Role of phenotypic and transcriptomic plasticity in alpine adaptation of Arabidopsis arenosa

. 2023 Nov ; 32 (21) : 5771-5784. [epub] 20230920

Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37728172

Grantová podpora
RVO 67985939 Czech Academy of Sciences
20-22783S Czech Science Foundation

Plasticity is an important component of the response of organism to environmental changes, but whether plasticity facilitates adaptation is still largely debated. Using transcriptomic and phenotypic data, we explored the evolution of ancestral plasticity during alpine colonization in Arabidopsis arenosa. We leveraged naturally replicated adaptation in four distinct mountain regions in Central Europe. We sampled seeds from ancestral foothill and independently formed alpine populations in each region and raised them in growth chambers under conditions approximating their natural environments. We gathered RNA-seq and genetic data of 48 and 63 plants and scored vegetative and flowering traits in 203 and 272 plants respectively. Then, we compared gene expression and trait values over two treatments differing in temperature and irradiance and elevations of origin and quantified the extent of ancestral and derived plasticity. At the transcriptomic level, initial plastic changes tended to be more reinforced than reversed in adapted alpine populations. Genes showing reinforcement were involved in the stress response, developmental processes and morphogenesis and those undergoing reversion were related to the stress response (light and biotic stress). At the phenotypic level, initial plastic changes in all but one trait were also reinforced supporting a facilitating role of phenotypic plasticity during colonization of an alpine environment. Our results contrasted with previous studies that showed generally higher reversion than reinforcement and supported the idea that ancestral plasticity tends to be reinforced in the context of alpine adaptation. However, plasticity may also be the source of potential maladaptation, especially at the transcriptomic level.

Zobrazit více v PubMed

Adams, D. C., & Collyer, M. L. (2009). A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution, 63(5), 1143-1154.

Alvarez, M., Schrey, A. W., & Richards, C. L. (2015). Ten years of transcriptomics in wild populations: What have we learned about their ecology and evolution? Molecular Ecology, 24(4), 710-725. https://doi.org/10.1111/mec.13055

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., & Eppig, J. T. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics, 25(1), 25-29.

Berardini, T. Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E., & Huala, E. (2015). The Arabidopsis information resource: Making and mining the “gold standard” annotated reference plant genome. Genesis, 53(8), 474-485. https://doi.org/10.1002/dvg.22877

Bohutínská, M., Vlček, J., Yair, S., Laenen, B., Konečná, V., Fracassetti, M., Slotte, T., & Kolář, F. (2021). Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Proceedings of the National Academy of Sciences of the United States of America, 118(21), e2022713118. https://doi.org/10.1073/pnas.2022713118

Bolnick, D. I., Barrett, R. D. H., Oke, K. B., Rennison, D. J., & Stuart, Y. E. (2018). (Non)parallel evolution. Annual Review of Ecology, Evolution, and Systematics, 49(1), 303-330. https://doi.org/10.1146/annurev-ecolsys-110617-062240

Chevin, L.-M., & Hoffmann, A. A. (2017). Evolution of phenotypic plasticity in extreme environments. Philosophical Transactions of the Royal Society, B: Biological Sciences, 372(1723), 20160138. https://doi.org/10.1098/rstb.2016.0138

Collyer, M. L., & Adams, D. C. (2007). Analysis of two-state multivariate phenotypic change in ecological studies. Ecology, 88(3), 683-692. https://doi.org/10.1890/06-0727

de Villemereuil, P., Mouterde, M., Gaggiotti, O. E., & Till-Bottraud, I. (2018). Patterns of phenotypic plasticity and local adaptation in the wide elevation range of the alpine plant Arabis alpina. Journal of Ecology, 106(5), 1952-1971.

Desprez-Loustau, M.-L., Vitasse, Y., Delzon, S., Capdevielle, X., Marçais, B., & Kremer, A. (2010). Are plant pathogen populations adapted for encounter with their host? A case study of phenological synchrony between oak and an obligate fungal parasite along an altitudinal gradient. Journal of Evolutionary Biology, 23(1), 87-97. https://doi.org/10.1111/j.1420-9101.2009.01881.x

DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution, 13(2), 77-81. https://doi.org/10.1016/S0169-5347(97)01274-3

Duputié, A., Rutschmann, A., Ronce, O., & Chuine, I. (2015). Phenological plasticity will not help all species adapt to climate change. Global Change Biology, 21(8), 3062-3073. https://doi.org/10.1111/gcb.12914

van Gestel, J., & Weissing, F. J. (2018). Is plasticity caused by single genes? Nature, 555(7698), E19-E20. https://doi.org/10.1038/nature25495

Ghalambor, C. K., Hoke, K. L., Ruell, E. W., Fischer, E. K., Reznick, D. N., & Hughes, K. A. (2015). Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature, 525(7569), 372-375. https://doi.org/10.1038/nature15256

Ghalambor, C. K., McKay, J. K., Carroll, S. P., & Reznick, D. N. (2007). Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology, 21(3), 394-407. https://doi.org/10.1111/j.1365-2435.2007.01283.x

Grether, G. F. (2005). Environmental change, phenotypic plasticity, and genetic compensation. The American Naturalist, 166(4), E115-E123. https://doi.org/10.1086/432023

Gugger, S., Kesselring, H., Stöcklin, J., & Hamann, E. (2015). Lower plasticity exhibited by high- versus mid-elevation species in their phenological responses to manipulated temperature and drought. Annals of Botany, 116(6), 953-962. https://doi.org/10.1093/aob/mcv155

Ho, W.-C., & Zhang, J. (2018). Evolutionary adaptations to new environments generally reverse plastic phenotypic changes. Nature Communications, 9(1), 350. https://doi.org/10.1038/s41467-017-02724-5

Ho, W.-C., & Zhang, J. (2019). Genetic gene expression changes during environmental adaptations tend to reverse plastic changes even after the correction for statistical nonindependence. Molecular Biology and Evolution, 36(3), 604-612. https://doi.org/10.1093/molbev/msz002

Hollister, J. D., Arnold, B. J., Svedin, E., Xue, K. S., Dilkes, B. P., & Bomblies, K. (2012). Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genetics, 8(12), e1003093.

Hu, T. T., Pattyn, P., Bakker, E. G., Cao, J., Cheng, J.-F., Clark, R. M., Fahlgren, N., Fawcett, J. A., Grimwood, J., Gundlach, H., Haberer, G., Hollister, J. D., Ossowski, S., Ottilar, R. P., Salamov, A. A., Schneeberger, K., Spannagl, M., Wang, X., Yang, L., … Guo, Y.-L. (2011). The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 43(5), 476-481. https://doi.org/10.1038/ng.807

Jaakola, L., & Hohtola, A. (2010). Effect of latitude on flavonoid biosynthesis in plants. Plant, Cell & Environment, 33(8), 1239-1247.

Karasov, T. L., Chae, E., Herman, J. J., & Bergelson, J. (2017). Mechanisms to mitigate the trade-off between growth and defense. The Plant Cell, 29(4), 666-680. https://doi.org/10.1105/tpc.16.00931

Kelly, M. (2019). Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philosophical Transactions of the Royal Society, B: Biological Sciences, 374(1768), 20180176. https://doi.org/10.1098/rstb.2018.0176

Kenkel, C. D., & Matz, M. V. (2016). Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nature Ecology & Evolution, 1(1), 14. https://doi.org/10.1038/s41559-016-0014

Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8), 907-915.

Knotek, A., Konečná, V., Wos, G., Požárová, D., Šrámková, G., Bohutínská, M., Zeisek, V., Marhold, K., & Kolář, F. (2020). Parallel alpine differentiation in Arabidopsis arenosa. Frontiers in Plant Science, 11, 561526. https://doi.org/10.3389/fpls.2020.561526

Koch, E. L., & Guillaume, F. (2020). Restoring ancestral phenotypes is a general pattern in gene expression evolution during adaptation to new environments in Tribolium castaneum. Molecular Ecology, 29(20), 3938-3953. https://doi.org/10.1111/mec.15607

Kolář, F., Lučanová, M., Záveská, E., Fuxová, G., Mandáková, T., Španiel, S., Senko, D., Svitok, M., Kolník, M., Gudžinskas, Z., & Marhold, K. (2016). Ecological segregation does not drive the intricate parapatric distribution of diploid and tetraploid cytotypes of the Arabidopsis arenosa group (Brassicaceae). Biological Journal of the Linnean Society, 119(3), 673-688. https://doi.org/10.1111/bij.12479

Körner, C. (2003). Alpine plant life: Functional plant ecology of high mountain ecosystems (2nd ed.). Springer-Verlag. www.springer.com/gp/book/9783540003472

Kudo, M., Kidokoro, S., Yoshida, T., Mizoi, J., Kojima, M., Takebayashi, Y., Sakakibara, H., Fernie, A. R., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2019). A gene-stacking approach to overcome the trade-off between drought stress tolerance and growth in Arabidopsis. The Plant Journal, 97(2), 240-256. https://doi.org/10.1111/tpj.14110

Lande, R. (2009). Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. Journal of Evolutionary Biology, 22(7), 1435-1446. https://doi.org/10.1111/j.1420-9101.2009.01754.x

Liao, Y., Smyth, G. K., & Shi, W. (2019). The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Research, 47(8), e47.

Ma, L., Sun, X., Kong, X., Galvan, J. V., Li, X., Yang, S., Yang, Y., Yang, Y., & Hu, X. (2015). Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau. Journal of Proteomics, 112, 63-82. https://doi.org/10.1016/j.jprot.2014.08.009

Maere, S., Heymans, K., & Kuiper, M. (2005). BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21(16), 3448-3449. https://doi.org/10.1093/bioinformatics/bti551

Mäkinen, H., Papakostas, S., Vøllestad, L. A., Leder, E. H., & Primmer, C. R. (2016). Plastic and evolutionary gene expression responses are correlated in European Grayling (Thymallus thymallus) subpopulations adapted to different thermal environments. Journal of Heredity, 107(1), 82-89. https://doi.org/10.1093/jhered/esv069

Mallard, F., Jakšić, A. M., & Schlötterer, C. (2018). Contesting the evidence for non-adaptive plasticity. Nature, 555(7698), E21-E22. https://doi.org/10.1038/nature25496

Mallard, F., Nolte, V., & Schlötterer, C. (2020). The evolution of phenotypic plasticity in response to temperature stress. Genome Biology and Evolution, 12(12), 2429-2440. https://doi.org/10.1093/gbe/evaa206

Manenti, T., Loeschcke, V., Moghadam, N. N., & Sørensen, J. G. (2015). Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments. Journal of Evolutionary Biology, 28(11), 2078-2087. https://doi.org/10.1111/jeb.12735

Monnahan, P., Kolář, F., Baduel, P., Sailer, C., Koch, J., Horvath, R., Laenen, B., Schmickl, R., Paajanen, P., Šrámková, G., Bohutínská, M., Arnold, B., Weisman, C. M., Marhold, K., Slotte, T., Bomblies, K., & Yant, L. (2019). Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nature Ecology & Evolution, 3(3), 457. https://doi.org/10.1038/s41559-019-0807-4

Nicotra, A. B., Segal, D. L., Hoyle, G. L., Schrey, A. W., Verhoeven, K. J. F., & Richards, C. L. (2015). Adaptive plasticity and epigenetic variation in response to warming in an alpine plant. Ecology and Evolution, 5(3), 634-647. https://doi.org/10.1002/ece3.1329

Palmer, C. M., Bush, S. M., & Maloof, J. N. (2012). Phenotypic and developmental plasticity in plants. In ELS. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0002092.pub2

Pigliucci, M., Murren, C. J., & Schlichting, C. D. (2006). Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 209(12), 2362-2367. https://doi.org/10.1242/jeb.02070

Price, T. D., Qvarnström, A., & Irwin, D. E. (2003). The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1523), 1433-1440. https://doi.org/10.1098/rspb.2003.2372

R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing

Radersma, R., Noble, D. W. A., & Uller, T. (2020). Plasticity leaves a phenotypic signature during local adaptation. Evolution Letters, 4(4), 360-370. https://doi.org/10.1002/evl3.185

Rasmann, S., Pellissier, L., Defossez, E., Jactel, H., & Kunstler, G. (2014). Climate-driven change in plant-insect interactions along elevation gradients. Functional Ecology, 28(1), 46-54. https://doi.org/10.1111/1365-2435.12135

Rawat, V., Abdelsamad, A., Pietzenuk, B., Seymour, D. K., Koenig, D., Weigel, D., Pecinka, A., & Schneeberger, K. (2015). Improving the annotation of Arabidopsis lyrata using RNA-Seq data. PLoS One, 10(9), e0137391. https://doi.org/10.1371/journal.pone.0137391

RStudio Team. (2015). RStudio: Integrated development for R. RStudio, Inc. http://www.rstudio.com/

Scheepens, J. F., & Stöcklin, J. (2013). Flowering phenology and reproductive fitness along a mountain slope: Maladaptive responses to transplantation to a warmer climate in Campanula thyrsoides. Oecologia, 171(3), 679-691. https://doi.org/10.1007/s00442-012-2582-7

Schmid, S. F., Stöcklin, J., Hamann, E., & Kesselring, H. (2017). High-elevation plants have reduced plasticity in flowering time in response to warming compared to low-elevation congeners. Basic and Applied Ecology, 21, 1-12.

Scoville, A. G., & Pfrender, M. E. (2010). Phenotypic plasticity facilitates recurrent rapid adaptation to introduced predators. Proceedings of the National Academy of Sciences of the United States of America, 107(9), 4260-4263. https://doi.org/10.1073/pnas.0912748107

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498-2504. https://doi.org/10.1101/gr.1239303

Sørensen, J. G., Kristensen, T. N., & Loeschcke, V. (2003). The evolutionary and ecological role of heat shock proteins. Ecology Letters, 6(11), 1025-1037. https://doi.org/10.1046/j.1461-0248.2003.00528.x

Sultan, S. E. (2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5(12), 537-542. https://doi.org/10.1016/S1360-1385(00)01797-0

Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One, 6(7), e21800. https://doi.org/10.1371/journal.pone.0021800

Trunschke, J., & Stöcklin, J. (2017). Plasticity of flower longevity in alpine plants is increased in populations from high elevation compared to low elevation populations. Alpine Botany, 127(1), 41-51. https://doi.org/10.1007/s00035-016-0176-4

Valladares, F., Gianoli, E., & Gómez, J. M. (2007). Ecological limits to plant phenotypic plasticity. New Phytologist, 176(4), 749-763. https://doi.org/10.1111/j.1469-8137.2007.02275.x

Van Buskirk, J., & Steiner, U. K. (2009). The fitness costs of developmental canalization and plasticity. Journal of Evolutionary Biology, 22(4), 852-860. https://doi.org/10.1111/j.1420-9101.2009.01685.x

Velotta, J. P., Ivy, C. M., Wolf, C. J., Scott, G. R., & Cheviron, Z. A. (2018). Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice. Evolution, 72(12), 2712-2727. https://doi.org/10.1111/evo.13626

Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S. M., Schlichting, C. D., & Van Tienderen, P. H. (1995). Adaptive phenotypic plasticity: Consensus and controversy. Trends in Ecology & Evolution, 10(5), 212-217. https://doi.org/10.1016/S0169-5347(00)89061-8

Wang, S. P., & Althoff, D. M. (2019). Phenotypic plasticity facilitates initial colonization of a novel environment. Evolution, 73(2), 303-316. https://doi.org/10.1111/evo.13676

West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.

Wolters, H., & Jürgens, G. (2009). Survival of the flexible: Hormonal growth control and adaptation in plant development. Nature Reviews Genetics, 10(5), 305-317. https://doi.org/10.1038/nrg2558

Wood, D. P., Holmberg, J. A., Osborne, O. G., Helmstetter, A. J., Dunning, L. T., Ellison, A. R., Smith, R. J., Lighten, J., & Papadopulos, A. S. T. (2023). Genetic assimilation of ancestral plasticity during parallel adaptation to zinc contamination in Silene uniflora. Nature Ecology & Evolution, 7, 414-423. https://doi.org/10.1038/s41559-022-01975-w

Wos, G., Arc, E., Hülber, K., Konečná, V., Knotek, A., Požárová, D., Bertel, C., Kaplenig, D., Mandáková, T., Neuner, G., Schönswetter, P., Kranner, I., & Kolář, F. (2022). Parallel local adaptation to an alpine environment in Arabidopsis arenosa. Journal of Ecology, 110(10), 2448-2461. https://doi.org/10.1111/1365-2745.13961

Wos, G., Bohutínská, M., Nosková, J., Mandáková, T., & Kolář, F. (2021). Parallelism in gene expression between foothill and alpine ecotypes in Arabidopsis arenosa. The Plant Journal, 105(5), 1211-1224. https://doi.org/10.1111/tpj.15105

Wos, G., Mořkovská, J., Bohutínská, M., Šrámková, G., Knotek, A., Lučanová, M., Španiel, S., Marhold, K., & Kolář, F. (2019). Role of ploidy in colonization of alpine habitats in natural populations of Arabidopsis arenosa. Annals of Botany, 124(2), 255-268. https://doi.org/10.1093/aob/mcz070

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...