Lack of Conserved miRNA Deregulation in HPV-Induced Squamous Cell Carcinomas
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
GA UK No. 80318
Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000785
European Regional Development Fund and Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34065237
PubMed Central
PMC8160722
DOI
10.3390/biom11050764
PII: biom11050764
Knihovny.cz E-zdroje
- Klíčová slova
- human papillomavirus, microRNA, squamous cell carcinoma,
- MeSH
- infekce papilomavirem genetika MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- nádory anu genetika virologie MeSH
- orgánová specificita MeSH
- regulace genové exprese u nádorů MeSH
- sekvenční analýza RNA MeSH
- spinocelulární karcinom genetika virologie MeSH
- tonzilární nádory genetika virologie MeSH
- urogenitální nádory genetika virologie MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
Squamous cell carcinomas (SCCs) in the anogenital and head and neck regions are associated with high-risk types of human papillomaviruses (HR-HPV). Deregulation of miRNA expression is an important contributor to carcinogenesis. This study aimed to pinpoint commonly and uniquely deregulated miRNAs in cervical, anal, vulvar, and tonsillar tumors of viral or non-viral etiology, searching for a common set of deregulated miRNAs linked to HPV-induced carcinogenesis. RNA was extracted from tumors and nonmalignant tissues from the same locations. The miRNA expression level was determined by next-generation sequencing. Differential expression of miRNAs was calculated, and the patterns of miRNA deregulation were compared between tumors. The total of deregulated miRNAs varied between tumors of different locations by two orders of magnitude, ranging from 1 to 282. The deregulated miRNA pool was largely tumor-specific. In tumors of the same location, a low proportion of miRNAs were exclusively deregulated and no deregulated miRNA was shared by all four types of HPV-positive tumors. The most significant overlap of deregulated miRNAs was found between tumors which differed in location and HPV status (HPV-positive cervical tumors vs. HPV-negative vulvar tumors). Our results imply that HPV infection does not elicit a conserved miRNA deregulation in SCCs.
Zobrazit více v PubMed
Plummer M., de Martel C., Vignat J., Ferlay J., Bray F., Franceschi S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob. Health. 2016;4:e609–e616. doi: 10.1016/S2214-109X(16)30143-7. PubMed DOI
de Martel C., Plummer M., Vignat J., Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer. 2017;141:664–670. doi: 10.1002/ijc.30716. PubMed DOI PMC
Nordfors C., Vlastos A., Du J., Ahrlund-Richter A., Tertipis N., Grün N., Romanitan M., Haeggblom L., Roosaar A., Dahllöf G., et al. Human papillomavirus prevalence is high in oral samples of patients with tonsillar and base of tongue cancer. Oral Oncol. 2014;50:491–497. doi: 10.1016/j.oraloncology.2014.02.012. PubMed DOI
Marur S., D’Souza G., Westra W.H., Forastiere A.A. HPV-associated head and neck cancer: A virus-related cancer epidemic. Lancet Oncol. 2010;11:781–789. doi: 10.1016/S1470-2045(10)70017-6. PubMed DOI PMC
Näsman A., Attner P., Hammarstedt L., Du J., Eriksson M., Giraud G., Ahrlund-Richter S., Marklund L., Romanitan M., Lindquist D., et al. Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: An epidemic of viral-induced carcinoma? Int. J. Cancer. 2009;125:362–366. doi: 10.1002/ijc.24339. PubMed DOI
Tachezy R., Klozar J., Rubenstein L., Smith E., Saláková M., Smahelová J., Ludvíková V., Rotnáglová E., Kodet R., Hamsíková E. Demographic and risk factors in patients with head and neck tumors. J. Med. Virol. 2009;81:878–887. doi: 10.1002/jmv.21470. PubMed DOI
Koncar R.F., Feldman R., Bahassi E.M., Hashemi Sadraei N. Comparative molecular profiling of HPV-induced squamous cell carcinomas. Cancer Med. 2017;6:1673–1685. doi: 10.1002/cam4.1108. PubMed DOI PMC
Tuna M., Amos C.I. Next generation sequencing and its applications in HPV-associated cancers. Oncotarget. 2017;8:8877–8889. doi: 10.18632/oncotarget.12830. PubMed DOI PMC
Gillison M.L., Akagi K., Xiao W., Jiang B., Pickard R.K.L., Li J., Swanson B.J., Agrawal A.D., Zucker M., Stache-Crain B., et al. Human papillomavirus and the landscape of secondary genetic alterations in oral cancers. Genome Res. 2019;29:1–17. doi: 10.1101/gr.241141.118. PubMed DOI PMC
Haeggblom L., Ährlund-Richter A., Mirzaie L., Farrajota Neves da Silva P., Ursu R.G., Ramqvist T., Näsman A. Differences in gene expression between high-grade dysplasia and invasive HPV. Cancer Med. 2019;8:6221–6232. doi: 10.1002/cam4.2450. PubMed DOI PMC
Seiwert T.Y., Zuo Z., Keck M.K., Khattri A., Pedamallu C.S., Stricker T., Brown C., Pugh T.J., Stojanov P., Cho J., et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin. Cancer Res. 2015;21:632–641. doi: 10.1158/1078-0432.CCR-13-3310. PubMed DOI PMC
Han M.R., Shin S., Park H.C., Kim M.S., Lee S.H., Jung S.H., Song S.Y., Chung Y.J. Mutational signatures and chromosome alteration profiles of squamous cell carcinomas of the vulva. Exp. Mol. Med. 2018;50:e442. doi: 10.1038/emm.2017.265. PubMed DOI PMC
Prieske K., Alawi M., Oliveira-Ferrer L., Jaeger A., Eylmann K., Burandt E., Schmalfeldt B., Joosse S.A., Woelber L. Genomic characterization of vulvar squamous cell carcinoma. Gynecol. Oncol. 2020;158:547–554. doi: 10.1016/j.ygyno.2020.06.482. PubMed DOI
Calin G.A., Dumitru C.D., Shimizu M., Bichi R., Zupo S., Noch E., Aldler H., Rattan S., Keating M., Rai K., et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA. 2002;99:15524–15529. doi: 10.1073/pnas.242606799. PubMed DOI PMC
Ferracin M., Pedriali M., Veronese A., Zagatti B., Gafà R., Magri E., Lunardi M., Munerato G., Querzoli G., Maestri I., et al. MicroRNA profiling for the identification of cancers with unknown primary tissue-of-origin. J. Pathol. 2011;225:43–53. doi: 10.1002/path.2915. PubMed DOI PMC
Iorio M.V., Ferracin M., Liu C.G., Veronese A., Spizzo R., Sabbioni S., Magri E., Pedriali M., Fabbri M., Campiglio M., et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–7070. doi: 10.1158/0008-5472.CAN-05-1783. PubMed DOI
Porkka K.P., Pfeiffer M.J., Waltering K.K., Vessella R.L., Tammela T.L., Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007;67:6130–6135. doi: 10.1158/0008-5472.CAN-07-0533. PubMed DOI
Yanaihara N., Caplen N., Bowman E., Seike M., Kumamoto K., Yi M., Stephens R.M., Okamoto A., Yokota J., Tanaka T., et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–198. doi: 10.1016/j.ccr.2006.01.025. PubMed DOI
Lajer C.B., Garnæs E., Friis-Hansen L., Norrild B., Therkildsen M.H., Glud M., Rossing M., Lajer H., Svane D., Skotte L., et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers: Bridging between HPV-related head and neck cancer and cervical cancer. Br. J. Cancer. 2012;106:1526–1534. doi: 10.1038/bjc.2012.109. PubMed DOI PMC
Pereira P.M., Marques J.P., Soares A.R., Carreto L., Santos M.A. MicroRNA expression variability in human cervical tissues. PLoS ONE. 2010;5:e11780. doi: 10.1371/journal.pone.0011780. PubMed DOI PMC
Rao Q., Shen Q., Zhou H., Peng Y., Li J., Lin Z. Aberrant microRNA expression in human cervical carcinomas. Med. Oncol. 2012;29:1242–1248. doi: 10.1007/s12032-011-9830-2. PubMed DOI
Snoek B.C., Verlaat W., Babion I., Novianti P.W., van de Wiel M.A., Wilting S.M., van Trommel N.E., Bleeker M.C.G., Massuger L.F.A.G., Melchers W.J.G., et al. Genome-wide microRNA analysis of HPV-positive self-samples yields novel triage markers for early detection of cervical cancer. Int. J. Cancer. 2019;144:372–379. doi: 10.1002/ijc.31855. PubMed DOI PMC
de Melo Maia B., Lavorato-Rocha A.M., Rodrigues L.S., Coutinho-Camillo C.M., Baiocchi G., Stiepcich M.M., Puga R., de A Lima L., Soares F.A., Rocha R.M. MicroRNA portraits in human vulvar carcinoma. Cancer Prev. Res. (Phila) 2013;6:1231–1241. doi: 10.1158/1940-6207.CAPR-13-0121. PubMed DOI
Yang X., Wu X. MiRNA expression profile of vulvar squamous cell carcinoma and identification of the oncogenic role of miR-590-5p. Oncol. Rep. 2016;35:398–408. doi: 10.3892/or.2015.4344. PubMed DOI
Avissar M., Christensen B.C., Kelsey K.T., Marsit C.J. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin. Cancer Res. 2009;15:2850–2855. doi: 10.1158/1078-0432.CCR-08-3131. PubMed DOI PMC
Chang S.S., Jiang W.W., Smith I., Poeta L.M., Begum S., Glazer C., Shan S., Westra W., Sidransky D., Califano J.A. MicroRNA alterations in head and neck squamous cell carcinoma. Int. J. Cancer. 2008;123:2791–2797. doi: 10.1002/ijc.23831. PubMed DOI PMC
Childs G., Fazzari M., Kung G., Kawachi N., Brandwein-Gensler M., McLemore M., Chen Q., Burk R.D., Smith R.V., Prystowsky M.B., et al. Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am. J. Pathol. 2009;174:736–745. doi: 10.2353/ajpath.2009.080731. PubMed DOI PMC
Hui A.B., Lenarduzzi M., Krushel T., Waldron L., Pintilie M., Shi W., Perez-Ordonez B., Jurisica I., O’Sullivan B., Waldron J., et al. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin. Cancer Res. 2010;16:1129–1139. doi: 10.1158/1078-0432.CCR-09-2166. PubMed DOI
Ramdas L., Giri U., Ashorn C.L., Coombes K.R., El-Naggar A., Ang K.K., Story M.D. MiRNA expression profiles in head and neck squamous cell carcinoma and adjacent normal tissue. Head Neck. 2009;31:642–654. doi: 10.1002/hed.21017. PubMed DOI PMC
Lajer C.B., Nielsen F.C., Friis-Hansen L., Norrild B., Borup R., Garnæs E., Rossing M., Specht L., Therkildsen M.H., Nauntofte B., et al. Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: A prospective translational study. Br. J. Cancer. 2011;104:830–840. doi: 10.1038/bjc.2011.29. PubMed DOI PMC
Miller D.L., Davis J.W., Taylor K.H., Johnson J., Shi Z., Williams R., Atasoy U., Lewis J.S., Stack M.S. Identification of a human papillomavirus-associated oncogenic miRNA panel in human oropharyngeal squamous cell carcinoma validated by bioinformatics analysis of the Cancer Genome Atlas. Am. J. Pathol. 2015;185:679–692. doi: 10.1016/j.ajpath.2014.11.018. PubMed DOI PMC
Vojtechova Z., Sabol I., Salakova M., Smahelova J., Zavadil J., Turek L., Grega M., Klozar J., Prochazka B., Tachezy R. Comparison of the miRNA profiles in HPV-positive and HPV-negative tonsillar tumors and a model system of human keratinocyte clones. BMC Cancer. 2016;16:382. doi: 10.1186/s12885-016-2430-y. PubMed DOI PMC
Rotnáglová E., Tachezy R., Saláková M., Procházka B., Košl’abová E., Veselá E., Ludvíková V., Hamšíková E., Klozar J. HPV involvement in tonsillar cancer: Prognostic significance and clinically relevant markers. Int. J. Cancer. 2011;129:101–110. doi: 10.1002/ijc.25889. PubMed DOI
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R., Simpson G., Solymos P. Vegan: Community Ecology Package. R Package Version 2.5–6. [(accessed on 1 January 2021)];2019 Available online: https://github.com/vegandevs/vegan.
Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A., et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838. doi: 10.1038/nature03702. PubMed DOI
Ludwig N., Leidinger P., Becker K., Backes C., Fehlmann T., Pallasch C., Rheinheimer S., Meder B., Stähler C., Meese E., et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44:3865–3877. doi: 10.1093/nar/gkw116. PubMed DOI PMC
Panwar B., Omenn G.S., Guan Y. miRmine: A database of human miRNA expression profiles. Bioinformatics. 2017;33:1554–1560. doi: 10.1093/bioinformatics/btx019. PubMed DOI PMC
Volinia S., Calin G.A., Liu C.G., Ambs S., Cimmino A., Petrocca F., Visone R., Iorio M., Roldo C., Ferracin M., et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA. 2006;103:2257–2261. doi: 10.1073/pnas.0510565103. PubMed DOI PMC
Metsalu T., Vilo J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43:W566–W570. doi: 10.1093/nar/gkv468. PubMed DOI PMC
Gong J., Chu Y., Xu M., Huo J., Lv L. Esophageal squamous cell carcinoma cell proliferation induced by exposure to low concentration of cigarette smoke extract is mediated via targeting miR-101-3p/COX-2 pathway. Oncol. Rep. 2016;35:463–471. doi: 10.3892/or.2015.4379. PubMed DOI
Huang F., Lin C., Shi Y.H., Kuerban G. MicroRNA-101 inhibits cell proliferation, invasion, and promotes apoptosis by regulating cyclooxygenase-2 in Hela cervical carcinoma cells. Asian Pac. J. Cancer Prev. 2013;14:5915–5920. doi: 10.7314/APJCP.2013.14.10.5915. PubMed DOI
Li M., Tian L., Ren H., Chen X., Wang Y., Ge J., Wu S., Sun Y., Liu M., Xiao H. MicroRNA-101 is a potential prognostic indicator of laryngeal squamous cell carcinoma and modulates CDK8. J. Transl. Med. 2015;13:271. doi: 10.1186/s12967-015-0626-6. PubMed DOI PMC
Chen L., Jia J., Zang Y., Li J., Wan B. MicroRNA-101 regulates autophagy, proliferation and apoptosis via targeting EZH2 in laryngeal squamous cell carcinoma. Neoplasma. 2019;66:507–515. doi: 10.4149/neo_2018_180811N611. PubMed DOI
Lin C., Huang F., Shen G., Yiming A. MicroRNA-101 regulates the viability and invasion of cervical cancer cells. Int. J. Clin. Exp. Pathol. 2015;8:10148–10155. PubMed PMC
Wei H., He W.R., Chen K.M., Wang X.W., Yi C.J. MiR-101 affects proliferation and apoptosis of cervical cancer cells by inhibition of JAK2. Eur. Rev. Med. Pharmacol. Sci. 2019;23:5640–5647. doi: 10.26355/eurrev_201907_18299. PubMed DOI
Liang X., Liu Y., Zeng L., Yu C., Hu Z., Zhou Q., Yang Z. MiR-101 inhibits the G1-to-S phase transition of cervical cancer cells by targeting Fos. Int. J. Gynecol. Cancer. 2014;24:1165–1172. doi: 10.1097/IGC.0000000000000187. PubMed DOI
Hui Y., Li Y., Jing Y., Feng J.Q., Ding Y. MiRNA-101 acts as a tumor suppressor in oral squamous cell carcinoma by targeting CX chemokine receptor 7. Am. J. Transl. Res. 2016;8:4902–4911. PubMed PMC
Wu B., Lei D., Wang L., Yang X., Jia S., Yang Z., Shan C., Zhang C., Lu B. MiRNA-101 inhibits oral squamous-cell carcinoma growth and metastasis by targeting zinc finger E-box binding homeobox 1. Am. J. Cancer Res. 2016;6:1396–1407. PubMed PMC
Wang Y., Jia R.Z., Diao S., He J., Jia L. MiRNA-101 targets TGF-βR1 to retard the progression of oral squamous cell carcinoma. Oncol. Res. 2020;28:203–212. doi: 10.3727/096504019X15761480623959. PubMed DOI PMC
Wang X., Li M., Wang Z., Han S., Tang X., Ge Y., Zhou L., Zhou C., Yuan Q., Yang M. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. J. Biol. Chem. 2015;290:3925–3935. doi: 10.1074/jbc.M114.596866. PubMed DOI PMC
Zou D., Zhou Q., Wang D., Guan L., Yuan L., Li S. The downregulation of microRNA-10b and its role in cervical cancer. Oncol. Res. 2016;24:99–108. doi: 10.3727/096504016X14611963142173. PubMed DOI PMC
Hou R., Wang D., Lu J. MicroRNA-10b inhibits proliferation, migration and invasion in cervical cancer cells via direct targeting of insulin-like growth factor-1 receptor. Oncol. Lett. 2017;13:5009–5015. doi: 10.3892/ol.2017.6033. PubMed DOI PMC
Yu M., Xu Y., Pan L., Feng Y., Luo K., Mu Q., Luo G. MiR-10b downregulated by DNA methylation acts as a tumor suppressor in HPV-positive cervical cancer via targeting Tiam1. Cell Physiol. BioChem. 2018;51:1763–1777. doi: 10.1159/000495680. PubMed DOI
Kinoshita T., Nohata N., Hanazawa T., Kikkawa N., Yamamoto N., Yoshino H., Itesako T., Enokida H., Nakagawa M., Okamoto Y., et al. Tumour-suppressive microRNA-29s inhibit cancer cell migration and invasion by targeting laminin-integrin signalling in head and neck squamous cell carcinoma. Br. J. Cancer. 2013;109:2636–2645. doi: 10.1038/bjc.2013.607. PubMed DOI PMC
Ding D.P., Chen Z.L., Zhao X.H., Wang J.W., Sun J., Wang Z., Tan F.W., Tan X.G., Li B.Z., Zhou F., et al. MiR-29c induces cell cycle arrest in esophageal squamous cell carcinoma by modulating cyclin E expression. Carcinogenesis. 2011;32:1025–1032. doi: 10.1093/carcin/bgr078. PubMed DOI
Chen C., Tang J., Xu S., Zhang W., Jiang H. MiR-30a-5p inhibits proliferation and migration of lung squamous cell carcinoma cells by targeting FOXD1. Biomed. Res. Int. 2020;2020:2547902. doi: 10.1155/2020/2547902. PubMed DOI PMC
Qi B., Wang Y., Chen Z.J., Li X.N., Qi Y., Yang Y., Cui G.H., Guo H.Z., Li W.H., Zhao S. Down-regulation of miR-30a-3p/5p promotes esophageal squamous cell carcinoma cell proliferation by activating the Wnt signaling pathway. World J. Gastroenterol. 2017;23:7965–7977. doi: 10.3748/wjg.v23.i45.7965. PubMed DOI PMC
Zhao J., Li B., Shu C., Ma Y., Gong Y. Downregulation of miR-30a is associated with proliferation and invasion via targeting MEF2D in cervical cancer. Oncol. Lett. 2017;14:7437–7442. doi: 10.3892/ol.2017.7114. PubMed DOI PMC
Fukumoto I., Kinoshita T., Hanazawa T., Kikkawa N., Chiyomaru T., Enokida H., Yamamoto N., Goto Y., Nishikawa R., Nakagawa M., et al. Identification of tumour suppressive microRNA-451a in hypopharyngeal squamous cell carcinoma based on microRNA expression signature. Br. J. Cancer. 2014;111:386–394. doi: 10.1038/bjc.2014.293. PubMed DOI PMC
Fu J., Zhao J., Zhang H., Fan X., Geng W., Qiao S. MicroRNA-451a prevents cutaneous squamous cell carcinoma progression via the 3-phosphoinositide-dependent protein kinase-1-mediated PI3K/AKT signaling pathway. Exp. Ther. Med. 2021;21:116. doi: 10.3892/etm.2020.9548. PubMed DOI PMC
Zang W.Q., Yang X., Wang T., Wang Y.Y., Du Y.W., Chen X.N., Li M., Zhao G.Q. MiR-451 inhibits proliferation of esophageal carcinoma cell line EC9706 by targeting CDKN2D and MAP3K1. World J. Gastroenterol. 2015;21:5867–5876. doi: 10.3748/wjg.v21.i19.5867. PubMed DOI PMC
Uchida A., Seki N., Mizuno K., Yamada Y., Misono S., Sanada H., Kikkawa N., Kumamoto T., Suetsugu T., Inoue H. Regulation of KIF2A by antitumor miR-451a inhibits cancer cell aggressiveness features in lung squamous cell carcinoma. Cancers. 2019;11:258. doi: 10.3390/cancers11020258. PubMed DOI PMC
Liu Y., Liu J., Wang L., Yang X., Liu X. MicroRNA-195 inhibits cell proliferation, migration and invasion in laryngeal squamous cell carcinoma by targeting ROCK1. Mol. Med. Rep. 2017;16:7154–7162. doi: 10.3892/mmr.2017.7460. PubMed DOI
Shuang Y., Li C., Zhou X., Huang Y., Zhang L. MicroRNA-195 inhibits growth and invasion of laryngeal carcinoma cells by directly targeting DCUN1D1. Oncol. Rep. 2017;38:2155–2165. doi: 10.3892/or.2017.5875. PubMed DOI PMC
Wang N., Wei H., Yin D., Lu Y., Zhang Y., Zhang Q., Ma X., Zhang S. MicroRNA-195 inhibits proliferation of cervical cancer cells by targeting cyclin D1a. Tumor Biol. 2016;37:4711–4720. doi: 10.1007/s13277-015-4292-3. PubMed DOI
Song R., Cong L., Ni G., Chen M., Sun H., Sun Y. MicroRNA-195 inhibits the behavior of cervical cancer tumors by directly targeting HDGF. Oncol. Lett. 2017;14:767–775. doi: 10.3892/ol.2017.6210. PubMed DOI PMC
DU X., Lin L.I., Zhang L., Jiang J. MicroRNA-195 inhibits the proliferation, migration and invasion of cervical cancer cells via the inhibition of CCND2 and MYB expression. Oncol. Lett. 2015;10:2639–2643. doi: 10.3892/ol.2015.3541. PubMed DOI PMC
Hao X., Jia Q., Yuan J., Shi X., Guo H., Gao J., Guo Y. MicroRNA-195 suppresses cell proliferation, migration and invasion in epithelial ovarian carcinoma via inhibition of the CDC42/CCND1 pathway. Int. J. Mol. Med. 2020;46:1862–1872. doi: 10.3892/ijmm.2020.4716. PubMed DOI PMC
Sun N., Ye L., Chang T., Li X. MicroRNA-195-Cdc42 axis acts as a prognostic factor of esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2014;7:6871–6879. PubMed PMC
Liu W., Wang J., Meng N., Wang X., Ge D. MiR-195 inhibits proliferation of oral squamous cell carcinoma cells through regulating Smad7. Panminerva Med. 2020 doi: 10.23736/S0031-0808.20.04009-4. PubMed DOI
Zhou Q., Han L.R., Zhou Y.X., Li Y. MiR-195 suppresses cervical cancer migration and invasion through targeting Smad3. Int. J. Gynecol. Cancer. 2016;26:817–824. doi: 10.1097/IGC.0000000000000686. PubMed DOI
Liu H., Chen Y., Li Y., Li C., Qin T., Bai M., Zhang Z., Jia R., Su Y., Wang C. MiR-195 suppresses metastasis and angiogenesis of squamous cell lung cancer by inhibiting the expression of VEGF. Mol. Med. Rep. 2019;20:2625–2632. doi: 10.3892/mmr.2019.10496. PubMed DOI PMC
Liu X., Zhou Y., Ning Y.E., Gu H., Tong Y., Wang N. MiR-195-5p inhibits malignant progression of cervical cancer by targeting YAP1. Onco Targets Ther. 2020;13:931–944. doi: 10.2147/OTT.S227826. PubMed DOI PMC
Pan S.S., Zhou H.E., Yu H.Y., Xu L.H. MiR-195-5p inhibits the cell migration and invasion of cervical carcinoma through suppressing ARL2. Eur. Rev. Med. Pharmacol. Sci. 2019;23:10664–10671. doi: 10.26355/eurrev_201912_19764. PubMed DOI
Wang T., Ren Y., Liu R., Ma J., Shi Y., Zhang L., Bu R. MiR-195-5p suppresses the proliferation, migration, and invasion of oral squamous cell carcinoma by targeting TRIM14. Biomed. Res. Int. 2017;2017:7378148. doi: 10.1155/2017/7378148. PubMed DOI PMC
Jia L.F., Wei S.B., Gong K., Gan Y.H., Yu G.Y. Prognostic implications of micoRNA miR-195 expression in human tongue squamous cell carcinoma. PLoS ONE. 2013;8:e56634. doi: 10.1371/journal.pone.0056634. PubMed DOI PMC
Heberle H., Meirelles G.V., da Silva F.R., Telles G.P., Minghim R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015;16:169. doi: 10.1186/s12859-015-0611-3. PubMed DOI PMC
Iacona J.R., Lutz C.S. miR-146a-5p: Expression, regulation, and functions in cancer. Wiley Interdiscip. Rev. RNA. 2019;10:e1533. doi: 10.1002/wrna.1533. PubMed DOI
Hu Q., Song J., Ding B., Cui Y., Liang J., Han S. MiR-146a promotes cervical cancer cell viability via targeting IRAK1 and TRAF6. Oncol. Rep. 2018;39:3015–3024. doi: 10.3892/or.2018.6391. PubMed DOI
Gee H.E., Camps C., Buffa F.M., Patiar S., Winter S.C., Betts G., Homer J., Corbridge R., Cox G., West C.M., et al. hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer. 2010;116:2148–2158. doi: 10.1002/cncr.25009. PubMed DOI
Ji X., Guo H., Yin S., Du H. miR-139-5p functions as a tumor suppressor in cervical cancer by targeting TCF4 and inhibiting Wnt/β-catenin signaling. Onco Targets Ther. 2019;12:7739–7748. doi: 10.2147/OTT.S215796. PubMed DOI PMC
Wang K., Jin J., Ma T., Zhai H. MiR-139-5p inhibits the tumorigenesis and progression of oral squamous carcinoma cells by targeting HOXA9. J. Cell Mol. Med. 2017;21:3730–3740. doi: 10.1111/jcmm.13282. PubMed DOI PMC
Rasmussen C.L., Sand F.L., Hoffmann Frederiksen M., Kaae Andersen K., Kjaer S.K. Does HPV status influence survival after vulvar cancer? Int. J. Cancer. 2018;142:1158–1165. doi: 10.1002/ijc.31139. PubMed DOI
Zhang J., Zhang Y., Zhang Z. Prevalence of human papillomavirus and its prognostic value in vulvar cancer: A systematic review and meta-analysis. PLoS ONE. 2018;13:e0204162. doi: 10.1371/journal.pone.0204162. PubMed DOI PMC
Hinten F., Molijn A., Eckhardt L., Massuger L.F.A.G., Quint W., Bult P., Bulten J., Melchers W.J.G., de Hullu J.A. Vulvar cancer: Two pathways with different localization and prognosis. Gynecol. Oncol. 2018;149:310–317. doi: 10.1016/j.ygyno.2018.03.003. PubMed DOI
Williams A., Syed S., Velangi S., Ganesan R. New directions in vulvar cancer pathology. Curr. Oncol. Rep. 2019;21:88. doi: 10.1007/s11912-019-0833-z. PubMed DOI
Liu X., Cao Y., Zhang Y., Zhou H., Li H. Regulatory effect of MiR103 on proliferation, EMT and invasion of oral squamous carcinoma cell through SALL4. Eur. Rev. Med. Pharmacol. Sci. 2019;23:9931–9938. doi: 10.26355/eurrev_201911_19559. PubMed DOI
Zhou C., Li G., Zhou J., Han N., Liu Z., Yin J. MiR-107 activates ATR/Chk1 pathway and suppress cervical cancer invasion by targeting MCL1. PLoS ONE. 2014;9:e111860. doi: 10.1371/journal.pone.0111860. PubMed DOI PMC
Cui F., Li X., Zhu X., Huang L., Huang Y., Mao C., Yan Q., Zhu J., Zhao W., Shi H. MiR-125b inhibits tumor growth and promotes apoptosis of cervical cancer cells by targeting phosphoinositide 3-kinase catalytic subunit delta. Cell Physiol. BioChem. 2012;30:1310–1318. doi: 10.1159/000343320. PubMed DOI
Lu H.J., Jin P.Y., Tang Y., Fan S.H., Zhang Z.F., Wang F., Wu D.M., Lu J., Zheng Y.L. MicroRNA-136 inhibits proliferation and promotes apoptosis and radiosensitivity of cervical carcinoma through the NF-κB pathway by targeting E2F1. Life Sci. 2018;199:167–178. doi: 10.1016/j.lfs.2018.02.016. PubMed DOI
Zhang B.X., Yu T., Yu Z., Yang X.G. MicroRNA-148a regulates the MAPK/ERK signaling pathway and suppresses the development of esophagus squamous cell carcinoma via targeting MAP3K9. Eur. Rev. Med. Pharmacol. Sci. 2019;23:6497–6504. doi: 10.26355/eurrev_201908_18533. PubMed DOI
Jia T., Ren Y., Wang F., Zhao R., Qiao B., Xing L., Ou L., Guo B. MiR-148a inhibits oral squamous cell carcinoma progression through ERK/MAPK pathway via targeting IGF-IR. BioSci. Rep. 2020;40 doi: 10.1042/BSR20182458. PubMed DOI PMC
Mou Z., Xu X., Dong M., Xu J. MicroRNA-148b acts as a tumor suppressor in cervical cancer by inducing G1/S-phase cell cycle arrest and apoptosis in a caspase-3-dependent manner. Med. Sci. Monit. 2016;22:2809–2815. doi: 10.12659/MSM.896862. PubMed DOI PMC
Zhang H., Lu Y., Wang S., Sheng X., Zhang S. MicroRNA-152 acts as a tumor suppressor microRNA by inhibiting Krüppel-like factor 5 in human cervical cancer. Oncol. Res. 2019;27:335–340. doi: 10.3727/096504018X15252202178408. PubMed DOI PMC
Wang X., Li G.H. MicroRNA-16 functions as a tumor-suppressor gene in oral squamous cell carcinoma by targeting AKT3 and BCL2L2. J. Cell Physiol. 2018;233:9447–9457. doi: 10.1002/jcp.26833. PubMed DOI PMC
Wei Q., Li Y.X., Liu M., Li X., Tang H. MiR-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB Life. 2012;64:697–704. doi: 10.1002/iub.1051. PubMed DOI
Koshizuka K., Hanazawa T., Kikkawa N., Arai T., Okato A., Kurozumi A., Kato M., Katada K., Okamoto Y., Seki N. Regulation of ITGA3 by the anti-tumor miR-199 family inhibits cancer cell migration and invasion in head and neck cancer. Cancer Sci. 2017;108:1681–1692. doi: 10.1111/cas.13298. PubMed DOI PMC
Wei D., Shen B., Wang W., Zhou Y., Yang X., Lu G., Yang J., Shao Y. MicroRNA-199a-5p functions as a tumor suppressor in oral squamous cell carcinoma via targeting the IKKβ/NF-κB signaling pathway. Int. J. Mol. Med. 2019;43:1585–1596. doi: 10.3892/ijmm.2019.4083. PubMed DOI PMC
Wei D., Wang W., Shen B., Zhou Y., Yang X., Lu G., Yang J., Shao Y. MicroRNA-199a-5p suppresses migration and invasion in oral squamous cell carcinoma through inhibiting the EMT-related transcription factor SOX4. Int. J. Mol. Med. 2019;44:185–195. doi: 10.3892/ijmm.2019.4174. PubMed DOI PMC
Qu X., Gao D., Ren Q., Jiang X., Bai J., Sheng L. MiR-211 inhibits proliferation, invasion and migration of cervical cancer via targeting SPARC. Oncol. Lett. 2018;16:853–860. doi: 10.3892/ol.2018.8735. PubMed DOI PMC
Zhu L., Tu H., Liang Y., Tang D. MiR-218 produces anti-tumor effects on cervical cancer cells in vitro. World J. Surg. Oncol. 2018;16:204. doi: 10.1186/s12957-018-1506-3. PubMed DOI PMC
Liu C., Zhang Y., Liang S., Ying Y. Aldehyde dehydrogenase 1, a target of miR-222, is expressed at elevated levels in cervical cancer. Exp. Ther. Med. 2020;19:1673–1680. doi: 10.3892/etm.2020.8425. PubMed DOI PMC
Chen F., Qi S., Zhang X., Wu J., Yang X., Wang R. MiR-23a-3p suppresses cell proliferation in oral squamous cell carcinomas by targeting FGF2 and correlates with a better prognosis: miR-23a-3p inhibits OSCC growth by targeting FGF2. Pathol. Res. Pract. 2019;215:660–667. doi: 10.1016/j.prp.2018.12.021. PubMed DOI
Xu L., Chen Z., Xue F., Chen W., Ma R., Cheng S., Cui P. MicroRNA-24 inhibits growth, induces apoptosis, and reverses radioresistance in laryngeal squamous cell carcinoma by targeting X-linked inhibitor of apoptosis protein. Cancer Cell Int. 2015;15:61. doi: 10.1186/s12935-015-0217-x. PubMed DOI PMC
Guo Y., Fu W., Chen H., Shang C., Zhong M. MiR-24 functions as a tumor suppressor in Hep2 laryngeal carcinoma cells partly through down-regulation of the S100A8 protein. Oncol. Rep. 2012;27:1097–1103. doi: 10.3892/or.2011.1571. PubMed DOI PMC
Fang F., Huang B., Sun S., Xiao M., Guo J., Yi X., Cai J., Wang Z. MiR-27a inhibits cervical adenocarcinoma progression by downregulating the TGF-βRI signaling pathway. Cell Death Dis. 2018;9:395. doi: 10.1038/s41419-018-0431-2. PubMed DOI PMC
Han M., Li N., Li F., Wang H., Ma L. MiR-27b-3p exerts tumor suppressor effects in esophageal squamous cell carcinoma by targeting Nrf2. Hum. Cell. 2020;33:641–651. doi: 10.1007/s13577-020-00329-7. PubMed DOI
Xie R., Wu S.N., Gao C.C., Yang X.Z., Wang H.G., Zhang J.L., Yan W., Ma T.H. MicroRNA-30d inhibits the migration and invasion of human esophageal squamous cell carcinoma cells via the post-transcriptional regulation of enhancer of zeste homolog 2. Oncol. Rep. 2017;37:1682–1690. doi: 10.3892/or.2017.5405. PubMed DOI
Hu J., Gui Y., Xie P., Li G. MicroRNA-33a regulates the invasion of cervical cancer cells via targeting Twist1. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2015;40:1060–1067. doi: 10.11817/j.issn.1672-7347.2015.10.002. PubMed DOI
Deng Y., Xiong Y., Liu Y. MiR-376c inhibits cervical cancer cell proliferation and invasion by targeting BMI1. Int. J. Exp. Pathol. 2016;97:257–265. doi: 10.1111/iep.12177. PubMed DOI PMC
Shan D., Shang Y., Hu T. MicroRNA-411 inhibits cervical cancer progression by directly targeting STAT3. Oncol. Res. 2019;27:349–358. doi: 10.3727/096504018X15247361080118. PubMed DOI PMC
Xin J.X., Yue Z., Zhang S., Jiang Z.H., Wang P.Y., Li Y.J., Pang M., Xie S.Y. MiR-99 inhibits cervical carcinoma cell proliferation by targeting TRIB2. Oncol. Lett. 2013;6:1025–1030. doi: 10.3892/ol.2013.1473. PubMed DOI PMC
Wu T., Chen X., Peng R., Liu H., Yin P., Peng H., Zhou Y., Sun Y., Wen L., Yi H., et al. Let-7a suppresses cell proliferation via the TGF-β/SMAD signaling pathway in cervical cancer. Oncol. Rep. 2016;36:3275–3282. doi: 10.3892/or.2016.5160. PubMed DOI
Guo M., Zhao X., Yuan X., Jiang J., Li P. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in cervical cancer. Oncotarget. 2017;8:28226–28236. doi: 10.18632/oncotarget.15999. PubMed DOI PMC
Zheng S., Liu Q., Ma R., Tan D., Shen T., Zhang X., Lu X. Let-7b-5p inhibits proliferation and motility in squamous cell carcinoma cells through negative modulation of KIAA1377. Cell Biol. Int. 2019;43:634–641. doi: 10.1002/cbin.11136. PubMed DOI
Hou B., Ishinaga H., Midorikawa K., Nakamura S., Hiraku Y., Oikawa S., Ma N., Takeuchi K., Murata M. Let-7c inhibits migration and epithelial-mesenchymal transition in head and neck squamous cell carcinoma by targeting IGF1R and HMGA2. Oncotarget. 2018;9:8927–8940. doi: 10.18632/oncotarget.23826. PubMed DOI PMC
Zheng Y., Luo M., Lü M., Zhou T., Liu F., Guo X., Zhang J., Kang M. Let-7c-5p inhibits cell proliferation and migration and promotes apoptosis via the CTHRC1/AKT/ERK pathway in esophageal squamous cell carcinoma. Onco Targets Ther. 2020;13:11193–11209. doi: 10.2147/OTT.S274092. PubMed DOI PMC
Wang S., Jin S., Liu M.D., Pang P., Wu H., Qi Z.Z., Liu F.Y., Sun C.F. hsa-let-7e-5p inhibits the proliferation and metastasis of head and neck squamous cell carcinoma cells by targeting chemokine receptor 7. J. Cancer. 2019;10:1941–1948. doi: 10.7150/jca.29536. PubMed DOI PMC
Cheng Y., Guo Y., Zhang Y., You K., Li Z., Geng L. MicroRNA-106b is involved in transforming growth factor β1-induced cell migration by targeting disabled homolog 2 in cervical carcinoma. J. Exp. Clin. Cancer Res. 2016;35:11. doi: 10.1186/s13046-016-0290-6. PubMed DOI PMC
Wang M., Wang X., Liu W. MicroRNA-130a-3p promotes the proliferation and inhibits the apoptosis of cervical cancer cells via negative regulation of RUNX3. Mol. Med. Rep. 2020;22:2990–3000. doi: 10.3892/mmr.2020.11368. PubMed DOI
Li J.H., Zhang Z., Du M.Z., Guan Y.C., Yao J.N., Yu H.Y., Wang B.J., Wang X.L., Wu S.L., Li Z. MicroRNA-141-3p fosters the growth, invasion, and tumorigenesis of cervical cancer cells by targeting FOXA2. Arch. BioChem. Biophys. 2018;657:23–30. doi: 10.1016/j.abb.2018.09.008. PubMed DOI
Wang H., Hu H., Luo Z., Liu S., Wu W., Zhu M., Wang J., Liu Y., Lu Z. MiR-4454 up-regulated by HPV16 E6/E7 promotes invasion and migration by targeting ABHD2/NUDT21 in cervical cancer. BioSci. Rep. 2020;40 doi: 10.1042/BSR20200796. PubMed DOI PMC