Humoral Immune Response to SARS-CoV-2 Vaccination after a Booster Vaccine Dose in Two Kidney Transplant Recipients with Fabry Disease and Variable Secondary Immunosuppressive Regimens
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu kazuistiky, časopisecké články
PubMed
34960158
PubMed Central
PMC8708799
DOI
10.3390/vaccines9121412
PII: vaccines9121412
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, Fabry disease, renal transplant, vaccine,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
The urgent need to fight the COVID-19 pandemic has accelerated the development of vaccines against SARS-CoV-2 and approval processes. Initial analysis of two-dose regimens with mRNA vaccines reported up to 95% efficacy against the original strain of the SARS-CoV-2 virus. Challenges arose with the appearance of new strains of the virus, and reports that solid organ transplant recipients may have reduced vaccination success rates after a two-dose mRNA vaccination regimen encouraged health authorities to recommend a booster in immunocompromised patients. Fabry disease is an X-linked inherited lysosomal disorder, which may lead to chronic end-stage renal disease. We report on two patients with advanced Fabry disease, renal graft and adjunctive immunosuppressive therapies who exhibited variable humoral vaccination-related immune responses against SARS-CoV-2 after three vaccine doses. The first patient developed mild COVID-19 infection, while the second patient did not seroconvert after three shots of an mRNA vaccine. Both cases emphasize that patients with Fabry disease and renal graft are susceptible to develop a weak response to COVID-19 vaccination and highlight the importance of maintaining barrier protection measures. Vaccination of family members should be encouraged to lower the risk of viral transmission to immunocompromised, transplanted patients, including vaccinated ones.
Zobrazit více v PubMed
World Health Organisation WHO Coronavirus (COVID-19) Dashboard. [(accessed on 8 November 2021)]. Available online: https://covid19.who.int.
Sharma O., Sultan A.A., Ding H., Triggle C.R. A Review of the Progress and Challenges of Developing a Vaccine for COVID-19. Front. Immunol. 2020;11:585354. doi: 10.3389/fimmu.2020.585354. PubMed DOI PMC
Voysey M., Clemens S.A.C., Madhi S.A., Weckx L.Y., Folegatti P.M., Aley P.K., Angus B., Baillie V.L., Barnabas S.L., Bhorat O.E., et al. Oxford COVID Vaccine Trial Group. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397:99–111. doi: 10.1016/S0140-6736(20)32661-1. PubMed DOI PMC
Livingston E.H., Malani P.N., Creech C.B. The Johnson & Johnson Vaccine for COVID-19. JAMA. 2021;325:1575. PubMed
Nagy A., Alhatlani B. An overview of current COVID-19 vaccine platforms. Comput. Struct. Biotechnol. J. 2021;19:2508–2517. doi: 10.1016/j.csbj.2021.04.061. PubMed DOI PMC
Polack F.P., Thomas S.J., Kitchin N., Absalon J., Gurtman A., Lockhart S., Perez J.L., Pérez Marc G., Moreira E.D., Zerbini C., et al. C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020;383:2603–2615. doi: 10.1056/NEJMoa2034577. PubMed DOI PMC
Baden L.R., El Sahly H.M., Essink B., Kotloff K., Frey S., Novak R., Diemert D., Spector S.A., Rouphael N., Creech C.B., et al. The COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021;384:403–416. doi: 10.1056/NEJMoa2035389. PubMed DOI PMC
Lopez Bernal J., Andrews N., Gower C., Gallagher E., Simmons R., Thelwall S., Stowe J., Tessier E., Groves N., Dabrera G., et al. Effectiveness of COVID-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021;385:585–594. doi: 10.1056/NEJMoa2108891. PubMed DOI PMC
Boyarsky B.J., Werbel W.A., Avery R.K., Tobian A.A.R., Massie A.B., Segev D.L., Garonzik-Wang J.M. Antibody Response to 2-Dose SARS-CoV-2mRNA Vaccine Series in solid Organ Transplant Recipients. JAMA. 2021;325:2204–2206. doi: 10.1001/jama.2021.7489. PubMed DOI PMC
Grupper A., Rabinowich L., Schwartz D., Schwartz I.F., Ben-Yehoyada M., Shashar M., Katchman E., Halperin T., Turner D., Goykhman Y., et al. Reduced humoral response to mRNA SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients without prior exposure to the virus. Am. J. Transplant. 2021;21:2719–2726. doi: 10.1111/ajt.16615. PubMed DOI PMC
Le Bert N., Tan A.T., Kunasegaran K., Tham C.Y.L., Hafezi M., Chia A., Chng M.H.Y., Lin M., Tan N., Linster M., et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020;584:457–462. doi: 10.1038/s41586-020-2550-z. PubMed DOI
Germain D.P., Poenaru L. Fabry disease: Identification of novel alpha-galactosidase A mutations and molecular carrier detection by use of fluorescent chemical cleavage of mismatches. Biochem. Biophys. Res. Commun. 1999;257:708–713. doi: 10.1006/bbrc.1999.0310. PubMed DOI
Hagege A.A., Reant P., Habib G., Damy T., Barone-Rochette G., Soulat G., Donal E., Germain D.P. Fabry disease in cardiology practice: Literature review and expert point of view. Arch. Cardiovasc. Dis. 2019;112:278–287. doi: 10.1016/j.acvd.2019.01.002. PubMed DOI
Rost N.S., Cloonan L., Kanakis A.S., Fitzpatrick K.M., Azzariti D.R., Clarke V., Lourenco C.M., Germain D.P., Politei J.M., Homola G.A., et al. Determinants of white matter hyperintensity burden in patients with Fabry disease. Neurology. 2016;86:1880–1886. doi: 10.1212/WNL.0000000000002673. PubMed DOI PMC
Ortiz A., Cianciaruso B., Cizmarik M., Germain D.P., Mignani R., Oliveira J.P., Villalobos J., Vujkovac B., Waldek S., Wanner C., et al. End-stage renal disease in patients with Fabry disease: Natural history data from the Fabry Registry. Nephrol. Dial. Transplant. 2010;25:769–775. doi: 10.1093/ndt/gfp554. PubMed DOI
Echevarria L., Benistan K., Toussaint A., Dubourg O., Hagege A.A., Eladari D., Jabbour F., Beldjord C., De Mazancourt P., Germain D.P. X-chromosome inactivation in female patients with Fabry disease. Clin. Genet. 2016;89:44–54. doi: 10.1111/cge.12613. PubMed DOI
Germain D.P. Fabry disease. Orphanet. J. Rare Dis. 2010;5:30. doi: 10.1186/1750-1172-5-30. PubMed DOI PMC
Laney D.A., Germain D.P., Oliveira J.P., Burlina A.P., Cabrera G.H., Hong G.R., Hopkin R.J., Niu D.M., Thomas M., Trimarchi H., et al. Fabry disease and COVID-19: International expert recommendations for management based on real-world experience. Clin. Kidney J. 2020;13:913–925. doi: 10.1093/ckj/sfaa227. PubMed DOI PMC
Magage S., Lubanda J.C., Susa Z., Bultas J., Karetová D., Dobrovolný R., Hrebícek M., Germain D.P., Linhart A. Natural history of the respiratory involvement in Anderson-Fabry disease. J. Inherit. Metab. Dis. 2007;30:790–799. doi: 10.1007/s10545-007-0616-9. PubMed DOI
Hall V.G., Ferreira V.H., Ierullo M., Ku T., Marinelli T., Majchrzak-Kita B., Yousuf A., Kulasingam V., Humar A., Kumar D. Humoral and cellular immune response and safety of two-dose SARS-CoV-2 mRNA-1273 vaccine in solid organ transplant recipients. Am. J. Transplant. 2021 doi: 10.1111/ajt.16766. PubMed DOI PMC
Kamar N., Abravanel F., Marion O., Couat C., Izopet J., Del Bello A. Three Doses of an mRNA COVID-19 Vaccine in Solid–Organ Transplant Recipients. N. Engl. J. Med. 2021;385:661–662. doi: 10.1056/NEJMc2108861. PubMed DOI PMC
Werbel W.A., Boyarsky B.J., Ou M.T., Massie A.B., Tobian A.A.R., Garonzik-Wang J.M., Segev D.L. Safety and Immunogenicity of a Third Dose of SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients: A Case Series. Ann. Intern. Med. 2021;174:1330–1332. doi: 10.7326/L21-0282. PubMed DOI PMC
Mazzola A., Todesco E., Drouin S., Hazan F., Marot S., Thabut D., Varnous S., Soulié C., Barrou B., Marcelin A.G., et al. Poor Antibody Response after Two Doses of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccine in Transplant Recipients. Clin. Infect. Dis. 2021 doi: 10.1093/cid/ciab580. PubMed DOI PMC
Hod T., Ben-David A., Olmer L., Levy I., Ghinea R., Mor E., Lustig Y., Rahav G. Humoral Response of Renal Transplant Recipients to the BNT162b2 SARS-CoV-2 mRNA Vaccine Using Both RBD IgG and Neutralizing Antibodies. Transplantation. 2021;105:e234–e243. doi: 10.1097/TP.0000000000003889. PubMed DOI PMC
Stumpf J., Siepmann T., Lindner T., Karger C., Schwöbel J., Anders L., Faulhaber-Walter R., Schewe J., Martin H., Schirutschke H., et al. Humoral and cellular immunity to SARS-CoV-2 vaccination in renal transplant versus dialysis patients: A prospective, multicenter observational study using mRNA-1273 or BNT162b2 mRNA vaccine. Lancet Reg. Health Eur. 2021;9:100178. doi: 10.1016/j.lanepe.2021.100178. PubMed DOI PMC
Rader B., White L.F., Burns M.R., Chen J., Brilliant J., Cohen J., Shaman J., Brilliant L., Kraemer M.U.G., Hawkins J.B., et al. Mask-wearing and control of SARS-CoV-2 transmission in the USA: A cross-sectional study. Lancet Digit. Health. 2021;3:e148–e157. doi: 10.1016/S2589-7500(20)30293-4. PubMed DOI PMC