The Effect of Latent Toxoplasma gondii Infection on the Immune Response in HIV-Infected Patients
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu klinické zkoušky, časopisecké články, práce podpořená grantem
PubMed
26247013
PubMed Central
PMC4515273
DOI
10.1155/2015/271842
Knihovny.cz E-zdroje
- MeSH
- cytokiny imunologie MeSH
- dospělí MeSH
- HIV infekce imunologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- lymfocyty imunologie MeSH
- oportunní infekce doprovázející AIDS imunologie MeSH
- přirozená imunita imunologie MeSH
- toxoplazmóza imunologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
A relationship between latent toxoplasmosis and the immune system during HIV disease is poorly understood. Therefore, the aim of this follow-up study was to characterize immunological parameters in HIV-infected patients with latent toxoplasmosis and noninfected individuals. A total of 101 HIV-infected patients were enrolled in the study. The patients were classified into two groups based on anti-Toxoplasma gondii antibodies: a group of 55 toxoplasma-positive persons (TP) and a group of 46 toxoplasma-negative persons (TN). Absolute counts of several lymphocyte subsets decreased in the TP group, namely, T cells (p = 0.007), B cells (p = 0.002), NK cells (p = 0.009), CD4 T cells (p = 0.028), and CD8 T cells (p = 0.004). On the other hand, the percentage of CD8 T cells expressing CD38 and HLA-DR significantly increased during the follow-up in the TP group (p = 0.003, p = 0.042, resp.) as well as the intensity of CD38 and HLA-DR expression (MFI) on CD8 T cells (p = 0.001, p = 0.057, resp.). In the TN group, analysis of the kinetics of immunological parameters revealed no significant changes over time. In conclusion, the results suggest that latent T. gondii infection modulates the immune response during HIV infection.
Zobrazit více v PubMed
Kodym P., Malý M., Beran O., et al. Incidence, immunological and clinical characteristics of reactivation of latent Toxoplasma gondii infection in HIV-infected patients. Epidemiology and Infection. 2015;143(3):600–607. doi: 10.1017/S0950268814001253. PubMed DOI PMC
Bachmeyer C., Mouchnino G., Thulliez P., Blum L. Congenital toxoplasmosis from an HIV-infected woman as a result of reactivation. The Journal of Infection. 2006;52(2):e55–e57. doi: 10.1016/j.jinf.2005.05.004. PubMed DOI
Meers S., Lagrou K., Theunissen K., et al. Myeloablative conditioning predisposes patients for toxoplasma gondii reactivation after allogeneic stem cell transplantation. Clinical Infectious Diseases. 2010;50(8):1127–1134. doi: 10.1086/651266. PubMed DOI
Abgrall S., Rabaud C., Costagliola D., Clinical Epidemiology Group of the French Hospital Database on HIV Incidence and risk factors for toxoplasmic encephalitis in human immunodeficiency virus-infected patients before and during the highly active antiretroviral therapy era. Clinical Infectious Diseases. 2001;33(10):1747–1755. doi: 10.1086/322622. PubMed DOI
Israelski D. M., Chmiel J. S., Poggensee L., Phair J. P., Remington J. S. Prevalence of Toxoplasma infection in a cohort of homosexual men at risk of AIDS and toxoplasmic encephalitis. Journal of Acquired Immune Deficiency Syndromes. 1993;6(4):414–418. PubMed
Dupont C. D., Christian D. A., Hunter C. A. Immune response and immunopathology during toxoplasmosis. Seminars in Immunopathology. 2012;34(6):793–813. doi: 10.1007/s00281-012-0339-3. PubMed DOI PMC
Miman O., Kusbeci O. Y., Aktepe O. C., Cetinkaya Z. The probable relation between Toxoplasma gondii and Parkinson's disease. Neuroscience Letters. 2010;475(3):129–131. doi: 10.1016/j.neulet.2010.03.057. PubMed DOI
Flegr J. Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma-human model in studying the manipulation hypothesis. The Journal of Experimental Biology. 2013;216, part 1:127–133. doi: 10.1242/jeb.073635. PubMed DOI
Flegr J., Zitková Š., Kodym P., Frynta D. Induction of changes in human behaviour by the parasitic protozoan Toxoplasma gondii . Parasitology. 1996;113(1):49–54. doi: 10.1017/s0031182000066269. PubMed DOI
Lindová J., Novotná M., Havlíček J., et al. Gender differences in behavioural changes induced by latent toxoplasmosis. International Journal for Parasitology. 2006;36(14):1485–1492. doi: 10.1016/j.ijpara.2006.07.008. PubMed DOI
Shapira Y., Agmon-Levin N., Selmi C., et al. Prevalence of anti-toxoplasma antibodies in patients with autoimmune diseases. Journal of Autoimmunity. 2012;39(1-2):112–116. doi: 10.1016/j.jaut.2012.01.001. PubMed DOI
Kaňková Š., Procházková L., Flegr J., Calda P., Springer D., Potluková E. Effects of latent toxoplasmosis on autoimmune thyroid diseases in pregnancy. PLoS ONE. 2014;9(10) doi: 10.1371/journal.pone.0110878.e110878 PubMed DOI PMC
Kaňková Š., Holáň V., Zajícová A., Kodym P., Flegr J. Modulation of immunity in mice with latent toxoplasmosis—the experimental support for the immunosuppression hypothesis of Toxoplasma-induced changes in reproduction of mice and humans. Parasitology Research. 2010;107(6):1421–1427. doi: 10.1007/s00436-010-2013-9. PubMed DOI
Flegr J., Stříž I. Potential immunomodulatory effects of latent toxoplasmosis in humans. BMC Infectious Diseases. 2011;11, article 274 doi: 10.1186/1471-2334-11-274. PubMed DOI PMC
Castro K. G., Ward J. W., Slutsker L., et al. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. Morbidity and Mortality Weekly Report. Recommendations and Reports. 1992;41(17):1–19. PubMed
Bartovská Z., Beran O., Rozsypal H., Holub M. Antiretroviral treatment of HIV infection does not influence HIV-specific immunity but has an impact on non-specific immune activation. Current HIV Research. 2011;9(2):88–94. doi: 10.2174/157016211795569078. PubMed DOI
Kodym P., Machala L., Roháčová H., Širocká B., Malý M. Evaluation of a commercial IgE ELISA in comparison with IgA and IgM ELISAs, IgG avidity assay and complement fixation for the diagnosis of acute toxoplasmosis. Clinical Microbiology and Infection. 2007;13(1):40–47. doi: 10.1111/j.1469-0691.2006.01564.x. PubMed DOI
Machala L., Malý M., Hrdá Š., Rozsypal H., Staňková M., Kodym P. Antibody response of HIV-infected patients to latent, cerebral and recently acquired toxoplasmosis. European Journal of Clinical Microbiology & Infectious Diseases. 2009;28(2):179–182. doi: 10.1007/s10096-008-0600-9. PubMed DOI
Lejeune M., Miró J. M., Lazzari E. D., et al. Restoration of T cell responses to Toxoplasma gondii after successful combined antiretroviral therapy in patients with AIDS with previous toxoplasmic encephalitis. Clinical Infectious Diseases. 2011;52(5):662–670. doi: 10.1093/cid/ciq197. PubMed DOI
Connors M., Kovacs J. A., Krevat S., et al. HIV infection induces changes in CD4+ T-cell phenotype and depletions within the CD4+ T-cell repertoire that are not immediately restored by antiviral or immune-based therapies. Nature Medicine. 1997;3(5):533–540. doi: 10.1038/nm0597-533. PubMed DOI
Lange C. G., Valdez H., Medvik K., Asaad R., Lederman M. M. CD4+ T-lymphocyte nadir and the effect of highly active antiretroviral therapy on phenotypic and functional immune restoration in HIV-1 infection. Clinical Immunology. 2002;102(2):154–161. doi: 10.1006/clim.2001.5164. PubMed DOI
Luft B. J., Brooks R. G., Conley F. K., McCabe R. E., Remington J. S. Toxoplasmic encephalitis in patients with acquired immune deficiency syndrome. The Journal of the American Medical Association. 1984;252(7):913–917. doi: 10.1001/jama.252.7.913. PubMed DOI
Denkers E. Y., Gazzinelli R. T. Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clinical Microbiology Reviews. 1998;11(4):569–588. PubMed PMC
Bhadra R., Khan I. A. Redefining chronic toxoplasmosis—a T cell exhaustion perspective. PLoS Pathogens. 2012;8(10) doi: 10.1371/journal.ppat.1002903.e1002903 PubMed DOI PMC
Khan I. A., Green W. R., Kasper L. H., Green K. A., Schwartzman J. D. Immune CD8+ T cells prevent reactivation of Toxoplasma gondii infection in the immunocompromised host. Infection and Immunity. 1999;67(11):5869–5876. PubMed PMC
Gazzinelli R. T., Hakim F. T., Hieny S., Shearer G. M., Sher A. Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. The Journal of Immunology. 1991;146(1):286–292. PubMed
Liu Z., Cumberland W. G., Hultin L. E., Prince H. E., Detels R., Giorgi J. V. Elevated CD38 antigen expression on CD8+ T cells is a stronger marker for the risk of chronic HIV disease progression to AIDS and death in the multicenter AIDS cohort study than CD4+ cell count, soluble immune activation markers, or combinations of HLA-DR and CD38 expression. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology. 1997;16(2):83–92. doi: 10.1097/00042560-199710010-00003. PubMed DOI
Beran O., Holub M., Špála J., Kalanin J., Staňková M. CD38 expression on CD8+ T cells in human immunodeficiency virus 1-positive adults treated with HAART. Acta Virologica. 2003;47(2):121–124. PubMed