Poly(N,N'-Diethylacrylamide)-Based Thermoresponsive Hydrogels with Double Network Structure
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33121186
PubMed Central
PMC7692105
DOI
10.3390/polym12112502
PII: polym12112502
Knihovny.cz E-zdroje
- Klíčová slova
- NMR spectroscopy, differential scanning calorimetry, double network, poly(N,N′-diethylacrylamide), swelling, thermoresponsive hydrogel,
- Publikační typ
- časopisecké články MeSH
Temperature response of double network (DN) hydrogels composed of thermoresponsive poly(N,N'-diethylacrylamide) (PDEAAm) and hydrophilic polyacrylamide (PAAm) or poly(N,N`-dimethylacrylamide) (PDMAAm) was studied by a combination of swelling measurements, differential scanning calorimetry (DSC) and 1H NMR and UV-Vis spectroscopies. Presence of the second hydrophilic network in DN hydrogels influenced their thermal sensitivity significantly. DN hydrogels show less intensive changes in deswelling, smaller enthalpy, and entropy changes connected with phase transition and broader temperature interval of the transition than the single network (SN) hydrogels. Above the transition, the DN hydrogels contain significantly more permanently bound water in comparison with SN hydrogels due to interaction of water with the hydrophilic component. Unlike swelling and DSC experiments, a rather abrupt transition was revealed from temperature-dependent NMR spectra. Release study showed that model methylene blue molecules are released from SN and DN hydrogels within different time scale. New thermodynamical model of deswelling behaviour based on the approach of the van't Hoff analysis was developed. The model allows to determine thermodynamic parameters connected with temperature-induced volume transition, such as the standard change of enthalpy and entropy and critical temperatures and characterize the structurally different states of water.
Zobrazit více v PubMed
Chen N., Zinchenko A.A., Kidoaki S., Murata S., Yoshikawa K. Thermo-Switching of the Conformation of Genomic DNA in Solutions of Poly(N-isopropylacrylamide) Langmuir. 2010;26:2995–2998. doi: 10.1021/la904375k. PubMed DOI
Liu L., Wang W., Ju X.J., Xie R., Chu L.Y. Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter. 2010;6:3759–3763. doi: 10.1039/c002231d. DOI
Dong L., Jiang H. Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter. 2007;3:1223–1230. doi: 10.1039/b706563a. PubMed DOI
Asoh T.A., Matsusaki M., Kaneko T., Akashi M. Fabrication of temperature-responsive bending hydrogels with a nanostructured gradient. Adv. Mater. 2008;20:2080–2083. doi: 10.1002/adma.200702727. DOI
Takashima Y., Hatanaka S., Otsubo M., Nakahata M., Kakuta T., Hashidzume A., Yamaguchi H., Harada A. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat. Commun. 2012;3:1270. doi: 10.1038/ncomms2280. PubMed DOI PMC
Weber C., Hoogenboom R., Schubert U.S. Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog. Polym. Sci. 2012;37:686–714. doi: 10.1016/j.progpolymsci.2011.10.002. DOI
Jochum F.D., Theato P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013;42:7468–7483. doi: 10.1039/C2CS35191A. PubMed DOI
Seuring J., Agarwal S. Polymers with Upper Critical Solution Temperature in Aqueous Solution. Macromol. Rapid Commun. 2012;33:1898–1920. doi: 10.1002/marc.201200433. PubMed DOI
Roy D., Brooks W.L.A., Sumerlin B.S. New directions in thermoresponsive polymers. Chem. Soc. Rev. 2013;42:7214–7243. doi: 10.1039/c3cs35499g. PubMed DOI
Vancoillie G., Frank D., Hoogenboom R. Thermoresponsive poly(oligo ethylene glycol acrylates) Prog. Polym. Sci. 2014;39:1074–1095. doi: 10.1016/j.progpolymsci.2014.02.005. DOI
Halperin A., Kroger M., Winnik F.M. Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research. Angew. Chem. Int. Ed. 2015;54:15342–15367. doi: 10.1002/anie.201506663. PubMed DOI
Fujishige S., Kubota K., Ando I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) J. Phys. Chem. 1989;93:3311–3313. doi: 10.1021/j100345a085. DOI
Gong J.P., Kurokawa T., Narita T., Kagata G., Osada Y., Nishimura G., Kinjo M. Synthesis of hydrogels with extremely low surface friction. J. Am. Chem. Soc. 2001;123:5582–5583. doi: 10.1021/ja003794q. PubMed DOI
Gong J.P., Katsuyama Y., Kurokawa T., Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 2003;15:1155–1158. doi: 10.1002/adma.200304907. DOI
Gong J.P. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–2590. doi: 10.1039/b924290b. DOI
Haque M.A., Kurokawa T., Gong J.P. Super tough double network hydrogels and their application as biomaterials. Polymer. 2012;53:1805–1822. doi: 10.1016/j.polymer.2012.03.013. DOI
Yang J., Li Y., Zhu L., Qin G., Chen Q. Double network hydrogels with controlled shape deformation: A mini review. J. Polym. Sci. Part B Polym. Phys. 2018;56:1351–1362. doi: 10.1002/polb.24735. DOI
Song X.F., Chu Y.Y. Preparation and characterization of poly(sodium acrylate/cement clinker) DN hydrogel composites. Polym. Comp. 2019;40:2462–2472. doi: 10.1002/pc.25117. DOI
Xu Y.W., Chen J., Zhang H., Wei H., Zhou L.J., Wang Z.W., Pan Y.X., Su X.Y., Zhang A., Fu J. White-light-emitting flexible display devices based on double network hydrogels crosslinked by YAG:Ce phosphors. J. Mater. Chem. C. 2020;8:247–252. doi: 10.1039/C9TC05311E. DOI
Fei R., George J.T., Park J., Grunlan M.A. Thermoresponsive nanocomposite double network hydrogels. Soft Matter. 2012;8:481–487. doi: 10.1039/C1SM06105D. PubMed DOI PMC
Fei R., George J.T., Park J., Means A.K., Grunlan M.A. Ultra-strong thermoresponsive double network hydrogels. Soft Matter. 2013;9:2912–2919. doi: 10.1039/c3sm27226e. PubMed DOI PMC
Fei R., Hou H., Munoz-Pinto D., Han A., Hahn M.S., Grunlan M.A. Thermoresponsive double network micropillared hydrogels for controlled cell release. Macromol. Biosci. 2014;14:1346–1352. doi: 10.1002/mabi.201400172. PubMed DOI
Fei R., Means A.K., Abraham A.A., Locke A.K., Coté G.L., Grunlan M.A. Self-cleaning, thermoresponsive P(NIPAAm-co-AMPS) double network membranes for implanted glucose biosensors. Macromol. Mater. Eng. 2016;301:935–943. doi: 10.1002/mame.201600044. PubMed DOI PMC
Shen J., Li N., Ye M. Preparation and characterization of dual-sensitive double network hydrogels with clay as a physical crosslinker. Appl. Clay Sci. 2015;103:40–45. doi: 10.1016/j.clay.2014.11.006. DOI
Li Z., Shen J., Ma H., Lu X., Shi M., Li N., Ye M. Preparation and characterization of pH- and temperature-responsive nanocomposite double network hydrogels. Mater. Sci. Eng. C. 2013;33:1951–1957. doi: 10.1016/j.msec.2013.01.004. PubMed DOI
Kostanski L.K., Huang R., Ghosh R., Filipe C.D.M. Biocompatible poly(N-vinyllactam)-based materials with environmentally-responsive permeability. J. Biomater. Sci. Polym. Ed. 2008;19:275–290. doi: 10.1163/156856208783721047. PubMed DOI
Panayiotou M., Pöhner C., Vandevyver C., Wandrey C., Hilbrig F., Freitag R. Synthesis and characterization of thermo-responsive poly(N,N-diethylacrylamide) microgels. React. Funct. Polym. 2007;67:807–819. doi: 10.1016/j.reactfunctpolym.2006.12.008. DOI
Hanyková L., Labuta J., Spěváček J. NMR study of temperature-induced phase separation and polymer–solvent interactions in poly(vinyl methyl ether)/D2O/ethanol solutions. Polymer. 2006;47:6107–6116. doi: 10.1016/j.polymer.2006.06.061. DOI
Velychkivska N., Bogomolova A., Filippov S.K., Starovoytova L., Labuta J. Thermodynamic and kinetic analysis of phase separation of temperature-sensitive poly(vinyl methyl ether) in the presence of hydrophobic tert-butyl alcohol. Colloid Polym. Sci. 2017;295:1419–1428. doi: 10.1007/s00396-017-4100-2. DOI
Velychkivska N., Starovoytova L., Březina V., Hanyková L., Hill J.P., Labuta J. Improving the colloidal stability of temperature-sensitive poly(N-isopropylacrylamide) solutions using low molecular weight hydrophobic additives. ACS Omega. 2018;3:11865–11873. doi: 10.1021/acsomega.8b01811. PubMed DOI PMC
Farrar T.C., Becker E.D. Pulse and Fourier Transform NMR. Academic Press; New York, NY, USA: 1971.
Sturtevant J.M. Some Applications of Calorimetry in Biochemistry and Biology. Annu. Rev. Biophys. Bioeng. 1974;3:35–51. doi: 10.1146/annurev.bb.03.060174.000343. PubMed DOI
Sugar I.P. Cooperativity and classification of phase transitions. Application to one- and two-component phospholipid membranes. J. Phys. Chem. 1987;91:95–101. doi: 10.1021/j100285a023. DOI
Stankowski S., Gruenewald B. Evaluation of cooperativity for phase transitions in two- and three-dimensional systems. Biophys. Chem. 1980;12:167–176. doi: 10.1016/0301-4622(80)80049-4. PubMed DOI
Krakovský I., Kouřilová H., Hrubovský M., Labuta J., Hanyková L. Thermoresponsive double network hydrogels composed of poly(N-isopropylacrylamide) and polyacrylamide. Eur. Polym. J. 2019;116:415–424. doi: 10.1016/j.eurpolymj.2019.04.032. DOI
Gan L.H., Wensheng C., Tam K.C. Studies of phase transition of aqueous solution of poly(N,N-diethylacrylamide-co-acrylic acid) by differential scanning calorimetry and spectrophotometry. Eur. Polym. J. 2001;37:1773–1778. doi: 10.1016/S0014-3057(01)00061-1. DOI
Hanyková L., Spěváček J., Radecki M., Zhigunov A., Kouřilová H., Sedláková Z. Phase transition in hydrogels of thermoresponsive semi-interpenetrating and interpenetrating networks of poly(N,N-diethylacrylamide) and polyacrylamide. Eur. Polym. J. 2016;85:1–13. doi: 10.1016/j.eurpolymj.2016.10.010. DOI
Hanyková L., Spěváček J., Radecki M., Zhigunov A., Šťastná J., Valentová H., Sedláková Z. Structures and interactions in collapsed hydrogels of thermoresponsive interpenetrating polymer networks. Colloid Polym. Sci. 2015;293:709–720. doi: 10.1007/s00396-014-3455-x. DOI
Spěváček J., Hanyková L. 1H NMR study on the hydration during temperature-induced phase separation in concentrated poly(vinyl methyl ether)/D2O solutions. Macromolecules. 2005;38:9187–9191. doi: 10.1021/ma051425e. DOI
Hanyková L., Spěváček J., Ilavský M. 1H NMR study of thermotropic phase transition of linear and crosslinked poly(vinyl methyl ether) in D2O. Polymer. 2001;42:8607–8612. doi: 10.1016/S0032-3861(01)00381-0. DOI
Díez-Peña E., Quijada-Garrido I., Barrales-Rienda J.M., Wilhelm M., Spiess H.W. NMR studies of the structure and dynamics of polymer gels based on N-isopropylacrylamide (N-iPAAm) and methacrylic acid (MAA) Macromol. Chem. Phys. 2002;203:491–502. doi: 10.1002/1521-3935(20020201)203:3<491::AID-MACP491>3.0.CO;2-1. DOI
Wang N., Ru G., Wang L., Feng J. 1H MAS NMR studies of the phase separation of poly(N-isopropylacrylamide) gel in binary solvents. Langmuir. 2009;25:5898–5902. doi: 10.1021/la8038363. PubMed DOI
Alam T.M., Childress K.K., Pastoor K., Rice C.V. Characterization of free, restricted, and entrapped water environments in poly(N-isopropyl acrylamide) hydrogels via 1H HRMAS PFG NMR spectroscopy. J. Polym. Sci. Part B Polym. Phys. 2014;52:1521–1527. doi: 10.1002/polb.23591. DOI