Analysis of mutations in precision oncology using the automated, accurate, and user-friendly web tool PredictONCO

. 2024 Dec ; 24 () : 734-738. [epub] 20241114

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39687752
Odkazy

PubMed 39687752
PubMed Central PMC11647622
DOI 10.1016/j.csbj.2024.11.026
PII: S2001-0370(24)00398-2
Knihovny.cz E-zdroje

Next-generation sequencing technology has created many new opportunities for clinical diagnostics, but it faces the challenge of functional annotation of identified mutations. Various algorithms have been developed to predict the impact of missense variants that influence oncogenic drivers. However, computational pipelines that handle biological data must integrate multiple software tools, which can add complexity and hinder non-specialist users from accessing the pipeline. Here, we have developed an online user-friendly web server tool PredictONCO that is fully automated and has a low barrier to access. The tool models the structure of the mutant protein in the first step. Next, it calculates the protein stability change, pocket level information, evolutionary conservation, and changes in ionisation of catalytic amino acid residues, and uses them as the features in the machine-learning predictor. The XGBoost-based predictor was validated on an independent subset of held-out data, demonstrating areas under the receiver operating characteristic curve (ROC) of 0.97 and 0.94, and the average precision from the precision-recall curve of 0.99 and 0.94 for structure-based and sequence-based predictions, respectively. Finally, PredictONCO calculates the docking results of small molecules approved by regulatory authorities. We demonstrate the applicability of the tool by presenting its usage for variants in two cancer-associated proteins, cellular tumour antigen p53 and fibroblast growth factor receptor FGFR1. Our free web tool will assist with the interpretation of data from next-generation sequencing and navigate treatment strategies in clinical oncology: https://loschmidt.chemi.muni.cz/predictonco/.

Zobrazit více v PubMed

Azuaje F. Artificial intelligence for precision oncology: beyond patient stratification. Precis Oncol. 2019;3(1):6. doi: 10.1038/s41698-019-0078-1. PubMed DOI PMC

Morash M., et al. The role of next-generation sequencing in precision medicine: a review of outcomes in oncology. J Pers Med. 2018;8(3):30. doi: 10.3390/jpm8030030. PubMed DOI PMC

Alkuraya F.S. Discovery of mutations for Mendelian disorders. Hum Genet. 2016;135:615–623. doi: 10.1007/s00439-016-1664-8. PubMed DOI

Khan R.T., et al. A computational workflow for analysis of missense mutations in precision oncology. J Chemin- 2024;16:86. doi: 10.1186/s13321-024-00876-3. PubMed DOI PMC

Schymkowitz J., et al. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33(_2):W382–W388. doi: 10.1093/nar/gki387. PubMed DOI PMC

Kellogg E.H., Leaver‐Fay A., Baker D. Role of conformational sampling in computing mutation‐induced changes in protein structure and stability. Protein: Struct, Funct, Bioinforma. 2011;79(3):830–838. doi: 10.1002/prot.22921. PubMed DOI PMC

Krivák R., Hoksza D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J Chemin- 2018;10:1–12. doi: 10.1186/s13321-018-0285-8. PubMed DOI PMC

Ribeiro A.J.M., et al. Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites. Nucleic Acids Res. 2019;46(D1):D618–D623. doi: 10.1093/nar/gkx1012. PubMed DOI PMC

The UniProt Consortium, UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Research, 51(D1), (2023) D523–D531. https://doi.org/10.1093/nar/gkac1052. PubMed PMC

Olsson M.H.M., et al. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput. 2011;7(2):525–537. doi: 10.1021/ct100578z. PubMed DOI

Landrum M.J., et al. ClinVar: improvements to accessing data. Nucleic Acids Res. 2020;48:D835–D844. doi: 10.1093/nar/gkz972. PubMed DOI PMC

Chakravarty D., et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017;(1):1–16. doi: 10.1200/PO.17.00011. PubMed DOI PMC

Patterson S.E., et al. The clinical trial landscape in oncology and connectivity of somatic mutational profiles to targeted therapies. Hum Genom. 2016;10:4. doi: 10.1186/s40246-016-0061-7. PubMed DOI PMC

Kurnit K.C., et al. Personalised cancer therapy”: a publicly available precision oncology resource. Cancer Res. 2017;77:e123–e126. doi: 10.1158/0008-5472.CAN-17-0341. PubMed DOI PMC

Gao, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6 doi: 10.1126/scisignal.2004088. PubMed DOI PMC

Ainscough B.J., et al. DoCM: a database of curated mutations in cancer. Nat Methods. 2016;13:806–807. doi: 10.1038/nmeth.4000. PubMed DOI PMC

Trott O., Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Venselaar H., et al. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinforma. 2010;11(1):1–10. doi: 10.1186/1471-2105-11-548. PubMed DOI PMC

Bendl J., et al. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol. 2018;10(1) doi: 10.1371/journal.pcbi.1003440. PubMed DOI PMC

Stourac J., et al. PredictONCO: a web tool supporting decision-making in precision oncology by extending the bioinformatics predictions with advanced computing and machine learning. Brief Bioinforma. 2023;25(1) doi: 10.1093/bib/bbad441. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...