PredictONCO: a web tool supporting decision-making in precision oncology by extending the bioinformatics predictions with advanced computing and machine learning

. 2023 Nov 22 ; 25 (1) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38066711

Grantová podpora
TEAMING-CZ.02.1.01/0.0/0.0/17_043/0009632 Czech Ministry of Education
TN02000109 Technology Agency of the Czech Republic
857560 European Union
FIT-S-23-8209 Brno University of Technology
NU20-03-00240 Czech Ministry of Health
LX22NPO5102 National Institute for Cancer Research

PredictONCO 1.0 is a unique web server that analyzes effects of mutations on proteins frequently altered in various cancer types. The server can assess the impact of mutations on the protein sequential and structural properties and apply a virtual screening to identify potential inhibitors that could be used as a highly individualized therapeutic approach, possibly based on the drug repurposing. PredictONCO integrates predictive algorithms and state-of-the-art computational tools combined with information from established databases. The user interface was carefully designed for the target specialists in precision oncology, molecular pathology, clinical genetics and clinical sciences. The tool summarizes the effect of the mutation on protein stability and function and currently covers 44 common oncological targets. The binding affinities of Food and Drug Administration/ European Medicines Agency -approved drugs with the wild-type and mutant proteins are calculated to facilitate treatment decisions. The reliability of predictions was confirmed against 108 clinically validated mutations. The server provides a fast and compact output, ideal for the often time-sensitive decision-making process in oncology. Three use cases of missense mutations, (i) K22A in cyclin-dependent kinase 4 identified in melanoma, (ii) E1197K mutation in anaplastic lymphoma kinase 4 identified in lung carcinoma and (iii) V765A mutation in epidermal growth factor receptor in a patient with congenital mismatch repair deficiency highlight how the tool can increase levels of confidence regarding the pathogenicity of the variants and identify the most effective inhibitors. The server is available at https://loschmidt.chemi.muni.cz/predictonco.

Zobrazit více v PubMed

Ferlay  J, Colombet  M, Soerjomataram  I, et al.  Cancer statistics for the year 2020: an overview. Int J Cancer  2021;149:778–89. PubMed

Sung  H, Ferlay  J, Siegel  RL, et al.  Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin  2021;71:209–49. PubMed

Dugger  SA, Platt  A, Goldstein  DB. Drug development in the era of precision medicine. Nat Rev Drug Discov  2018;17:183–96. PubMed PMC

Buzdin  A, Skvortsova  II, Li  X, Wang  Y. Editorial: next generation sequencing based diagnostic approaches in clinical oncology. Front Oncol  2021;10:1–3, 635555. 10.3389/fonc.2020.635555. PubMed DOI PMC

Webb  B, Sali  A. Protein structure modeling with MODELLER. In: Kihara  D (ed). Protein Structure Prediction, Methods in Molecular Biology. New York, NY: Springer, 2014, 1–15. 10.1007/978-1-4939-0366-5_1 PubMed DOI

Studer  G, Tauriello  G, Bienert  S, et al.  ProMod3—a versatile homology modelling toolbox. PLoS Comput Biol  2021;17:e1008667. PubMed PMC

Bendl  J, Stourac  J, Salanda  O, et al.  PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol  2014;10:e1003440. PubMed PMC

Blanco  JD, Radusky  L, Climente-González  H, Serrano  L. FoldX accurate structural protein–DNA binding prediction using PADA1 (protein assisted DNA assembly 1). Nucleic Acids Res  2018;46:3852–63. PubMed PMC

Kellogg  EH, Leaver-Fay  A, Baker  D. Role of conformational sampling in computing mutation‐induced changes in protein structure and stability. Proteins  2011;79:830–8. PubMed PMC

Stourac  J, Vavra  O, Kokkonen  P, et al.  Caver web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res  2019;47:W414–22. PubMed PMC

Trott  O, Olson  AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem  2010;31:455–61. PubMed PMC

The UniProt Consortium . UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res  2021;49:D480–9. PubMed PMC

wwPDB consortium . Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res  2019;47:D520–8. PubMed PMC

Dana  JM, Gutmanas  A, Tyagi  N, et al.  SIFTS: updated structure integration with function, taxonomy and sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins. Nucleic Acids Res  2019;47:D482–9. PubMed PMC

Varadi  M, Anyango  S, Deshpande  M, et al.  AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res  2022;50:D439–44. PubMed PMC

Waterhouse  A, Bertoni  M, Bienert  S, et al.  SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res  2018;46:W296–303. PubMed PMC

Suzek  BE, Wang  Y, Huang  H, et al.  UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics  2015;31:926–32. PubMed PMC

Sievers  F, Wilm  A, Dineen  D, et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol  2011;7:539. PubMed PMC

Madeira  F, Pearce  M, Tivey  ARN, et al.  Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res  2022;50:W276–9. PubMed PMC

Capra  JA, Singh  M. Predicting functionally important residues from sequence conservation. Bioinformatics  2007;23:1875–82. PubMed

Sumbalova  L, Stourac  J, Martinek  T, et al.  HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res  2018;46:W356–62. PubMed PMC

Schymkowitz  J, Borg  J, Stricher  F, et al.  The FoldX web server: an online force field. Nucleic Acids Res  2005;33:W382–8. PubMed PMC

Olsson  MHM, Søndergaard  CR, Rostkowski  M, Jensen  JH. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput  2011;7:525–37. PubMed

Krivák  R, Hoksza  D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J Chem  2018;10:39. PubMed PMC

Sterling  T, Irwin  JJ. ZINC 15 – ligand discovery for everyone. J Chem Inf Model  2015;55:2324–37. PubMed PMC

Stone  EA, Sidow  A. Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genome Res  2005;15:978–86. PubMed PMC

Capriotti  E, Calabrese  R, Casadio  R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics  2006;22:2729–34. PubMed

Ramensky  V, Bork  P, Sunyaev  S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res  2002;30:3894–900. PubMed PMC

Adzhubei  IA, Schmidt  S, Peshkin  L, et al.  A method and server for predicting damaging missense mutations. Nat Methods  2010;7:248–9. PubMed PMC

Ng  PC, Henikoff  S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res  2003;31:3812–4. PubMed PMC

Bromberg  Y, Rost  B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res  2007;35:3823–35. PubMed PMC

Venselaar  H, te  Beek  TA, Kuipers  RK, et al.  Protein structure analysis of mutations causing inheritable diseases. An e-science approach with life scientist friendly interfaces. BMC Bioinformatics  2010;11:548. PubMed PMC

Landrum  MJ, Chitipiralla  S, Brown  GR, et al.  ClinVar: improvements to accessing data. Nucleic Acids Res  2020;48:D835–44. PubMed PMC

Chakravarty  D, Gao  J, Phillips  S, et al.  OncoKB: a precision Oncology Knowledge Base. JCO Precis Oncol  2017;1:1–16. 10.1200/PO.17.00011. PubMed DOI PMC

Patterson  SE, Liu  R, Statz  CM, et al.  The clinical trial landscape in oncology and connectivity of somatic mutational profiles to targeted therapies. Hum Genomics  2016;10:4. PubMed PMC

Kurnit  KC, Bailey  AM, Zeng  J, et al.  “Personalized cancer therapy”: a publicly available precision oncology resource. Cancer Res  2017;77:e123–6. PubMed PMC

Gao  J, Aksoy  BA, Dogrusoz  U, et al.  Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal  2013;6:pl1. PubMed PMC

Ainscough  BJ, Griffith  M, Coffman  AC, et al.  DoCM: a database of curated mutations in cancer. Nat Methods  2016;13:806–7. PubMed PMC

Brandes  N, Goldman  G, Wang  CH, et al.  Genome-wide prediction of disease variant effects with a deep protein language model. Nat Genet  2023;55:1512–22. PubMed PMC

Sehnal  D, Bittrich  S, Deshpande  M, et al.  Mol* viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res  2021;49:W431–7. PubMed PMC

Kato  JY, Matsuoka  M, Strom  DK, Sherr  CJ. Regulation of cyclin D-dependent kinase 4 (cdk4) by cdk4-activating kinase. Mol Cell Biol  1994;14:2713–21. PubMed PMC

Baker  SJ, Reddy  EP. CDK4: a key player in the cell cycle, development, and cancer. Genes Cancer  2012;3:658–69. PubMed PMC

Wölfel  T, Hauer  M, Schneider  J, et al.  A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science  1995;269:1281–4. PubMed

Guldberg  P, Kirkin  AF, Grønbæk  K, et al.  Complete scanning of the CDK4 gene by denaturing gradient gel electrophoresis: a novel missense mutation but low overall frequency of mutations in sporadic metastatic malignant melanoma. Int J Cancer  1997;72:780–3. PubMed

Soufir  N, Avril  M-F, Chompret  A, et al.  Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. Hum Mol Genet  1998;7:209–16. PubMed

Coleman  KG, Wautlet  BS, Morrissey  D, et al.  Identification of CDK4 sequences involved in cyclin D1 and p16 binding*. J Biol Chem  1997;272:18869–74. PubMed

Byeon  I-JL, Li  J, Ericson  K, et al.  Tumor suppressor p16INK4A: determination of solution structure and analyses of its interaction with cyclin-dependent kinase 4. Mol Cell  1998;1:421–31. PubMed

Campbell  BB, Light  N, Fabrizio  D, et al.  Comprehensive analysis of hypermutation in human cancer. Cell  2017;171:1042–1056.e10. PubMed PMC

Westdorp  H, Kolders  S, Hoogerbrugge  N, et al.  Immunotherapy holds the key to cancer treatment and prevention in constitutional mismatch repair deficiency (CMMRD) syndrome. Cancer Lett  2017;403:159–64. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace