S, van Tienderen PH. The analysis of polyploid genetic data. J Hered. 2018:109:283–296. 10.1093/jhered/esy006. PubMed DOI
Michalet R, Gandoy C, Joud D, Pagès J-P, Choler P. Plant community composition and biomass on calcareous and siliceous substrates in the Northern French Alps: comparative effects of soil chemistry and water status. Arct Antarct Alp Res. 2002:34:102–113. 10.1080/15230430.2002.12003474. DOI
Monnahan P et al. Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat Ecol Evol. 2019:3:457–468. 10.1038/s41559-019-0807-4. PubMed DOI
Monnahan P, Brandvain Y. The effect of autopolyploidy on population genetic signals of hard sweeps. Biol Lett. 2020:16:20190796. 10.1098/rsbl.2019.0796. PubMed DOI PMC
Montejo-Kovacevich G et al. Repeated genetic adaptation to altitude in two tropical butterflies. Nat Commun. 2022:13:1–16. 10.1038/s41467-022-32316-x. PubMed DOI PMC
Moore AJ, Kadereit JW. The evolution of substrate differentiation in Minuartia series Laricifoliae (Caryophyllaceae) in the European Alps: in situ origin or repeated colonization? Am J Bot. 2013:100:2412–2425. 10.3732/ajb.1300225. PubMed DOI
Morgan EJ et al. Niche similarity in diploid-autotetraploid contact zones of Arabidopsis arenosa across spatial scales. Am J Bot. 2020:107:1375–1388. 10.1002/ajb2.1534. PubMed DOI
Nemer D, Liancourt P, Delerue F, Randé H, Michalet R. Species stress tolerance and community competitive effects drive differences in species composition between calcareous and siliceous plant communities. J Ecol. 2021:109:4132–4142. 10.1111/1365-2745.13785. DOI
Novikova PY et al. Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nat Genet. 2016:48:1077–1082. 10.1038/ng.3617. PubMed DOI
Novikova PY, Hohmann N, Van de Peer Y. Polyploid Arabidopsis species originated around recent glaciation maxima. Curr Opin Plant Biol. 2018:42:8–15. 10.1016/j.pbi.2018.01.005. PubMed DOI
Olson-Manning CF, Wagner MR, Mitchell-Olds T. Adaptive evolution: evaluating empirical support for theoretical predictions. Nat Rev Genet. 2012:13:867–877. 10.1038/nrg3322. PubMed DOI PMC
Ormeño E, Baldy V, Ballini C, Fernandez C. Production and diversity of volatile terpenes from plants on calcareous and siliceous soils: effect of soil nutrients. J Chem Ecol. 2008:34:1219–1229. 10.1007/s10886-008-9515-2. PubMed DOI
Orr HA. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution. 1998:52:935–949. 10.1111/j.1558-5646.1998.tb01823.x. PubMed DOI
Orr HA. Adaptation and the cost of complexity. Evolution. 2000:54:13–20. 10.1111/j.0014-3820.2000.tb00002.x. PubMed DOI
Otto SP. Two steps forward, one step back: the pleiotropic effects of favoured alleles. Proc Biol Sci. 2004:271:705–714. 10.1098/rspb.2003.2635. PubMed DOI PMC
Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000:34:401–437. 10.1146/annurev.genet.34.1.401. PubMed DOI
Padilla-García N et al. The importance of considering the evolutionary history of polyploids when assessing climatic niche evolution. J Biogeogr. 2023:50:86–100. 10.1111/jbi.14496. DOI
Parisod C. Duplicated gene networks promote “hopeful” phenotypic variation. Trends Genet. 2024:40:109–111. 10.1016/j.tig.2023.12.004. PubMed DOI
Parisod C, Holderegger R, Brochmann C. Evolutionary consequences of autopolyploidy: research review. New Phytol. 2010:186:5–17. 10.1111/j.1469-8137.2009.03142.x. PubMed DOI
Paterson AH. Polyploidy, evolutionary opportunity, and crop adaptation. In: Mauricio R, editors. Genetics of adaptation. Springer Netherlands; 2005. p. 191–196. PubMed
Pecinka A, Fang W, Rehmsmeier M, Levy AA, Mittelsten Scheid O. Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biol. 2011:9:24. 10.1186/1741-7007-9-24. PubMed DOI PMC
Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012:8:e1002967. 10.1371/journal.pgen.1002967. PubMed DOI PMC
Preite V et al. Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos Trans R Soc Lond B Biol Sci. 2019:374:20180243. 10.1098/rstb.2018.0243. PubMed DOI PMC
Promislow DEL. Protein networks, pleiotropy and the evolution of senescence. Proc Biol Sci. 2004:271:1225–1234. 10.1098/rspb.2004.2732. PubMed DOI PMC
Rausher MD, Delph LF. Commentary: when does understanding phenotypic evolution require identification of the underlying genes? Evolution. 2015:69:1655–1664. 10.1111/evo.12687. PubMed DOI
Rawat V et al. Improving the annotation of Arabidopsis lyrata using RNA-Seq data. PLoS One. 2015:10:e0137391. 10.1371/journal.pone.0137391. PubMed DOI PMC
R Core Team . R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2021.
Reid NM et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science. 2016:354:1305–1308. 10.1126/science.aah4993. PubMed DOI PMC
Rennison DJ, Peichel CL. Pleiotropy facilitates parallel adaptation in sticklebacks. Mol Ecol. 2022:31:1476–1486. 10.1111/mec.16335. PubMed DOI PMC
Ronfort J. The mutation load under tetrasomic inheritance and its consequences for the evolution of the selfing rate in autotetraploid species. Genet Res (Camb). 1999:74:31–42. 10.1017/S0016672399003845. DOI
Ronfort J, Jenczewski E, Bataillon T, Rousset F. Analysis of population structure in autotetraploid species. Genetics. 1998:150:921–930. 10.1093/genetics/150.2.921. PubMed DOI PMC
Rouached H, Secco D, Arpat AB. Getting the most sulfate from soil: regulation of sulfate uptake transporters in Arabidopsis. J Plant Physiol. 2009:166:893–902. 10.1016/j.jplph.2009.02.016. PubMed DOI
Rubin C-J et al. Rapid adaptive radiation of Darwin's finches depends on ancestral genetic modules. Sci Adv. 2022:8:eabm5982. 10.1126/sciadv.abm5982. PubMed DOI PMC
Sailer C et al. Transmembrane transport and stress response genes play an important role in adaptation of Arabidopsis halleri to metalliferous soils. Sci Rep. 2018:8:16085. 10.1038/s41598-018-33938-2. PubMed DOI PMC
Salman-Minkov A, Sabath N, Mayrose I. Whole-genome duplication as a key factor in crop domestication. Nat Plants. 2016:2:16115. 10.1038/nplants.2016.115. PubMed DOI
Selmecki AM et al. Polyploidy can drive rapid adaptation in yeast. Nature. 2015:519:349–352. 10.1038/nature14187. PubMed DOI PMC
Shah SH, Islam S, Mohammad F. Sulphur as a dynamic mineral element for plants: a review. J Soil Sci Plant Nutr. 2022:22:2118–2143. 10.1007/s42729-022-00798-9. DOI
Shastry V et al. Model-based genotype and ancestry estimation for potential hybrids with mixed-ploidy. Mol Ecol Resour. 2021:21:1434–1451. 10.1111/1755-0998.13330. PubMed DOI
Smyčka J et al. Tempo and drivers of plant diversification in the European mountain system. Nat Commun. 2022:13:2750. 10.1038/s41467-022-30394-5. PubMed DOI PMC
Soltis PS, Soltis DE. The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci U S A. 2000:97:7051–7057. 10.1073/pnas.97.13.7051. PubMed DOI PMC
Šustr M, Konrádová H, Martinčová M, Soukup A, Tylová E. Potassium transporter KUP9 regulates plant response to K+ deficiency and affects carbohydrate allocation in A. thaliana. J Plant Physiol. 2024:292:154147. 10.1016/j.jplph.2023.154147. PubMed DOI
Szklarczyk D et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023:51:D638–D646. 10.1093/nar/gkac1000. PubMed DOI PMC
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989:123:585–595. 10.1093/genetics/123.3.585. PubMed DOI PMC
Takahashi H et al. The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J. 2000:23:171–182. 10.1046/j.1365-313x.2000.00768.x. PubMed DOI
te Beest M et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot. 2012:109:19–45. 10.1093/aob/mcr277. PubMed DOI PMC
Terekhanova NV, Barmintseva AE, Kondrashov AS, Bazykin GA, Mugue NS. Architecture of parallel adaptation in ten lacustrine threespine stickleback populations from the White Sea area. Genome Biol Evol. 2019:11:2605–2618. 10.1093/gbe/evz175. PubMed DOI PMC
Terés J et al. Soil carbonate drives local adaptation in Arabidopsis thaliana. Plant Cell Environ. 2019:42:2384–2398. 10.1111/pce.13567. PubMed DOI PMC
Thompson KA, Osmond MM, Schluter D. Parallel genetic evolution and speciation from standing variation. Evol Lett. 2019:3:129–141. 10.1002/evl3.106. PubMed DOI PMC
Tran K-N, et al. 2022. Multiple paths lead to salt tolerance—pre-adaptation vs dynamic responses from two closely related extremophytes. bioRxiv [Preprint]. Available from: 10.1101/2021.10.23.465591. DOI
Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet. 2010:42:260–263. 10.1038/ng.515. PubMed DOI
Tyler AL, Asselbergs FW, Williams SM, Moore JH. Shadows of complexity: what biological networks reveal about epistasis and pleiotropy. Bioessays. 2009:31:220–227. 10.1002/bies.200800022. PubMed DOI PMC
Van de Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat Rev Genet. 2017:18:411–424. 10.1038/nrg.2017.26. PubMed DOI
Van der Auwera GA et al. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013:43:11.10.1–11.10.33. 10.1002/0471250953.bi1110s43. PubMed DOI PMC
Vekemans X, et al. 2025. Autopolyploidy exacerbates dominance masking under negative frequency-dependent selection: evidence from sporophytic self-incompatibility in Arabidopsis arenosa and A. lyrata. bioRxiv [Preprint]. Available from: 10.1101/2025.06.11.659117. DOI
Venables WN, Ripley BD. Modern applied statistics with S. 4th ed. Springer; 2002.
Vert GA, Briat J-F, Curie C. Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol. 2003:132:796–804. 10.1104/pp.102.016089. PubMed DOI PMC
Vlček J et al. Whole-genome duplication increases genetic diversity and load in outcrossing Arabidopsis arenosa. Proc Natl Acad Sci U S A. 2025:122:e2501739122. 10.1073/pnas.2501739122. PubMed DOI PMC
Wang M, Zhao Y, Zhang B. Efficient test and visualization of multi-set intersections. Sci Rep. 2015:5:16923. 10.1038/srep16923. PubMed DOI PMC
Wang Z, Liao B-Y, Zhang J. Genomic patterns of pleiotropy and the evolution of complexity. Proc Natl Acad Sci U S A. 2010:107:18034–18039. 10.1073/pnas.1004666107. PubMed DOI PMC
Wendel JF. The wondrous cycles of polyploidy in plants. Am J Bot. 2015:102:1753–1756. 10.3732/ajb.1500320. PubMed DOI
Wos G, Požárová D, Kolář F. Role of phenotypic and transcriptomic plasticity in alpine adaptation of Arabidopsis arenosa. Mol Ecol. 2023:32:5771–5784. 10.1111/mec.17144. PubMed DOI
Wu S, Han B, Jiao Y. Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Mol Plant. 2020:13:59–71. 10.1016/j.molp.2019.10.012. PubMed DOI
Xu N et al. Functional analyses of the NRT2 family of nitrate transporters in Arabidopsis. Front Plant Sci. 2024:15:1351998. 10.3389/fpls.2024.1351998. PubMed DOI PMC
Yang L et al. Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress. BMC Genomics. 2018:19:717. 10.1186/s12864-018-5106-y. PubMed DOI PMC
Yant L et al. Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol. 2013:23:2151–2156. 10.1016/j.cub.2013.08.059. PubMed DOI PMC
Yant L, Bomblies K. Genomic studies of adaptive evolution in outcrossing Arabidopsis species. Curr Opin Plant Biol. 2017:36:9–14. 10.1016/j.pbi.2016.11.018. PubMed DOI
Yao Y, Carretero-Paulet L, Van de Peer Y. Using digital organisms to study the evolutionary consequences of whole genome duplication and polyploidy. PLoS One. 2019:14:e0220257. 10.1371/journal.pone.0220257. PubMed DOI PMC
York ET Jr, Bradfield R, Peech M. Calcium-potassium interactions in soils and plants: II. Reciprocal relationship between calcium and potassium in plants. Soil Sci. 1953:76:481–492. 10.1097/00010694-195312000-00007. DOI
Yu G et al. Overexpression of AcNIP5;1, a novel nodulin-like intrinsic protein from halophyte Atriplex canescens, enhances sensitivity to salinity and improves drought tolerance in Arabidopsis. Plant Mol Biol Rep. 2015:33:1864–1875. 10.1007/s11105-015-0881-y. DOI
Zhang F et al. Evolutionary genomics of climatic adaptation and resilience to climate change in alfalfa. Mol Plant. 2024:17:867–883. 10.1016/j.molp.2024.04.013. PubMed DOI
Zhang L et al. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. Plant Cell Environ. 2020:43:2847–2856. 10.1111/pce.13898. PubMed DOI