Fluorescence study of freeze-drying as a method for support the interactions between hyaluronan and hydrophobic species

. 2017 ; 12 (9) : e0184558. [epub] 20170908

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28886150

A freeze-drying method enabling solubilization of hydrophobic species in aqueous solutions of native hyaluronan is described. The method is based on opening the access to supposed hydrophobic patches on hyaluronan by disturbing its massive hydration shell. Hydrophobic and/or polarity-sensitive fluorescence probes were used as hydrophobic models or indicators of interactions with hydrophobic patches. Fluorescence parameters specific to individual probes confirmed the efficiency of the freeze-drying method. This work is the first step in developing biocompatible and biodegradable carriers for hydrophobic drugs with targeted distribution of the active compound from native, chemically non-modified hyaluronan.

Zobrazit více v PubMed

Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: A biological overview. Life Sciences 2007; 80: 1921–1943. doi: 10.1016/j.lfs.2007.02.037 PubMed DOI

Lapčík L, Lapčík L, De Smedt S, Demeester J, Chabreček P. Hyaluronan: Preparation, Structure, Properties, and Applications. Chemical Reviews 1998; 98: 2663–2684. PubMed

Vandamme E, De Baets S, Steinbüchel A. Biopolymers: Polysaccharides 1 Weinheim: Wiley-VCH; 2002.

Isacke CM, Yarwood H. The hyaluronan receptor, CD44. The International Journal of Biochemistry, 2002; 34: 718–721. PubMed

Knudson W, Chow G, Knudson CB. CD44-mediated uptake and degradation of hyaluronan. Matrix Biology 2002; 21: 15–23. PubMed

Slevin M, Krupinski J, Gaffney J, Matou S, West D, Delisser H, et al. Hyaluronan-mediated angiogenesis in vascular disease: Uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biology 2007; 26: 58–68. doi: 10.1016/j.matbio.2006.08.261 PubMed DOI

Toole BP, Slomiany MG. Hyaluronan, CD44 and Emmprin: Partners in cancer cell chemoresistance. Drug Resistance Updates 2008; 11: 110–121. doi: 10.1016/j.drup.2008.04.002 PubMed DOI PMC

Brown T. The Development of Hyaluronan as a Drug Transporter and Excipient for Chemotherapeutic Drugs. Current Pharmaceutical Biotechnology 2008; 9: 421–436. PubMed

Jin Y, Ubonvan T, Kim D. Hyaluronic Acid in Drug Delivery Systems. Journal of Pharmaceutical Investigation 2010; 40: 33–43.

Lee H, Lee K, Park TG. Hyaluronic Acid–Paclitaxel Conjugate Micelles: Synthesis, Characterization, and Antitumor Activity. Bioconjugate Chemistry 2008; 19: 1319–1325. doi: 10.1021/bc8000485 PubMed DOI

Peer D, Margalit R. Tumor-Targeted Hyaluronan Nanoliposomes Increase the Antitumor Activity of Liposomal Doxorubicin in Syngeneic and Human Xenograft Mouse Tumor Models. Neoplasia 2004; 6: 343–353. doi: 10.1593/neo.03460 PubMed DOI PMC

Petrak K. Essential properties of drug-targeting delivery systems. Drug Discovery Today 2005; 10: 1667–1673. doi: 10.1016/S1359-6446(05)03698-6 PubMed DOI

Ossipov DA. Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opinion on Drug Delivery 2010; 7: 681–703. doi: 10.1517/17425241003730399 PubMed DOI

Creuzet C, Kadi S, Rinaudo M, Auzély-Velty R. New associative systems based on alkylated hyaluronic acid. Synthesis and aqueous solution properties. Polymer 2006; 47: 2706–2713.

Chytil M, Pekař M. Effect of new hydrophobic modification of hyaluronan on its solution properties: evaluation of self-aggregation. Carbohydrate Polymers 2009; 76: 443–448.

Mravec F, Pekař M, Velebný V. Aggregation behavior of novel hyaluronan derivatives—a fluorescence probe study. Colloid and Polymer Science 2008; 286: 1681–1685.

Oyarzun-Ampuero FA, Rivera-Rodríguez GR, Alonso MJ, Torres D. Hyaluronan nanocapsules as a new vehicle for intracellular drug delivery. European Journal of Pharmaceutical Sciences 2013; 49: 483–490. doi: 10.1016/j.ejps.2013.05.008 PubMed DOI

Kargerová A, Pekař M. High-Resolution Ultrasonic Spectroscopy Study of Interactions between Hyaluronan and Cationic Surfactants. Langmuir 2014; 30: 11866–11872. doi: 10.1021/la501852a PubMed DOI

Lu KW, Teausch HW, Clements JA. Hyaluronan with dextran added to therapeutic lung surfactants improves effectiveness in vitro and in vivo. Experimental Lung Research 2013; 39: 191–200. doi: 10.3109/01902148.2013.791893 PubMed DOI

Thalberg K, Lindman B. Interaction between hyaluronan and cationic surfactants. The Journal of Physical Chemistry 1989; 93: 1478–1483.

Kalbáčová M, Verdánová M, Mravec F, Halasová T, Pekař M. Effect of CTAB and CTAB in the presence of hyaluronan on selected human cell types. Colloids and Surfaces A 2014; 460: 204–208.

Scott JE, Chen Y, Brass A. Secondary and tertiary structures involving chondroitin and chondroitin sulphates in solution, investigated by rotary shadowing/electron microscopy and computer simulation. European Journal of Biochemistry 1992; 209: 675–680. PubMed

Bettelheim FA, Popdimitrova N. Hyaluronic acid-a syneretic glycosaminoglycan. Current eye research 1992; 11: 411–419. PubMed

Hatakeyama H, Hatakeyama T. Interaction between water and hydrophilic polymers. Thermochimica acta 1998; 308: 3–22.

Haxaire K, Marechal Y, Milas M, Rinaudo M. Hydration of hyaluronan polysaccharide observed by IR spectrometry. II. Definition and quantitative analysis of elementary hydration spectra and water uptake. Biopolymers 2003; 72: 149–161. doi: 10.1002/bip.10342 PubMed DOI

Maréchal Y, Milas M, Rinaudo M. Hydration of hyaluronan polysaccharide observed by IR spectrometry. III. Structure and mechanism of hydration. Biopolymers 2003; 72: 162–173. doi: 10.1002/bip.10343 PubMed DOI

Cowman MK, Spagnoli C, Kudasheva D, Li M, Dyal A, Kanai S, Balazs EA. Extended, relaxed, and condensed conformations of hyaluronan observed by atomic force microscopy. Biophysical journal 2005; 88: 590–602. doi: 10.1529/biophysj.104.049361 PubMed DOI PMC

Spagnoli C, Korniakov A, Ulman A, Balazs EA, Lyubchenko YL, Cowman MK. Hyaluronan conformations on surfaces: effect of surface charge and hydrophobicity. Carbohydrate research 2005; 340: 929–941. doi: 10.1016/j.carres.2005.01.024 PubMed DOI

Průšová A, Vergeldt FJ, Kučerík J. Influence of water content and drying on the physical structure of native hyaluronan. Carbohydrate polymers 2013; 95: 515–521. doi: 10.1016/j.carbpol.2013.03.031 PubMed DOI

Wedlock DJ, Phillips GO, Davies A, Gormally J, Wyn-Jones E. Depolymerization of sodium hyaluronate during freeze drying. International Journal of Biological Macromolecules 1983; 5: 186–188.

Tokita Y, Ohshima K, Okamoto A. Degradation of hyaluronic acid during freeze drying. Polymer degradation and stability 1997; 55: 159–164.

Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Advanced Drug Delivery Reviews 2006; 58: 76–163. PubMed

Tsinontides SC, Rajniak P, Pham D, Hunke WA, Placek J, Reynolds SD. Freeze drying—principles and practice for successful scale-up to manufacturing. International Journal of Pharmaceutics 2004; 280: 1–16. doi: 10.1016/j.ijpharm.2004.04.018 PubMed DOI

Franks F. Freeze-drying of bioproducts: putting principles into practice. European Journal of Pharmaceutics and Biopharmaceutics 1998; 45: 221–229. PubMed

Liapis AI, Bruttini R. A theory for the primary and secondary drying stages of the freeze-drying of pharmaceutical crystalline and amorphous solutes: comparison between experimental data and theory. Separations Technology 1994; 4: 144–155.

Wang W, Chen M, Chen G. Issues in Freeze Drying of Aqueous Solutions. Chinese Journal of Chemical Engineering 2012; 20: 551–559.

Ni N, Tesconi M, Tabibi SE, Gupta S, Yalkowsky SH. Use of pure t-butanol as a solvent for freeze-drying: a case study. International Journal of Pharmaceutics 2001; 226: 39–46. PubMed

Teagarden KL, Baker DS. Practical aspects of lyophilization using non-aqueous co-solvent systems. European Journal of Pharmaceutical Sciences 2002; 15: 115–133. PubMed

Wittaya-Areekul S, Nail SL. Freeze-drying of tert-butyl alcohol/water cosolvent systems: Effects of formulation and process variables on residual solvents. Journal of Pharmaceutical Sciences 1998; 87: 491–495. doi: 10.1021/js9702832 PubMed DOI

Bicudo RCS, Santana MHA. Effects of organic solvents on hyaluronic acid nanoparticles obtained by precipitation and chemical crosslinking. Journal of nanoscience and nanotechnology 2012; 12: 2849–2857. PubMed

García-Abuín A, Gómez-Díaz D, Navaza JM, Regueiro L, Vidal-Tato I. Viscosimetric behaviour of hyaluronic acid in different aqueous solutions. Carbohydrate Polymers 2011; 85: 500–505.

Philippova OE, Volkov EV, Sitnikova NL, Khokhlov AR, Desbrieres J, Rinaudo M. Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative. Biomacromolecules 2001; 2: 483–490. PubMed

Valeur B. Molecular Fluorescence: Principles and Applications. Weinheim: Wiley-VCH; 2002.

Almond A, Sheehan JK. Predicting the molecular shape of polysaccharides from dynamic interactions with water. Glycobiology 2003; 13: 255–264. doi: 10.1093/glycob/cwg031 PubMed DOI

Heatley F, Scott JE. A water molecule participates in the secondary structure of hyaluronan. Biochemical Journal 1988; 254: 489–493. PubMed PMC

Lasagna M, Vargas V, Jameson DM, Brunet JE. Spectral Properties of Environmentally Sensitive Probes Associated with Horseradish Peroxidase. Biochemistry 1996; 35: 973–979. doi: 10.1021/bi951983t PubMed DOI

Adhikary R, Barnes CA, Petrich JW. Solvation Dynamics of the Fluorescent Probe Prodan in Heterogeneous Environments: Contributions from the Locally Excited and Charge-Transferred States. The Journal of Physical Chemistry B 2009; 113: 11999–12004. doi: 10.1021/jp905139n PubMed DOI

Sánchez F. G., & Ruiz C. C. (1996). Intramicellar energy transfer in aqueous CTAB solutions. Journal of Luminescence, 69, 179–186.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...