Water potential governs the effector specificity of the transcriptional regulator XylR of Pseudomonas putida
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36683138
PubMed Central
PMC10946618
DOI
10.1111/1462-2920.16342
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- DNA vazebné proteiny metabolismus MeSH
- plazmidy MeSH
- promotorové oblasti (genetika) MeSH
- Pseudomonas putida * genetika metabolismus MeSH
- regulace genové exprese u bakterií MeSH
- transkripční faktory * genetika metabolismus MeSH
- xyleny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA vazebné proteiny MeSH
- transkripční faktory * MeSH
- xyleny MeSH
The biodegradative capacity of bacteria in their natural habitats is affected by water availability. In this work, we have examined the activity and effector specificity of the transcriptional regulator XylR of the TOL plasmid pWW0 of Pseudomonas putida mt-2 for biodegradation of m-xylene when external water potential was manipulated with polyethylene glycol PEG8000. By using non-disruptive luxCDEAB reporter technology, we noticed that the promoter activated by XylR (Pu) restricted its activity and the regulator became more effector-specific towards head TOL substrates when cells were grown under water subsaturation. Such a tight specificity brought about by water limitation was relaxed when intracellular osmotic stress was counteracted by the external addition of the compatible solute glycine betaine. With these facts in hand, XylR variants isolated earlier as effector-specificity responders to the non-substrate 1,2,4-trichlorobenzene under high matric stress were re-examined and found to be unaffected by water potential in vivo. All these phenomena could be ultimately explained as the result of water potential-dependent conformational changes in the A domain of XylR and its effector-binding pocket, as suggested by AlphaFold prediction of protein structures. The consequences of this scenario for the evolution of specificities in regulators and the emergence of catabolic pathways are discussed.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Life Sciences Imperial College London London UK
Fiocruz Instituto Oswaldo Cruz Rio de Janeiro Brazil
Specialty Division for Systems Biotechnology Technische Universität München Garching Germany
Systems Biology Department Centro Nacional de Biotecnología CSIC Madrid Spain
Zobrazit více v PubMed
Abril, M.A. , Michan, C. , Timmis, K.N. & Ramos, J.L. (1989) Regulator and enzyme specificities of the TOL plasmid‐encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. Journal of Bacteriology, 171, 6782–6790. PubMed PMC
Aharoni, A. , Gaidukov, L. , Khersonsky, O. , Gould, S.M. , Roodveldt, C. & Tawfik, D.S. (2005) The ‘evolvability’ of promiscuous protein functions. Nature Genetics, 37, 73–76. PubMed
Billi, D. & Potts, M. (2002) Life and death of dried prokaryotes. Research in Microbiology, 153, 7–12. PubMed
Bloom, J.D. & Arnold, F.H. (2009) In the light of directed evolution: pathways of adaptive protein evolution. Proceedings of the National Academy of Sciences of the United States of America, 106, 9995–10000. PubMed PMC
Bottoms, C.A. , Smith, P.E. & Tanner, J.J. (2002) A structurally conserved water molecule in Rossmann dinucleotide‐binding domains. Protein Science, 11, 2125–2137. PubMed PMC
Brown, A.D. (1990) Microbial water stress physiology. Principles and perspectives. Chichester: John Wiley & Sons.
Choi, K. , Gaynor, J. , White, K. , Lopez, C. , Bosio, C. , Karkhoff‐Schweizer, R. et al. (2005) A Tn7‐based broad‐range bacterial cloning and expression system. Nature Methods, 2, 443–448. PubMed
Csonka, L.N. & Hanson, A.D. (1991) Prokaryotic osmoregulation: genetics and physiology. Annual Review of Microbiology, 45, 569–606. PubMed
de las Heras, A. , Carreño, C.A. & de Lorenzo, V. (2008) Stable implantation of orthogonal sensor circuits in Gram‐negative bacteria for environmental release. Environmental Microbiology, 10, 3305–3316. PubMed
de las Heras, A., Chavarría, M. & de Lorenzo, V. (2011). Association of DNT genes of Burkholderia sp. DNT with the substrate‐blind regulator DntR draws the evolutionary itinerary of 2,4‐dinitrotoluene biodegradation. Molecular Microbiology, 82, 287–299. PubMed
de las Heras, A. & de Lorenzo, V. (2011a) In situ detection of aromatic compounds with biosensor Pseudomonas putida cells preserved and delivered to soil in water‐soluble gelatin capsules. Analytical and Bioanalytical Chemistry, 400, 1093–1104. PubMed
de las Heras, A. & de Lorenzo, V. (2011b) Cooperative amino acid changes shift the response of the σ54‐dependent regulator XylR from natural m‐xylene towards xenobiotic 2,4‐dinitrotoluene. Molecular Microbiology, 79, 1248–1259. PubMed
de las Heras, A. , Fraile, S. & de Lorenzo, V. (2012) Increasing signal specificity of the TOL network of Pseudomonas putida mt‐2 by rewiring the connectivity of the master regulator XylR. PLoS Genetics, 8, e1002963. PubMed PMC
de Lorenzo, V. & Pérez‐Martín, J. (1996) Regulatory noise in prokaryotic promoters: how bacteria learn to respond to novel environmental signals. Molecular Microbiology, 19, 1177–1184. PubMed
Dechesne, A. , Or, D. , Gulez, G. & Smets, B.F. (2008) The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions. Applied and Environmental Microbiology, 74, 5195–5200. PubMed PMC
Devos, D. , Garmendia, J. , Lorenzo, V.D. & Valencia, A. (2002) Deciphering the action of aromatic effectors on the prokaryotic enhancer‐binding protein XylR: a structural model of its N‐terminal domain. Environmental Microbiology, 4, 29–41. PubMed
Dvořák, P. , Alvarez‐Carreño, C. , Ciordia, S. , Paradela, A. & de Lorenzo, V. (2021) An updated structural model of the A domain of the Pseudomonas putida XylR regulator poses an atypical interplay with aromatic effectors. Environmental Microbiology, 23, 4418–4433. PubMed
Dvořák, P. , Nikel, P.I. , Damborský, J. & de Lorenzo, V. (2017) Bioremediation 3.0: engineering pollutant‐removing bacteria in the times of systemic biology. Biotechnology Advances, 35, 845–866. PubMed
Fernández, S. , de Lorenzo, V. & Pérez‐Martin, J. (1995) Activation of the transcriptional regulator XylR of Pseudomonas putida by release of repression between functional domains. Molecular Microbiology, 16, 205–213. PubMed
Galvão, T.C. , de Lorenzo, V. & Cánovas, D. (2006) Uncoupling of choline‐O‐sulphate utilization from osmoprotection in Pseudomonas putida . Molecular Microbiology, 62, 1643–1654. PubMed
Galvão, T.C. , Mencía, M. & de Lorenzo, V. (2007) Emergence of novel functions in transcriptional regulators by regression to stem protein types. Molecular Microbiology, 65, 907–919. PubMed
Garmendia, J. & de Lorenzo, V. (2000) The role of the interdomain B linker in the activation of the XylR protein of Pseudomonas putida . Molecular Microbiology, 38, 401–410. PubMed
Goldbeck, R.A. , Paquette, S.J. & Kliger, D.S. (2001) The effect of water on the rate of conformational change in protein allostery. Biophysical Journal, 81, 2919–2934. PubMed PMC
Greated, A. , Lambertsen, L. , Williams, P.A. & Thomas, C.M. (2002) Complete sequence of the IncP‐9 TOL plasmid pWW0 from Pseudomonas putida . Environmental Microbiology, 4, 856–871. PubMed
Gulez, G. , Dechesne, A. , Workman, C.T. & Smets, B.F. (2012) Transcriptome dynamics of Pseudomonas putida KT2440 under water stress. Applied and Environmental Microbiology, 78, 676–683. PubMed PMC
Hachicho, N. , Birnbaum, A. & Heipieper, H.J. (2017) Osmotic stress in colony and planktonic cells of Pseudomonas putida mt‐2 revealed significant differences in adaptive response mechanisms. AMB Express, 7, 62. PubMed PMC
Harries, D. & Rösgen, J. (2008) A practical guide on how osmolytes modulate macromolecular properties. In: Methods in cell biology. Academic Press, pp. 679–735. PubMed
Harris, R.F. (1981) Effect of water potential on microbial growth and activity. In: Parr, J.F. , Gardner, W.R. & Elliott, L.F. (Eds.) Water potential relations in soil microbiology. Madison: Soil Science Society of America, pp. 23–95.
Herrero, M. , de Lorenzo, V. & Timmis, K.N. (1990) Transposon vectors containing non‐antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram‐negative bacteria. Journal of Bacteriology, 172, 6557–6567. PubMed PMC
Holden, P. , Halverson, L. & Firestone, M. (1997) Water stress effects on toluene biodegradation by Pseudomonas putida . Biodegradation, 8, 143–151. PubMed
Kaniga, K. , Delor, I. & Cornelis, G.R. (1991) A wide‐host‐range suicide vector for improving reverse genetics in Gram‐negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica . Gene, 109, 137–141. PubMed
Knight, J.D.R. , Hamelberg, D. , McCammon, J.A. & Kothary, R. (2009) The role of conserved water molecules in the catalytic domain of protein kinases. Proteins: Structure, Function, and Bioinformatics, 76, 527–535. PubMed PMC
Lambertsen, L. , Sternberg, C. & Molin, S. (2004) Mini‐Tn7 transposons for site‐specific tagging of bacteria with fluorescent proteins. Environmental Microbiology, 6, 726–732. PubMed
Levy, Y. & Onuchic, J.N. (2006) Water mediation in protein folding and molecular recognition. Annual Review of Biophysics and Biomolecular Structure, 35, 389–415. PubMed
Marqués, S. & Ramos, J.L. (1993) Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Molecular Microbiology, 9, 923–929. PubMed
Martinez‐Garcia, E. , Calles, B. , Arevalo‐Rodriguez, M. & de Lorenzo, V. (2011) pBAM1: an all‐synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiology, 11, 38. PubMed PMC
Michel, B.E. (1983) Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiology, 72, 66–70. PubMed PMC
Nelson, K.E. , Weinel, C. , Paulsen, I.T. , Dodson, R.J. , Hilbert, H. , Martins dos Santos, V.A.P. et al. (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental Microbiology, 4, 799–808. PubMed
Papendick, R.I. & Campbell, G.S. (1981) Theory and measurements of water potential. In: Parr, J.F. , Gardner, W.R. & Elliott, L.F. (Eds.) Water potential relations in soil microbiology. Madison: Soil Science Society of America, pp. 1–22.
Paul, E.A. & Clark, F.E. (1989) Soil microbiology and biochemistry. San Diego: Academic Press.
Potts, M. (1994) Desiccation tolerance of prokaryotes. Microbiological Reviews, 58, 755–805. PubMed PMC
Ramos, J.L. , Marques, S. & Timmis, K.N. (1997) Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through and interplay of host factors and plasmid‐encoded regulators. Annual Review of Microbiology, 51, 341–373. PubMed
Rothe, M. , Alpert, C. , Engst, W. , Musiol, S. , Loh, G. & Blaut, M. (2012) Impact of nutritional factors on the proteome of intestinal Escherichia coli: induction of OxyR‐dependent proteins AhpF and Dps by a lactose‐rich diet. Applied and Environmental Microbiology, 78, 3580–3591. PubMed PMC
Senior, A.W. , Evans, R. , Jumper, J. , Kirkpatrick, J. , Sifre, L. , Green, T. et al. (2020) Improved protein structure prediction using potentials from deep learning. Nature, 577, 706–710. PubMed
Stevenson, A. , Burkhardt, J. , Cockell, C.S. , Cray, J.A. , Dijksterhuis, J. , Fox‐Powell, M. et al. (2015) Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environmental Microbiology, 17, 257–277. PubMed
Stourac, J. , Vavra, O. , Kokkonen, P. , Filipovic, J. , Pinto, G. , Brezovsky, J. et al. (2019) Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Research, 47, W414–w422. PubMed PMC
Wackett, L.P. & Hershberger, C.D. (2001) Biocatalysis and biodegradation: microbial transformation of organic compounds. Washington, DC: ASM Press.
Williams, P.A. & Murray, K. (1974) Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt‐2: evidence for the existence of a TOL plasmid. Journal of Bacteriology, 120, 416–423. PubMed PMC
Yang, J. & Zhang, Y. (2015). I‐TASSER server: new development for protein structure and function predictions. Nucleic Acids Research, 43, W174–W181. 10.1093/nar/gkv342 PubMed DOI PMC