PredictONCO: a web tool supporting decision-making in precision oncology by extending the bioinformatics predictions with advanced computing and machine learning
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
TEAMING-CZ.02.1.01/0.0/0.0/17_043/0009632
Czech Ministry of Education
TN02000109
Technology Agency of the Czech Republic
857560
European Union
FIT-S-23-8209
Brno University of Technology
NU20-03-00240
Czech Ministry of Health
LX22NPO5102
National Institute for Cancer Research
PubMed
38066711
PubMed Central
PMC10709543
DOI
10.1093/bib/bbad441
PII: 7463300
Knihovny.cz E-zdroje
- Klíčová slova
- cancer, oncology, personalized medicine, single-nucleotide polymorphism, targeted therapy,
- MeSH
- individualizovaná medicína * MeSH
- lidé MeSH
- melanom * MeSH
- mutace MeSH
- proteiny MeSH
- reprodukovatelnost výsledků MeSH
- strojové učení MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny MeSH
PredictONCO 1.0 is a unique web server that analyzes effects of mutations on proteins frequently altered in various cancer types. The server can assess the impact of mutations on the protein sequential and structural properties and apply a virtual screening to identify potential inhibitors that could be used as a highly individualized therapeutic approach, possibly based on the drug repurposing. PredictONCO integrates predictive algorithms and state-of-the-art computational tools combined with information from established databases. The user interface was carefully designed for the target specialists in precision oncology, molecular pathology, clinical genetics and clinical sciences. The tool summarizes the effect of the mutation on protein stability and function and currently covers 44 common oncological targets. The binding affinities of Food and Drug Administration/ European Medicines Agency -approved drugs with the wild-type and mutant proteins are calculated to facilitate treatment decisions. The reliability of predictions was confirmed against 108 clinically validated mutations. The server provides a fast and compact output, ideal for the often time-sensitive decision-making process in oncology. Three use cases of missense mutations, (i) K22A in cyclin-dependent kinase 4 identified in melanoma, (ii) E1197K mutation in anaplastic lymphoma kinase 4 identified in lung carcinoma and (iii) V765A mutation in epidermal growth factor receptor in a patient with congenital mismatch repair deficiency highlight how the tool can increase levels of confidence regarding the pathogenicity of the variants and identify the most effective inhibitors. The server is available at https://loschmidt.chemi.muni.cz/predictonco.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Loschmidt Laboratories RECETOX Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. Int J Cancer 2021;149:778–89. PubMed
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–49. PubMed
Dugger SA, Platt A, Goldstein DB. Drug development in the era of precision medicine. Nat Rev Drug Discov 2018;17:183–96. PubMed PMC
Buzdin A, Skvortsova II, Li X, Wang Y. Editorial: next generation sequencing based diagnostic approaches in clinical oncology. Front Oncol 2021;10:1–3, 635555. 10.3389/fonc.2020.635555. PubMed DOI PMC
Webb B, Sali A. Protein structure modeling with MODELLER. In: Kihara D (ed). Protein Structure Prediction, Methods in Molecular Biology. New York, NY: Springer, 2014, 1–15. 10.1007/978-1-4939-0366-5_1 PubMed DOI
Studer G, Tauriello G, Bienert S, et al. ProMod3—a versatile homology modelling toolbox. PLoS Comput Biol 2021;17:e1008667. PubMed PMC
Bendl J, Stourac J, Salanda O, et al. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol 2014;10:e1003440. PubMed PMC
Blanco JD, Radusky L, Climente-González H, Serrano L. FoldX accurate structural protein–DNA binding prediction using PADA1 (protein assisted DNA assembly 1). Nucleic Acids Res 2018;46:3852–63. PubMed PMC
Kellogg EH, Leaver-Fay A, Baker D. Role of conformational sampling in computing mutation‐induced changes in protein structure and stability. Proteins 2011;79:830–8. PubMed PMC
Stourac J, Vavra O, Kokkonen P, et al. Caver web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res 2019;47:W414–22. PubMed PMC
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455–61. PubMed PMC
The UniProt Consortium . UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 2021;49:D480–9. PubMed PMC
wwPDB consortium . Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res 2019;47:D520–8. PubMed PMC
Dana JM, Gutmanas A, Tyagi N, et al. SIFTS: updated structure integration with function, taxonomy and sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins. Nucleic Acids Res 2019;47:D482–9. PubMed PMC
Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022;50:D439–44. PubMed PMC
Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018;46:W296–303. PubMed PMC
Suzek BE, Wang Y, Huang H, et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 2015;31:926–32. PubMed PMC
Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 2011;7:539. PubMed PMC
Madeira F, Pearce M, Tivey ARN, et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 2022;50:W276–9. PubMed PMC
Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics 2007;23:1875–82. PubMed
Sumbalova L, Stourac J, Martinek T, et al. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res 2018;46:W356–62. PubMed PMC
Schymkowitz J, Borg J, Stricher F, et al. The FoldX web server: an online force field. Nucleic Acids Res 2005;33:W382–8. PubMed PMC
Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 2011;7:525–37. PubMed
Krivák R, Hoksza D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J Chem 2018;10:39. PubMed PMC
Sterling T, Irwin JJ. ZINC 15 – ligand discovery for everyone. J Chem Inf Model 2015;55:2324–37. PubMed PMC
Stone EA, Sidow A. Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genome Res 2005;15:978–86. PubMed PMC
Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 2006;22:2729–34. PubMed
Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002;30:3894–900. PubMed PMC
Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010;7:248–9. PubMed PMC
Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 2003;31:3812–4. PubMed PMC
Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 2007;35:3823–35. PubMed PMC
Venselaar H, te Beek TA, Kuipers RK, et al. Protein structure analysis of mutations causing inheritable diseases. An e-science approach with life scientist friendly interfaces. BMC Bioinformatics 2010;11:548. PubMed PMC
Landrum MJ, Chitipiralla S, Brown GR, et al. ClinVar: improvements to accessing data. Nucleic Acids Res 2020;48:D835–44. PubMed PMC
Chakravarty D, Gao J, Phillips S, et al. OncoKB: a precision Oncology Knowledge Base. JCO Precis Oncol 2017;1:1–16. 10.1200/PO.17.00011. PubMed DOI PMC
Patterson SE, Liu R, Statz CM, et al. The clinical trial landscape in oncology and connectivity of somatic mutational profiles to targeted therapies. Hum Genomics 2016;10:4. PubMed PMC
Kurnit KC, Bailey AM, Zeng J, et al. “Personalized cancer therapy”: a publicly available precision oncology resource. Cancer Res 2017;77:e123–6. PubMed PMC
Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013;6:pl1. PubMed PMC
Ainscough BJ, Griffith M, Coffman AC, et al. DoCM: a database of curated mutations in cancer. Nat Methods 2016;13:806–7. PubMed PMC
Brandes N, Goldman G, Wang CH, et al. Genome-wide prediction of disease variant effects with a deep protein language model. Nat Genet 2023;55:1512–22. PubMed PMC
Sehnal D, Bittrich S, Deshpande M, et al. Mol* viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res 2021;49:W431–7. PubMed PMC
Kato JY, Matsuoka M, Strom DK, Sherr CJ. Regulation of cyclin D-dependent kinase 4 (cdk4) by cdk4-activating kinase. Mol Cell Biol 1994;14:2713–21. PubMed PMC
Baker SJ, Reddy EP. CDK4: a key player in the cell cycle, development, and cancer. Genes Cancer 2012;3:658–69. PubMed PMC
Wölfel T, Hauer M, Schneider J, et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995;269:1281–4. PubMed
Guldberg P, Kirkin AF, Grønbæk K, et al. Complete scanning of the CDK4 gene by denaturing gradient gel electrophoresis: a novel missense mutation but low overall frequency of mutations in sporadic metastatic malignant melanoma. Int J Cancer 1997;72:780–3. PubMed
Soufir N, Avril M-F, Chompret A, et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. Hum Mol Genet 1998;7:209–16. PubMed
Coleman KG, Wautlet BS, Morrissey D, et al. Identification of CDK4 sequences involved in cyclin D1 and p16 binding*. J Biol Chem 1997;272:18869–74. PubMed
Byeon I-JL, Li J, Ericson K, et al. Tumor suppressor p16INK4A: determination of solution structure and analyses of its interaction with cyclin-dependent kinase 4. Mol Cell 1998;1:421–31. PubMed
Campbell BB, Light N, Fabrizio D, et al. Comprehensive analysis of hypermutation in human cancer. Cell 2017;171:1042–1056.e10. PubMed PMC
Westdorp H, Kolders S, Hoogerbrugge N, et al. Immunotherapy holds the key to cancer treatment and prevention in constitutional mismatch repair deficiency (CMMRD) syndrome. Cancer Lett 2017;403:159–64. PubMed