Simulation of Ligand Transport in Receptors Using CaverDock

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33759123

Interactions between enzymes and small molecules lie in the center of many fundamental biochemical processes. Their analysis using molecular dynamics simulations have high computational demands, geometric approaches fail to consider chemical forces, and molecular docking offers only static information. Recently, we proposed to combine molecular docking and geometric approaches in an application called CaverDock. CaverDock is discretizing enzyme tunnel into discs, iteratively docking with restraints into one disc after another and searching for a trajectory of the ligand passing through the tunnel. Here, we focus on the practical side of its usage describing the whole method: from getting the application, and processing the data through a workflow, to interpreting the results. Moreover, we shared the best practices, recommended how to solve the most common issues, and demonstrated its application on three use cases.

Zobrazit více v PubMed

Clouthier CM, Pelletier JN (2012) Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chem Soc Rev 41:1585–1605. https://doi.org/10.1039/c2cs15286j PubMed DOI

Koeller KM, Wong CH (2001) Enzymes for chemical synthesis. Nature 409:232–240. https://doi.org/10.1038/35051706 PubMed DOI

Soetaert W, Vandamme E (2006) The impact of industrial biotechnology. Biotechnol J 1:756–769. https://doi.org/10.1002/biot.200600066 PubMed DOI

Brezovsky J, Chovancova E, Gora A et al (2013) Software tools for identification, visualization and analysis of protein tunnels and channels. Biotechnol Adv 31:38–34 DOI

Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102 DOI

Hospital A, Goñi JR, Orozco M, Gelpí JL (2015) Molecular dynamics simulations: advances and applications. Adv Appl Bioinforma Chem 8:37–47

Filipovič J, Vávra O, Plhák J et al (2019) CaverDock: a novel method for the fast analysis of ligand transport. IEEE/ACM Trans Comput Biol Bioinforma:1–1. https://doi.org/10.1109/TCBB.2019.2907492

Vávra O, Filipovič J, Plhák J et al (2019) CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels. Bioinformatics 35:4986–4993. https://doi.org/10.1093/bioinformatics/btz386 PubMed DOI

Pinto GP, Vavra O, Filipovic J et al (2019) Fast screening of inhibitor binding/unbinding using novel software tool CaverDock. Front Chem 7:709. https://doi.org/10.3389/fchem.2019.00709 PubMed DOI PMC

Stourac J, Vavra O, Kokkonen P et al (2019) Caver web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res 47:W414–W422. https://doi.org/10.1093/nar/gkz378 PubMed DOI PMC

Virtanen P, Gommers R, Oliphant TE et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:1–12. https://doi.org/10.1038/s41592-019-0686-2 DOI

The CGAL Project (2020) CGAL user and reference manual, 5.0.2. CGAL Editorial Board

Morris GM, Ruth H, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256 PubMed DOI PMC

Berman H, Westbrook JD, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235 PubMed DOI PMC

Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385. https://doi.org/10.1093/nar/gkg520 PubMed DOI PMC

Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. https://doi.org/10.1038/nprot.2010.5 PubMed DOI PMC

Webb B, Sali A (2014) Protein structure modeling with MODELLER. Methods Mol Biol 1137:1–15. https://doi.org/10.1007/978-1-4939-0366-5_1 PubMed DOI

Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. https://doi.org/10.1002/jcc.20290 PubMed DOI PMC

Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. https://doi.org/10.1093/bioinformatics/btt055 PubMed DOI PMC

Seeliger D, Haas J, de Groot BL (2007) Geometry-based sampling of conformational transitions in proteins. Structure 15:1482–1492. https://doi.org/10.1016/j.str.2007.09.017 PubMed DOI

Sterling T, Irwin JJ (2015) ZINC 15 - ligand discovery for everyone. J Chem Inf Model 55:2324–2337. https://doi.org/10.1021/acs.jcim.5b00559 PubMed DOI PMC

Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4. https://doi.org/10.1186/1758-2946-4-17

The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC

O’Boyle NM, Banck M, James CA et al (2011) Open babel: an open chemical toolbox. J Cheminform 3:1–14. https://doi.org/10.1186/1758-2946-3-33 DOI

Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization. and multithreading J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334 PubMed DOI

Chovancova E, Pavelka A, Benes P et al (2012) CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 8. https://doi.org/10.1371/journal.pcbi.1002708

CAVER Web Portal. https://loschmidt.chemi.muni.cz/caverweb/ . Accessed 27 Feb 2020

CAVER User Guide. http://www.caver.cz/fil/download/manual/caver_userguide.pdf . Accessed 27 Feb 2020

Gnuplot. http://www.gnuplot.info . Accessed 27 Feb 2020

Brezovsky J, Babkova P, Degtjarik O et al (2016) Engineering a de novo transport tunnel. ACS Catal 6:7597–7610. https://doi.org/10.1021/acscatal.6b02081 DOI

Cui YL, Zheng QC, Zhang JL, Zhang HX (2015) Molecular basis of the recognition of arachidonic acid by cytochrome P450 2E1 along major access tunnel. Biopolymers 103:53–66. https://doi.org/10.1002/bip.22567 PubMed DOI

Cojocaru V, Winn PJ, Wade RC (2007) The ins and outs of cytochrome P450s. Biochim Biophys Acta - Gen Subj 1770:390–401. https://doi.org/10.1016/j.bbagen.2006.07.005 DOI

Jurcik A, Bednar D, Byska J et al (2018) CAVER analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics 34:3586–3588. https://doi.org/10.1093/bioinformatics/bty386 PubMed DOI PMC

Marques SM, Dunajova Z, Prokop Z et al (2017) Catalytic cycle of Haloalkane Dehalogenases toward unnatural substrates explored by computational modeling. JChem Inf Model 57:1970–1989. https://doi.org/10.1021/acs.jcim.7b00070 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...