Lack of Conserved miRNA Deregulation in HPV-Induced Squamous Cell Carcinomas

. 2021 May 20 ; 11 (5) : . [epub] 20210520

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34065237

Grantová podpora
GA UK No. 80318 Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000785 European Regional Development Fund and Ministry of Education, Youth and Sports of the Czech Republic

Squamous cell carcinomas (SCCs) in the anogenital and head and neck regions are associated with high-risk types of human papillomaviruses (HR-HPV). Deregulation of miRNA expression is an important contributor to carcinogenesis. This study aimed to pinpoint commonly and uniquely deregulated miRNAs in cervical, anal, vulvar, and tonsillar tumors of viral or non-viral etiology, searching for a common set of deregulated miRNAs linked to HPV-induced carcinogenesis. RNA was extracted from tumors and nonmalignant tissues from the same locations. The miRNA expression level was determined by next-generation sequencing. Differential expression of miRNAs was calculated, and the patterns of miRNA deregulation were compared between tumors. The total of deregulated miRNAs varied between tumors of different locations by two orders of magnitude, ranging from 1 to 282. The deregulated miRNA pool was largely tumor-specific. In tumors of the same location, a low proportion of miRNAs were exclusively deregulated and no deregulated miRNA was shared by all four types of HPV-positive tumors. The most significant overlap of deregulated miRNAs was found between tumors which differed in location and HPV status (HPV-positive cervical tumors vs. HPV-negative vulvar tumors). Our results imply that HPV infection does not elicit a conserved miRNA deregulation in SCCs.

Zobrazit více v PubMed

Plummer M., de Martel C., Vignat J., Ferlay J., Bray F., Franceschi S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob. Health. 2016;4:e609–e616. doi: 10.1016/S2214-109X(16)30143-7. PubMed DOI

de Martel C., Plummer M., Vignat J., Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer. 2017;141:664–670. doi: 10.1002/ijc.30716. PubMed DOI PMC

Nordfors C., Vlastos A., Du J., Ahrlund-Richter A., Tertipis N., Grün N., Romanitan M., Haeggblom L., Roosaar A., Dahllöf G., et al. Human papillomavirus prevalence is high in oral samples of patients with tonsillar and base of tongue cancer. Oral Oncol. 2014;50:491–497. doi: 10.1016/j.oraloncology.2014.02.012. PubMed DOI

Marur S., D’Souza G., Westra W.H., Forastiere A.A. HPV-associated head and neck cancer: A virus-related cancer epidemic. Lancet Oncol. 2010;11:781–789. doi: 10.1016/S1470-2045(10)70017-6. PubMed DOI PMC

Näsman A., Attner P., Hammarstedt L., Du J., Eriksson M., Giraud G., Ahrlund-Richter S., Marklund L., Romanitan M., Lindquist D., et al. Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: An epidemic of viral-induced carcinoma? Int. J. Cancer. 2009;125:362–366. doi: 10.1002/ijc.24339. PubMed DOI

Tachezy R., Klozar J., Rubenstein L., Smith E., Saláková M., Smahelová J., Ludvíková V., Rotnáglová E., Kodet R., Hamsíková E. Demographic and risk factors in patients with head and neck tumors. J. Med. Virol. 2009;81:878–887. doi: 10.1002/jmv.21470. PubMed DOI

Koncar R.F., Feldman R., Bahassi E.M., Hashemi Sadraei N. Comparative molecular profiling of HPV-induced squamous cell carcinomas. Cancer Med. 2017;6:1673–1685. doi: 10.1002/cam4.1108. PubMed DOI PMC

Tuna M., Amos C.I. Next generation sequencing and its applications in HPV-associated cancers. Oncotarget. 2017;8:8877–8889. doi: 10.18632/oncotarget.12830. PubMed DOI PMC

Gillison M.L., Akagi K., Xiao W., Jiang B., Pickard R.K.L., Li J., Swanson B.J., Agrawal A.D., Zucker M., Stache-Crain B., et al. Human papillomavirus and the landscape of secondary genetic alterations in oral cancers. Genome Res. 2019;29:1–17. doi: 10.1101/gr.241141.118. PubMed DOI PMC

Haeggblom L., Ährlund-Richter A., Mirzaie L., Farrajota Neves da Silva P., Ursu R.G., Ramqvist T., Näsman A. Differences in gene expression between high-grade dysplasia and invasive HPV. Cancer Med. 2019;8:6221–6232. doi: 10.1002/cam4.2450. PubMed DOI PMC

Seiwert T.Y., Zuo Z., Keck M.K., Khattri A., Pedamallu C.S., Stricker T., Brown C., Pugh T.J., Stojanov P., Cho J., et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin. Cancer Res. 2015;21:632–641. doi: 10.1158/1078-0432.CCR-13-3310. PubMed DOI PMC

Han M.R., Shin S., Park H.C., Kim M.S., Lee S.H., Jung S.H., Song S.Y., Chung Y.J. Mutational signatures and chromosome alteration profiles of squamous cell carcinomas of the vulva. Exp. Mol. Med. 2018;50:e442. doi: 10.1038/emm.2017.265. PubMed DOI PMC

Prieske K., Alawi M., Oliveira-Ferrer L., Jaeger A., Eylmann K., Burandt E., Schmalfeldt B., Joosse S.A., Woelber L. Genomic characterization of vulvar squamous cell carcinoma. Gynecol. Oncol. 2020;158:547–554. doi: 10.1016/j.ygyno.2020.06.482. PubMed DOI

Calin G.A., Dumitru C.D., Shimizu M., Bichi R., Zupo S., Noch E., Aldler H., Rattan S., Keating M., Rai K., et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA. 2002;99:15524–15529. doi: 10.1073/pnas.242606799. PubMed DOI PMC

Ferracin M., Pedriali M., Veronese A., Zagatti B., Gafà R., Magri E., Lunardi M., Munerato G., Querzoli G., Maestri I., et al. MicroRNA profiling for the identification of cancers with unknown primary tissue-of-origin. J. Pathol. 2011;225:43–53. doi: 10.1002/path.2915. PubMed DOI PMC

Iorio M.V., Ferracin M., Liu C.G., Veronese A., Spizzo R., Sabbioni S., Magri E., Pedriali M., Fabbri M., Campiglio M., et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–7070. doi: 10.1158/0008-5472.CAN-05-1783. PubMed DOI

Porkka K.P., Pfeiffer M.J., Waltering K.K., Vessella R.L., Tammela T.L., Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007;67:6130–6135. doi: 10.1158/0008-5472.CAN-07-0533. PubMed DOI

Yanaihara N., Caplen N., Bowman E., Seike M., Kumamoto K., Yi M., Stephens R.M., Okamoto A., Yokota J., Tanaka T., et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–198. doi: 10.1016/j.ccr.2006.01.025. PubMed DOI

Lajer C.B., Garnæs E., Friis-Hansen L., Norrild B., Therkildsen M.H., Glud M., Rossing M., Lajer H., Svane D., Skotte L., et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers: Bridging between HPV-related head and neck cancer and cervical cancer. Br. J. Cancer. 2012;106:1526–1534. doi: 10.1038/bjc.2012.109. PubMed DOI PMC

Pereira P.M., Marques J.P., Soares A.R., Carreto L., Santos M.A. MicroRNA expression variability in human cervical tissues. PLoS ONE. 2010;5:e11780. doi: 10.1371/journal.pone.0011780. PubMed DOI PMC

Rao Q., Shen Q., Zhou H., Peng Y., Li J., Lin Z. Aberrant microRNA expression in human cervical carcinomas. Med. Oncol. 2012;29:1242–1248. doi: 10.1007/s12032-011-9830-2. PubMed DOI

Snoek B.C., Verlaat W., Babion I., Novianti P.W., van de Wiel M.A., Wilting S.M., van Trommel N.E., Bleeker M.C.G., Massuger L.F.A.G., Melchers W.J.G., et al. Genome-wide microRNA analysis of HPV-positive self-samples yields novel triage markers for early detection of cervical cancer. Int. J. Cancer. 2019;144:372–379. doi: 10.1002/ijc.31855. PubMed DOI PMC

de Melo Maia B., Lavorato-Rocha A.M., Rodrigues L.S., Coutinho-Camillo C.M., Baiocchi G., Stiepcich M.M., Puga R., de A Lima L., Soares F.A., Rocha R.M. MicroRNA portraits in human vulvar carcinoma. Cancer Prev. Res. (Phila) 2013;6:1231–1241. doi: 10.1158/1940-6207.CAPR-13-0121. PubMed DOI

Yang X., Wu X. MiRNA expression profile of vulvar squamous cell carcinoma and identification of the oncogenic role of miR-590-5p. Oncol. Rep. 2016;35:398–408. doi: 10.3892/or.2015.4344. PubMed DOI

Avissar M., Christensen B.C., Kelsey K.T., Marsit C.J. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin. Cancer Res. 2009;15:2850–2855. doi: 10.1158/1078-0432.CCR-08-3131. PubMed DOI PMC

Chang S.S., Jiang W.W., Smith I., Poeta L.M., Begum S., Glazer C., Shan S., Westra W., Sidransky D., Califano J.A. MicroRNA alterations in head and neck squamous cell carcinoma. Int. J. Cancer. 2008;123:2791–2797. doi: 10.1002/ijc.23831. PubMed DOI PMC

Childs G., Fazzari M., Kung G., Kawachi N., Brandwein-Gensler M., McLemore M., Chen Q., Burk R.D., Smith R.V., Prystowsky M.B., et al. Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am. J. Pathol. 2009;174:736–745. doi: 10.2353/ajpath.2009.080731. PubMed DOI PMC

Hui A.B., Lenarduzzi M., Krushel T., Waldron L., Pintilie M., Shi W., Perez-Ordonez B., Jurisica I., O’Sullivan B., Waldron J., et al. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin. Cancer Res. 2010;16:1129–1139. doi: 10.1158/1078-0432.CCR-09-2166. PubMed DOI

Ramdas L., Giri U., Ashorn C.L., Coombes K.R., El-Naggar A., Ang K.K., Story M.D. MiRNA expression profiles in head and neck squamous cell carcinoma and adjacent normal tissue. Head Neck. 2009;31:642–654. doi: 10.1002/hed.21017. PubMed DOI PMC

Lajer C.B., Nielsen F.C., Friis-Hansen L., Norrild B., Borup R., Garnæs E., Rossing M., Specht L., Therkildsen M.H., Nauntofte B., et al. Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: A prospective translational study. Br. J. Cancer. 2011;104:830–840. doi: 10.1038/bjc.2011.29. PubMed DOI PMC

Miller D.L., Davis J.W., Taylor K.H., Johnson J., Shi Z., Williams R., Atasoy U., Lewis J.S., Stack M.S. Identification of a human papillomavirus-associated oncogenic miRNA panel in human oropharyngeal squamous cell carcinoma validated by bioinformatics analysis of the Cancer Genome Atlas. Am. J. Pathol. 2015;185:679–692. doi: 10.1016/j.ajpath.2014.11.018. PubMed DOI PMC

Vojtechova Z., Sabol I., Salakova M., Smahelova J., Zavadil J., Turek L., Grega M., Klozar J., Prochazka B., Tachezy R. Comparison of the miRNA profiles in HPV-positive and HPV-negative tonsillar tumors and a model system of human keratinocyte clones. BMC Cancer. 2016;16:382. doi: 10.1186/s12885-016-2430-y. PubMed DOI PMC

Rotnáglová E., Tachezy R., Saláková M., Procházka B., Košl’abová E., Veselá E., Ludvíková V., Hamšíková E., Klozar J. HPV involvement in tonsillar cancer: Prognostic significance and clinically relevant markers. Int. J. Cancer. 2011;129:101–110. doi: 10.1002/ijc.25889. PubMed DOI

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R., Simpson G., Solymos P. Vegan: Community Ecology Package. R Package Version 2.5–6. [(accessed on 1 January 2021)];2019 Available online: https://github.com/vegandevs/vegan.

Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A., et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838. doi: 10.1038/nature03702. PubMed DOI

Ludwig N., Leidinger P., Becker K., Backes C., Fehlmann T., Pallasch C., Rheinheimer S., Meder B., Stähler C., Meese E., et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44:3865–3877. doi: 10.1093/nar/gkw116. PubMed DOI PMC

Panwar B., Omenn G.S., Guan Y. miRmine: A database of human miRNA expression profiles. Bioinformatics. 2017;33:1554–1560. doi: 10.1093/bioinformatics/btx019. PubMed DOI PMC

Volinia S., Calin G.A., Liu C.G., Ambs S., Cimmino A., Petrocca F., Visone R., Iorio M., Roldo C., Ferracin M., et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA. 2006;103:2257–2261. doi: 10.1073/pnas.0510565103. PubMed DOI PMC

Metsalu T., Vilo J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43:W566–W570. doi: 10.1093/nar/gkv468. PubMed DOI PMC

Gong J., Chu Y., Xu M., Huo J., Lv L. Esophageal squamous cell carcinoma cell proliferation induced by exposure to low concentration of cigarette smoke extract is mediated via targeting miR-101-3p/COX-2 pathway. Oncol. Rep. 2016;35:463–471. doi: 10.3892/or.2015.4379. PubMed DOI

Huang F., Lin C., Shi Y.H., Kuerban G. MicroRNA-101 inhibits cell proliferation, invasion, and promotes apoptosis by regulating cyclooxygenase-2 in Hela cervical carcinoma cells. Asian Pac. J. Cancer Prev. 2013;14:5915–5920. doi: 10.7314/APJCP.2013.14.10.5915. PubMed DOI

Li M., Tian L., Ren H., Chen X., Wang Y., Ge J., Wu S., Sun Y., Liu M., Xiao H. MicroRNA-101 is a potential prognostic indicator of laryngeal squamous cell carcinoma and modulates CDK8. J. Transl. Med. 2015;13:271. doi: 10.1186/s12967-015-0626-6. PubMed DOI PMC

Chen L., Jia J., Zang Y., Li J., Wan B. MicroRNA-101 regulates autophagy, proliferation and apoptosis via targeting EZH2 in laryngeal squamous cell carcinoma. Neoplasma. 2019;66:507–515. doi: 10.4149/neo_2018_180811N611. PubMed DOI

Lin C., Huang F., Shen G., Yiming A. MicroRNA-101 regulates the viability and invasion of cervical cancer cells. Int. J. Clin. Exp. Pathol. 2015;8:10148–10155. PubMed PMC

Wei H., He W.R., Chen K.M., Wang X.W., Yi C.J. MiR-101 affects proliferation and apoptosis of cervical cancer cells by inhibition of JAK2. Eur. Rev. Med. Pharmacol. Sci. 2019;23:5640–5647. doi: 10.26355/eurrev_201907_18299. PubMed DOI

Liang X., Liu Y., Zeng L., Yu C., Hu Z., Zhou Q., Yang Z. MiR-101 inhibits the G1-to-S phase transition of cervical cancer cells by targeting Fos. Int. J. Gynecol. Cancer. 2014;24:1165–1172. doi: 10.1097/IGC.0000000000000187. PubMed DOI

Hui Y., Li Y., Jing Y., Feng J.Q., Ding Y. MiRNA-101 acts as a tumor suppressor in oral squamous cell carcinoma by targeting CX chemokine receptor 7. Am. J. Transl. Res. 2016;8:4902–4911. PubMed PMC

Wu B., Lei D., Wang L., Yang X., Jia S., Yang Z., Shan C., Zhang C., Lu B. MiRNA-101 inhibits oral squamous-cell carcinoma growth and metastasis by targeting zinc finger E-box binding homeobox 1. Am. J. Cancer Res. 2016;6:1396–1407. PubMed PMC

Wang Y., Jia R.Z., Diao S., He J., Jia L. MiRNA-101 targets TGF-βR1 to retard the progression of oral squamous cell carcinoma. Oncol. Res. 2020;28:203–212. doi: 10.3727/096504019X15761480623959. PubMed DOI PMC

Wang X., Li M., Wang Z., Han S., Tang X., Ge Y., Zhou L., Zhou C., Yuan Q., Yang M. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. J. Biol. Chem. 2015;290:3925–3935. doi: 10.1074/jbc.M114.596866. PubMed DOI PMC

Zou D., Zhou Q., Wang D., Guan L., Yuan L., Li S. The downregulation of microRNA-10b and its role in cervical cancer. Oncol. Res. 2016;24:99–108. doi: 10.3727/096504016X14611963142173. PubMed DOI PMC

Hou R., Wang D., Lu J. MicroRNA-10b inhibits proliferation, migration and invasion in cervical cancer cells via direct targeting of insulin-like growth factor-1 receptor. Oncol. Lett. 2017;13:5009–5015. doi: 10.3892/ol.2017.6033. PubMed DOI PMC

Yu M., Xu Y., Pan L., Feng Y., Luo K., Mu Q., Luo G. MiR-10b downregulated by DNA methylation acts as a tumor suppressor in HPV-positive cervical cancer via targeting Tiam1. Cell Physiol. BioChem. 2018;51:1763–1777. doi: 10.1159/000495680. PubMed DOI

Kinoshita T., Nohata N., Hanazawa T., Kikkawa N., Yamamoto N., Yoshino H., Itesako T., Enokida H., Nakagawa M., Okamoto Y., et al. Tumour-suppressive microRNA-29s inhibit cancer cell migration and invasion by targeting laminin-integrin signalling in head and neck squamous cell carcinoma. Br. J. Cancer. 2013;109:2636–2645. doi: 10.1038/bjc.2013.607. PubMed DOI PMC

Ding D.P., Chen Z.L., Zhao X.H., Wang J.W., Sun J., Wang Z., Tan F.W., Tan X.G., Li B.Z., Zhou F., et al. MiR-29c induces cell cycle arrest in esophageal squamous cell carcinoma by modulating cyclin E expression. Carcinogenesis. 2011;32:1025–1032. doi: 10.1093/carcin/bgr078. PubMed DOI

Chen C., Tang J., Xu S., Zhang W., Jiang H. MiR-30a-5p inhibits proliferation and migration of lung squamous cell carcinoma cells by targeting FOXD1. Biomed. Res. Int. 2020;2020:2547902. doi: 10.1155/2020/2547902. PubMed DOI PMC

Qi B., Wang Y., Chen Z.J., Li X.N., Qi Y., Yang Y., Cui G.H., Guo H.Z., Li W.H., Zhao S. Down-regulation of miR-30a-3p/5p promotes esophageal squamous cell carcinoma cell proliferation by activating the Wnt signaling pathway. World J. Gastroenterol. 2017;23:7965–7977. doi: 10.3748/wjg.v23.i45.7965. PubMed DOI PMC

Zhao J., Li B., Shu C., Ma Y., Gong Y. Downregulation of miR-30a is associated with proliferation and invasion via targeting MEF2D in cervical cancer. Oncol. Lett. 2017;14:7437–7442. doi: 10.3892/ol.2017.7114. PubMed DOI PMC

Fukumoto I., Kinoshita T., Hanazawa T., Kikkawa N., Chiyomaru T., Enokida H., Yamamoto N., Goto Y., Nishikawa R., Nakagawa M., et al. Identification of tumour suppressive microRNA-451a in hypopharyngeal squamous cell carcinoma based on microRNA expression signature. Br. J. Cancer. 2014;111:386–394. doi: 10.1038/bjc.2014.293. PubMed DOI PMC

Fu J., Zhao J., Zhang H., Fan X., Geng W., Qiao S. MicroRNA-451a prevents cutaneous squamous cell carcinoma progression via the 3-phosphoinositide-dependent protein kinase-1-mediated PI3K/AKT signaling pathway. Exp. Ther. Med. 2021;21:116. doi: 10.3892/etm.2020.9548. PubMed DOI PMC

Zang W.Q., Yang X., Wang T., Wang Y.Y., Du Y.W., Chen X.N., Li M., Zhao G.Q. MiR-451 inhibits proliferation of esophageal carcinoma cell line EC9706 by targeting CDKN2D and MAP3K1. World J. Gastroenterol. 2015;21:5867–5876. doi: 10.3748/wjg.v21.i19.5867. PubMed DOI PMC

Uchida A., Seki N., Mizuno K., Yamada Y., Misono S., Sanada H., Kikkawa N., Kumamoto T., Suetsugu T., Inoue H. Regulation of KIF2A by antitumor miR-451a inhibits cancer cell aggressiveness features in lung squamous cell carcinoma. Cancers. 2019;11:258. doi: 10.3390/cancers11020258. PubMed DOI PMC

Liu Y., Liu J., Wang L., Yang X., Liu X. MicroRNA-195 inhibits cell proliferation, migration and invasion in laryngeal squamous cell carcinoma by targeting ROCK1. Mol. Med. Rep. 2017;16:7154–7162. doi: 10.3892/mmr.2017.7460. PubMed DOI

Shuang Y., Li C., Zhou X., Huang Y., Zhang L. MicroRNA-195 inhibits growth and invasion of laryngeal carcinoma cells by directly targeting DCUN1D1. Oncol. Rep. 2017;38:2155–2165. doi: 10.3892/or.2017.5875. PubMed DOI PMC

Wang N., Wei H., Yin D., Lu Y., Zhang Y., Zhang Q., Ma X., Zhang S. MicroRNA-195 inhibits proliferation of cervical cancer cells by targeting cyclin D1a. Tumor Biol. 2016;37:4711–4720. doi: 10.1007/s13277-015-4292-3. PubMed DOI

Song R., Cong L., Ni G., Chen M., Sun H., Sun Y. MicroRNA-195 inhibits the behavior of cervical cancer tumors by directly targeting HDGF. Oncol. Lett. 2017;14:767–775. doi: 10.3892/ol.2017.6210. PubMed DOI PMC

DU X., Lin L.I., Zhang L., Jiang J. MicroRNA-195 inhibits the proliferation, migration and invasion of cervical cancer cells via the inhibition of CCND2 and MYB expression. Oncol. Lett. 2015;10:2639–2643. doi: 10.3892/ol.2015.3541. PubMed DOI PMC

Hao X., Jia Q., Yuan J., Shi X., Guo H., Gao J., Guo Y. MicroRNA-195 suppresses cell proliferation, migration and invasion in epithelial ovarian carcinoma via inhibition of the CDC42/CCND1 pathway. Int. J. Mol. Med. 2020;46:1862–1872. doi: 10.3892/ijmm.2020.4716. PubMed DOI PMC

Sun N., Ye L., Chang T., Li X. MicroRNA-195-Cdc42 axis acts as a prognostic factor of esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2014;7:6871–6879. PubMed PMC

Liu W., Wang J., Meng N., Wang X., Ge D. MiR-195 inhibits proliferation of oral squamous cell carcinoma cells through regulating Smad7. Panminerva Med. 2020 doi: 10.23736/S0031-0808.20.04009-4. PubMed DOI

Zhou Q., Han L.R., Zhou Y.X., Li Y. MiR-195 suppresses cervical cancer migration and invasion through targeting Smad3. Int. J. Gynecol. Cancer. 2016;26:817–824. doi: 10.1097/IGC.0000000000000686. PubMed DOI

Liu H., Chen Y., Li Y., Li C., Qin T., Bai M., Zhang Z., Jia R., Su Y., Wang C. MiR-195 suppresses metastasis and angiogenesis of squamous cell lung cancer by inhibiting the expression of VEGF. Mol. Med. Rep. 2019;20:2625–2632. doi: 10.3892/mmr.2019.10496. PubMed DOI PMC

Liu X., Zhou Y., Ning Y.E., Gu H., Tong Y., Wang N. MiR-195-5p inhibits malignant progression of cervical cancer by targeting YAP1. Onco Targets Ther. 2020;13:931–944. doi: 10.2147/OTT.S227826. PubMed DOI PMC

Pan S.S., Zhou H.E., Yu H.Y., Xu L.H. MiR-195-5p inhibits the cell migration and invasion of cervical carcinoma through suppressing ARL2. Eur. Rev. Med. Pharmacol. Sci. 2019;23:10664–10671. doi: 10.26355/eurrev_201912_19764. PubMed DOI

Wang T., Ren Y., Liu R., Ma J., Shi Y., Zhang L., Bu R. MiR-195-5p suppresses the proliferation, migration, and invasion of oral squamous cell carcinoma by targeting TRIM14. Biomed. Res. Int. 2017;2017:7378148. doi: 10.1155/2017/7378148. PubMed DOI PMC

Jia L.F., Wei S.B., Gong K., Gan Y.H., Yu G.Y. Prognostic implications of micoRNA miR-195 expression in human tongue squamous cell carcinoma. PLoS ONE. 2013;8:e56634. doi: 10.1371/journal.pone.0056634. PubMed DOI PMC

Heberle H., Meirelles G.V., da Silva F.R., Telles G.P., Minghim R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015;16:169. doi: 10.1186/s12859-015-0611-3. PubMed DOI PMC

Iacona J.R., Lutz C.S. miR-146a-5p: Expression, regulation, and functions in cancer. Wiley Interdiscip. Rev. RNA. 2019;10:e1533. doi: 10.1002/wrna.1533. PubMed DOI

Hu Q., Song J., Ding B., Cui Y., Liang J., Han S. MiR-146a promotes cervical cancer cell viability via targeting IRAK1 and TRAF6. Oncol. Rep. 2018;39:3015–3024. doi: 10.3892/or.2018.6391. PubMed DOI

Gee H.E., Camps C., Buffa F.M., Patiar S., Winter S.C., Betts G., Homer J., Corbridge R., Cox G., West C.M., et al. hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer. 2010;116:2148–2158. doi: 10.1002/cncr.25009. PubMed DOI

Ji X., Guo H., Yin S., Du H. miR-139-5p functions as a tumor suppressor in cervical cancer by targeting TCF4 and inhibiting Wnt/β-catenin signaling. Onco Targets Ther. 2019;12:7739–7748. doi: 10.2147/OTT.S215796. PubMed DOI PMC

Wang K., Jin J., Ma T., Zhai H. MiR-139-5p inhibits the tumorigenesis and progression of oral squamous carcinoma cells by targeting HOXA9. J. Cell Mol. Med. 2017;21:3730–3740. doi: 10.1111/jcmm.13282. PubMed DOI PMC

Rasmussen C.L., Sand F.L., Hoffmann Frederiksen M., Kaae Andersen K., Kjaer S.K. Does HPV status influence survival after vulvar cancer? Int. J. Cancer. 2018;142:1158–1165. doi: 10.1002/ijc.31139. PubMed DOI

Zhang J., Zhang Y., Zhang Z. Prevalence of human papillomavirus and its prognostic value in vulvar cancer: A systematic review and meta-analysis. PLoS ONE. 2018;13:e0204162. doi: 10.1371/journal.pone.0204162. PubMed DOI PMC

Hinten F., Molijn A., Eckhardt L., Massuger L.F.A.G., Quint W., Bult P., Bulten J., Melchers W.J.G., de Hullu J.A. Vulvar cancer: Two pathways with different localization and prognosis. Gynecol. Oncol. 2018;149:310–317. doi: 10.1016/j.ygyno.2018.03.003. PubMed DOI

Williams A., Syed S., Velangi S., Ganesan R. New directions in vulvar cancer pathology. Curr. Oncol. Rep. 2019;21:88. doi: 10.1007/s11912-019-0833-z. PubMed DOI

Liu X., Cao Y., Zhang Y., Zhou H., Li H. Regulatory effect of MiR103 on proliferation, EMT and invasion of oral squamous carcinoma cell through SALL4. Eur. Rev. Med. Pharmacol. Sci. 2019;23:9931–9938. doi: 10.26355/eurrev_201911_19559. PubMed DOI

Zhou C., Li G., Zhou J., Han N., Liu Z., Yin J. MiR-107 activates ATR/Chk1 pathway and suppress cervical cancer invasion by targeting MCL1. PLoS ONE. 2014;9:e111860. doi: 10.1371/journal.pone.0111860. PubMed DOI PMC

Cui F., Li X., Zhu X., Huang L., Huang Y., Mao C., Yan Q., Zhu J., Zhao W., Shi H. MiR-125b inhibits tumor growth and promotes apoptosis of cervical cancer cells by targeting phosphoinositide 3-kinase catalytic subunit delta. Cell Physiol. BioChem. 2012;30:1310–1318. doi: 10.1159/000343320. PubMed DOI

Lu H.J., Jin P.Y., Tang Y., Fan S.H., Zhang Z.F., Wang F., Wu D.M., Lu J., Zheng Y.L. MicroRNA-136 inhibits proliferation and promotes apoptosis and radiosensitivity of cervical carcinoma through the NF-κB pathway by targeting E2F1. Life Sci. 2018;199:167–178. doi: 10.1016/j.lfs.2018.02.016. PubMed DOI

Zhang B.X., Yu T., Yu Z., Yang X.G. MicroRNA-148a regulates the MAPK/ERK signaling pathway and suppresses the development of esophagus squamous cell carcinoma via targeting MAP3K9. Eur. Rev. Med. Pharmacol. Sci. 2019;23:6497–6504. doi: 10.26355/eurrev_201908_18533. PubMed DOI

Jia T., Ren Y., Wang F., Zhao R., Qiao B., Xing L., Ou L., Guo B. MiR-148a inhibits oral squamous cell carcinoma progression through ERK/MAPK pathway via targeting IGF-IR. BioSci. Rep. 2020;40 doi: 10.1042/BSR20182458. PubMed DOI PMC

Mou Z., Xu X., Dong M., Xu J. MicroRNA-148b acts as a tumor suppressor in cervical cancer by inducing G1/S-phase cell cycle arrest and apoptosis in a caspase-3-dependent manner. Med. Sci. Monit. 2016;22:2809–2815. doi: 10.12659/MSM.896862. PubMed DOI PMC

Zhang H., Lu Y., Wang S., Sheng X., Zhang S. MicroRNA-152 acts as a tumor suppressor microRNA by inhibiting Krüppel-like factor 5 in human cervical cancer. Oncol. Res. 2019;27:335–340. doi: 10.3727/096504018X15252202178408. PubMed DOI PMC

Wang X., Li G.H. MicroRNA-16 functions as a tumor-suppressor gene in oral squamous cell carcinoma by targeting AKT3 and BCL2L2. J. Cell Physiol. 2018;233:9447–9457. doi: 10.1002/jcp.26833. PubMed DOI PMC

Wei Q., Li Y.X., Liu M., Li X., Tang H. MiR-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB Life. 2012;64:697–704. doi: 10.1002/iub.1051. PubMed DOI

Koshizuka K., Hanazawa T., Kikkawa N., Arai T., Okato A., Kurozumi A., Kato M., Katada K., Okamoto Y., Seki N. Regulation of ITGA3 by the anti-tumor miR-199 family inhibits cancer cell migration and invasion in head and neck cancer. Cancer Sci. 2017;108:1681–1692. doi: 10.1111/cas.13298. PubMed DOI PMC

Wei D., Shen B., Wang W., Zhou Y., Yang X., Lu G., Yang J., Shao Y. MicroRNA-199a-5p functions as a tumor suppressor in oral squamous cell carcinoma via targeting the IKKβ/NF-κB signaling pathway. Int. J. Mol. Med. 2019;43:1585–1596. doi: 10.3892/ijmm.2019.4083. PubMed DOI PMC

Wei D., Wang W., Shen B., Zhou Y., Yang X., Lu G., Yang J., Shao Y. MicroRNA-199a-5p suppresses migration and invasion in oral squamous cell carcinoma through inhibiting the EMT-related transcription factor SOX4. Int. J. Mol. Med. 2019;44:185–195. doi: 10.3892/ijmm.2019.4174. PubMed DOI PMC

Qu X., Gao D., Ren Q., Jiang X., Bai J., Sheng L. MiR-211 inhibits proliferation, invasion and migration of cervical cancer via targeting SPARC. Oncol. Lett. 2018;16:853–860. doi: 10.3892/ol.2018.8735. PubMed DOI PMC

Zhu L., Tu H., Liang Y., Tang D. MiR-218 produces anti-tumor effects on cervical cancer cells in vitro. World J. Surg. Oncol. 2018;16:204. doi: 10.1186/s12957-018-1506-3. PubMed DOI PMC

Liu C., Zhang Y., Liang S., Ying Y. Aldehyde dehydrogenase 1, a target of miR-222, is expressed at elevated levels in cervical cancer. Exp. Ther. Med. 2020;19:1673–1680. doi: 10.3892/etm.2020.8425. PubMed DOI PMC

Chen F., Qi S., Zhang X., Wu J., Yang X., Wang R. MiR-23a-3p suppresses cell proliferation in oral squamous cell carcinomas by targeting FGF2 and correlates with a better prognosis: miR-23a-3p inhibits OSCC growth by targeting FGF2. Pathol. Res. Pract. 2019;215:660–667. doi: 10.1016/j.prp.2018.12.021. PubMed DOI

Xu L., Chen Z., Xue F., Chen W., Ma R., Cheng S., Cui P. MicroRNA-24 inhibits growth, induces apoptosis, and reverses radioresistance in laryngeal squamous cell carcinoma by targeting X-linked inhibitor of apoptosis protein. Cancer Cell Int. 2015;15:61. doi: 10.1186/s12935-015-0217-x. PubMed DOI PMC

Guo Y., Fu W., Chen H., Shang C., Zhong M. MiR-24 functions as a tumor suppressor in Hep2 laryngeal carcinoma cells partly through down-regulation of the S100A8 protein. Oncol. Rep. 2012;27:1097–1103. doi: 10.3892/or.2011.1571. PubMed DOI PMC

Fang F., Huang B., Sun S., Xiao M., Guo J., Yi X., Cai J., Wang Z. MiR-27a inhibits cervical adenocarcinoma progression by downregulating the TGF-βRI signaling pathway. Cell Death Dis. 2018;9:395. doi: 10.1038/s41419-018-0431-2. PubMed DOI PMC

Han M., Li N., Li F., Wang H., Ma L. MiR-27b-3p exerts tumor suppressor effects in esophageal squamous cell carcinoma by targeting Nrf2. Hum. Cell. 2020;33:641–651. doi: 10.1007/s13577-020-00329-7. PubMed DOI

Xie R., Wu S.N., Gao C.C., Yang X.Z., Wang H.G., Zhang J.L., Yan W., Ma T.H. MicroRNA-30d inhibits the migration and invasion of human esophageal squamous cell carcinoma cells via the post-transcriptional regulation of enhancer of zeste homolog 2. Oncol. Rep. 2017;37:1682–1690. doi: 10.3892/or.2017.5405. PubMed DOI

Hu J., Gui Y., Xie P., Li G. MicroRNA-33a regulates the invasion of cervical cancer cells via targeting Twist1. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2015;40:1060–1067. doi: 10.11817/j.issn.1672-7347.2015.10.002. PubMed DOI

Deng Y., Xiong Y., Liu Y. MiR-376c inhibits cervical cancer cell proliferation and invasion by targeting BMI1. Int. J. Exp. Pathol. 2016;97:257–265. doi: 10.1111/iep.12177. PubMed DOI PMC

Shan D., Shang Y., Hu T. MicroRNA-411 inhibits cervical cancer progression by directly targeting STAT3. Oncol. Res. 2019;27:349–358. doi: 10.3727/096504018X15247361080118. PubMed DOI PMC

Xin J.X., Yue Z., Zhang S., Jiang Z.H., Wang P.Y., Li Y.J., Pang M., Xie S.Y. MiR-99 inhibits cervical carcinoma cell proliferation by targeting TRIB2. Oncol. Lett. 2013;6:1025–1030. doi: 10.3892/ol.2013.1473. PubMed DOI PMC

Wu T., Chen X., Peng R., Liu H., Yin P., Peng H., Zhou Y., Sun Y., Wen L., Yi H., et al. Let-7a suppresses cell proliferation via the TGF-β/SMAD signaling pathway in cervical cancer. Oncol. Rep. 2016;36:3275–3282. doi: 10.3892/or.2016.5160. PubMed DOI

Guo M., Zhao X., Yuan X., Jiang J., Li P. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in cervical cancer. Oncotarget. 2017;8:28226–28236. doi: 10.18632/oncotarget.15999. PubMed DOI PMC

Zheng S., Liu Q., Ma R., Tan D., Shen T., Zhang X., Lu X. Let-7b-5p inhibits proliferation and motility in squamous cell carcinoma cells through negative modulation of KIAA1377. Cell Biol. Int. 2019;43:634–641. doi: 10.1002/cbin.11136. PubMed DOI

Hou B., Ishinaga H., Midorikawa K., Nakamura S., Hiraku Y., Oikawa S., Ma N., Takeuchi K., Murata M. Let-7c inhibits migration and epithelial-mesenchymal transition in head and neck squamous cell carcinoma by targeting IGF1R and HMGA2. Oncotarget. 2018;9:8927–8940. doi: 10.18632/oncotarget.23826. PubMed DOI PMC

Zheng Y., Luo M., Lü M., Zhou T., Liu F., Guo X., Zhang J., Kang M. Let-7c-5p inhibits cell proliferation and migration and promotes apoptosis via the CTHRC1/AKT/ERK pathway in esophageal squamous cell carcinoma. Onco Targets Ther. 2020;13:11193–11209. doi: 10.2147/OTT.S274092. PubMed DOI PMC

Wang S., Jin S., Liu M.D., Pang P., Wu H., Qi Z.Z., Liu F.Y., Sun C.F. hsa-let-7e-5p inhibits the proliferation and metastasis of head and neck squamous cell carcinoma cells by targeting chemokine receptor 7. J. Cancer. 2019;10:1941–1948. doi: 10.7150/jca.29536. PubMed DOI PMC

Cheng Y., Guo Y., Zhang Y., You K., Li Z., Geng L. MicroRNA-106b is involved in transforming growth factor β1-induced cell migration by targeting disabled homolog 2 in cervical carcinoma. J. Exp. Clin. Cancer Res. 2016;35:11. doi: 10.1186/s13046-016-0290-6. PubMed DOI PMC

Wang M., Wang X., Liu W. MicroRNA-130a-3p promotes the proliferation and inhibits the apoptosis of cervical cancer cells via negative regulation of RUNX3. Mol. Med. Rep. 2020;22:2990–3000. doi: 10.3892/mmr.2020.11368. PubMed DOI

Li J.H., Zhang Z., Du M.Z., Guan Y.C., Yao J.N., Yu H.Y., Wang B.J., Wang X.L., Wu S.L., Li Z. MicroRNA-141-3p fosters the growth, invasion, and tumorigenesis of cervical cancer cells by targeting FOXA2. Arch. BioChem. Biophys. 2018;657:23–30. doi: 10.1016/j.abb.2018.09.008. PubMed DOI

Wang H., Hu H., Luo Z., Liu S., Wu W., Zhu M., Wang J., Liu Y., Lu Z. MiR-4454 up-regulated by HPV16 E6/E7 promotes invasion and migration by targeting ABHD2/NUDT21 in cervical cancer. BioSci. Rep. 2020;40 doi: 10.1042/BSR20200796. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace