Improving the Colloidal Stability of Temperature-Sensitive Poly(N-isopropylacrylamide) Solutions Using Low Molecular Weight Hydrophobic Additives

. 2018 Sep 30 ; 3 (9) : 11865-11873. [epub] 20180925

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31459272

Poly(N-isopropylacrylamide) (PNIPAM) is an important polymer with stimuli-responsive properties, making it suitable for various uses. Phase behavior of the temperature-sensitive PNIPAM polymer in the presence of four low-molecular weight additives tert-butylamine (t-BuAM), tert-butyl alcohol (t-BuOH), tert-butyl methyl ether (t-BuME), and tert-butyl methyl ketone (t-BuMK) was studied in water (D2O) using high-resolution nuclear magnetic resonance (NMR) spectroscopy and dynamic light scattering. Phase separation was thermodynamically modeled as a two-state process which resulted in a simple curve which can be used for fitting of NMR data and obtaining all important thermodynamic parameters using simple formulas presented in this paper. The model is based on a modified van't Hoff equation. Phase separation temperatures T p and thermodynamic parameters (enthalpy and entropy change) connected with the phase separation of PNIPAM were obtained using this method. It was determined that T p is dependent on additives in the following order: T p(t-BuAM) > T p(t-BuOH) > T p(t-BuME) > T p(t-BuMK). Also, either increasing the additive concentration or increasing pK a of the additive leads to depression of T p. Time-resolved 1H NMR spin-spin relaxation experiments (T 2) performed above the phase separation temperature of PNIPAM revealed high colloidal stability of the phase-separated polymer induced by the additives (relative to the neat PNIPAM/D2O system). Small quantities of selected suitable additives can be used to optimize the properties of PNIPAM preparations including their phase separation temperatures, colloidal stabilities, and morphologies, thus improving the prospects for the application.

Zobrazit více v PubMed

Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Delivery Rev. 2006, 58, 1655–1670. 10.1016/j.addr.2006.09.020. PubMed DOI

Alarcón C. d. l. H.; Pennadam S.; Alexander C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 2005, 34, 276–285. 10.1039/b406727d. PubMed DOI

Cheng H.; Shen L.; Wu C. LLS and FTIR studies on the hysteresis in association and dissociation of poly( DOI

Aseyev V. O.; Tenhu H.; Winnik F. M. Temperature dependence of the colloidal stability of neutral amphiphilic polymers in water. Adv. Polym. Sci. 2006, 196, 1–85. 10.1007/12_052. DOI

Jochum F. D.; Theato P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468–7483. 10.1039/c2cs35191a. PubMed DOI

Jeong B.; Gutowska A. Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol. 2002, 20, 305–311. 10.1016/s0167-7799(02)01962-5. PubMed DOI

Ward M. A.; Georgiou T. K. Thermoresponsive polymers for biomedical applications. Polymers 2011, 3, 1215–1242. 10.3390/polym3031215. DOI

Liu R.; Fraylich M.; Saunders B. R. Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym. Sci. 2009, 287, 627–643. 10.1007/s00396-009-2028-x. DOI

Spěváček J.; Starovoytova L.; Hanyková L.; Kouřilová H. Polymer-solvent interactions in solutions of thermoresponsive polymers studied by NMR and IR spectroscopy. Macromol. Symp. 2008, 273, 17–24. 10.1002/masy.200851303. DOI

Starovoytova L.; Spěváček J. Effect of time on the hydration and temperature-induced phase separation in aqueous polymer solutions. 1H NMR study. Polymer 2006, 47, 7329–7334. 10.1016/j.polymer.2006.08.002. DOI

Spěváček J.; Dybal J. Stimuli-responsive polymers in solution investigated by NMR and infrared spectroscopy. Macromol. Symp. 2011, 303, 17–25. 10.1002/masy.201150503. DOI

Spěváček J.; Dybal J.; Starovoytova L.; Zhigunov A.; Sedláková Z. Temperature-induced phase separation and hydration in poly( DOI

Spěváček J.; Hanyková L.; Labuta J. Behavior of water during temperature-induced phase separation in poly(vinyl methyl ether) aqueous solutions. NMR and optical microscopy study. Macromolecules 2011, 7, 2149–2153. 10.1021/ma200010h. DOI

Kouřilová H.; Št’astná J.; Hanyková L.; Sedláková Z.; Spěváček J. DOI

Kouřilová H.; Spěváček J.; Hanyková L. DOI

Kouřilová H.; Hanyková L.; Spěváček J. NMR study of phase separation in D DOI

Fujishige S.; Kubota K.; Ando I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J. Phys. Chem. 1989, 93, 3311–3313. 10.1021/j100345a085. DOI

Aseyev V.; Hietala S.; Laukkanen A.; Nuopponen M.; Confortini O.; Du Prez F. E.; Tenhu H. Mesoglobules of thermoresponsive polymers in dilute aqueous solutions above the LCST. Polymer 2005, 46, 7118–7131. 10.1016/j.polymer.2005.05.097. DOI

Heskins M.; Guillet J. E. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci., Part A: Pure Appl. Chem. 1968, 2, 1441–1455. 10.1080/10601326808051910. DOI

Monerris M.; Broglia M.; Yslas I.; Barbero C.; Rivarola C. Antibacterial polymeric nanocomposites synthesized by DOI

Brun-Graeppi A. K. A. S.; Richard C.; Bessodes M.; Scherman D.; Merten O.-W. Thermoresponsive surfaces for cell culture and enzyme-free cell detachment. Prog. Polym. Sci. 2010, 35, 1311–1324. 10.1016/j.progpolymsci.2010.07.007. DOI

Halperin A.; Kröger M.; Winnik F. M. Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research. Angew. Chem., Int. Ed. 2015, 54, 15342–15367. 10.1002/anie.201506663. PubMed DOI

Hofmann C. H.; Schönhoff M. Dynamics and distribution of aromatic model drugs in the phase transition of thermoreversible poly( DOI

Jadhav S. A.; Scalarone D.; Brunella V.; Ugazio E.; Sapino S.; Berlier G. Thermoresponsive copolymer-grafted SBA-15 porous silica particles for temperature-triggered topical delivery systems. eXPRESS Polym. Lett. 2017, 11, 96–105. 10.3144/expresspolymlett.2017.11. DOI

Wang Y. M.; Zheng S. X.; Chang H. I.; Tsai H. Y.; Liang M. Microwave-assisted synthesis of thermo- and pH-responsive antitumor drug carrier through reversible addition-fragmentation chain transfer polymerization. eXPRESS Polym. Lett. 2017, 11, 293–307. 10.3144/expresspolymlett.2017.29. DOI

Gandhi A.; Paul A.; Sen S. O.; Sen K. K. Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian J. Pharm. Sci. 2015, 10, 99–107. 10.1016/j.ajps.2014.08.010. DOI

Filippov S. K.; Bogomolova A.; Kaberov L.; Velychkivska N.; Starovoytova L.; Cernochova Z.; Rogers S. E.; Lau W. M.; Khutoryanskiy V. V.; Cook M. T. Internal nanoparticle structure of temperature-responsive self-assembled PNIPAM- PubMed DOI

Starovoytova L.; Spěváček J.; Trchová M. 1H NMR and IR study of temperature-induced phase transition of negatively charged poly(N-isopropylmethacrylamide-co-sodium methacrylate) copolymers in aqueous solutions. Eur. Polym. J. 2007, 43, 5001–5009. 10.1016/j.eurpolymj.2007.09.002. DOI

Philipp M.; Aleksandrova R.; Müller U.; Ostermeyer M.; Sanctuary R.; Müller-Buschbaum P.; Krüger J. K. Molecular versus macroscopic perspective on the demixing transition of aqueous PNIPAM solutions by studying the dual character of the refractive index. Soft Matter 2014, 10, 7297–7305. 10.1039/c4sm01222d. PubMed DOI

Kujawa P.; Winnik F. M. Volumetric Studies of Aqueous Polymer Solutions Using Pressure Perturbation Calorimetry: A New Look at the Temperature-Induced Phase Transition of Poly(N-isopropylacrylamide) in Water and D2O. Macromolecules 2001, 34, 4130–4135. 10.1021/ma002082h. DOI

Gao Y.; Yang J.; Ding Y.; Ye X. Effect of urea on phase transition of poly( PubMed DOI

Tiktopulo E. I.; Uversky V. N.; Lushchik V. B.; Klenin S. I.; Bychkova V. E.; Ptitsyn O. B. Domain Coil-Globule Transition in Homopolymers. Macromolecules 1995, 28, 7519–7524. 10.1021/ma00126a032. DOI

Št’astná J.; Hanyková L.; Spěváček J. NMR and DSC study of temperature-induced phase transition in aqueous solutions of poly( DOI

Shechter I.; Ramon O.; Portnaya I.; Paz Y.; Livney Y. D. Microcalorimetric study of the effects of a chaotropic salt, KSCN, on the lower critical solution temperature (LCST) of aqueous poly( DOI

Hofmann C.; Schönhoff M. Do additives shift the LCST of poly ( DOI

Starovoytova L.; Spěváček J.; Ilavský M. 1H NMR study of temperature-induced phase transitions in D2O solutions of poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide) mixtures and random copolymers. Polymer 2005, 46, 677–683. 10.1016/j.polymer.2004.11.089. DOI

Zhang Y.; Furyk S.; Bergbreiter D. E.; Cremer P. S. Specific Ion Effects on the Water Solubility of Macromolecules: PNIPAM and the Hofmeister Series. J. Am. Chem. Soc. 2005, 127, 14505–14510. 10.1021/ja0546424. PubMed DOI

Lee L.-T.; Cabane B. Effects of surfactants on thermally collapsed poly( DOI

Winnik F. M.; Ottaviani M. F.; Bossmann S. H.; Pan W.; Garcia-Garibay M.; Turro N. J. Cononsolvency of poly(N-isopropylacrylamide): a look at spin-labeled polymers in mixtures of water and tetrahydrofuran. Macromolecules 1993, 26, 4577–4585. 10.1021/ma00069a025. DOI

Pica A.; Graziano G. An alternative explanation of the cononsolvency of poly(N-isopropylacrylamide) in water-methanol solutions. Phys. Chem. Chem. Phys. 2016, 18, 25601–25608. 10.1039/c6cp04753j. PubMed DOI

Velychkivska N.; Bogomolova A.; Filippov S. K.; Starovoytova L.; Labuta J. Thermodynamic and kinetic analysis of phase separation of temperature-sensitive poly(vinyl methyl ether) in the presence of hydrophobic DOI

Labuta J.; Hill J. P.; Hanyková L.; Ishihara S.; Ariga K. Probing the micro-phase separation of thermo-responsive amphiphilic polymer in water/ethanol solution. J. Nanosci. Nanotechnol. 2010, 10, 8408–8416. 10.1166/jnn.2010.3016. PubMed DOI

Spěváček J.; Hanyková L. NMR Study on polymer-solvent interactions during temperature-induced phase separation in aqueous polymer solutions. Macromol. Symp. 2007, 251, 72–80. 10.1002/masy.200750510. DOI

Spěváček J.; Hanyková L.; Starovoytova L. DOI

Hansen Solubility Parameters in Practice (HSPiP) software. http://www.pirika.com/NewHP/PirikaE/logP.html (web page accessed on Aug 27, 2018).

Juranić I. Simple method for the estimation of p DOI

Reeve W.; Erikson C. M.; Aluotto P. F. A new method for the determination of the relative acidities of alcohols in alcoholic solutions. The nucleophilicities and competitive reactivities of alkoxides and phenoxides. Can. J. Chem. 1979, 57, 2747–2754. 10.1139/v79-444. DOI

Arnett E. M.; Wu C. Y. Base strengths of some aliphatic ethers in aqueous sulfuric acid. J. Am. Chem. Soc. 1962, 84, 1680–1684. 10.1021/ja00868a037. DOI

Zook H. D.; Kelly W. L.; Posey I. Y. Chemistry of enolates. VI. Acidity scale for ketones. Effect of enolate basicity in elimination reactions of halides. J. Org. Chem. 1968, 33, 3477–3480. 10.1021/jo01273a024. DOI

Krżel A.; Bal W. A formula for correlating p PubMed DOI

Hanyková L.; Labuta J.; Spěváček J. NMR study of temperature-induced phase separation and polymer-solvent interactions in poly(vinyl methyl ether)/D2O/ethanol solutions. Polymer 2006, 47, 6107–6116. 10.1016/j.polymer.2006.06.061. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Poly(N,N'-Diethylacrylamide)-Based Thermoresponsive Hydrogels with Double Network Structure

. 2020 Oct 27 ; 12 (11) : . [epub] 20201027

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...