Poly(N,N'-Diethylacrylamide)-Based Thermoresponsive Hydrogels with Double Network Structure

. 2020 Oct 27 ; 12 (11) : . [epub] 20201027

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33121186

Temperature response of double network (DN) hydrogels composed of thermoresponsive poly(N,N'-diethylacrylamide) (PDEAAm) and hydrophilic polyacrylamide (PAAm) or poly(N,N`-dimethylacrylamide) (PDMAAm) was studied by a combination of swelling measurements, differential scanning calorimetry (DSC) and 1H NMR and UV-Vis spectroscopies. Presence of the second hydrophilic network in DN hydrogels influenced their thermal sensitivity significantly. DN hydrogels show less intensive changes in deswelling, smaller enthalpy, and entropy changes connected with phase transition and broader temperature interval of the transition than the single network (SN) hydrogels. Above the transition, the DN hydrogels contain significantly more permanently bound water in comparison with SN hydrogels due to interaction of water with the hydrophilic component. Unlike swelling and DSC experiments, a rather abrupt transition was revealed from temperature-dependent NMR spectra. Release study showed that model methylene blue molecules are released from SN and DN hydrogels within different time scale. New thermodynamical model of deswelling behaviour based on the approach of the van't Hoff analysis was developed. The model allows to determine thermodynamic parameters connected with temperature-induced volume transition, such as the standard change of enthalpy and entropy and critical temperatures and characterize the structurally different states of water.

Zobrazit více v PubMed

Chen N., Zinchenko A.A., Kidoaki S., Murata S., Yoshikawa K. Thermo-Switching of the Conformation of Genomic DNA in Solutions of Poly(N-isopropylacrylamide) Langmuir. 2010;26:2995–2998. doi: 10.1021/la904375k. PubMed DOI

Liu L., Wang W., Ju X.J., Xie R., Chu L.Y. Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter. 2010;6:3759–3763. doi: 10.1039/c002231d. DOI

Dong L., Jiang H. Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter. 2007;3:1223–1230. doi: 10.1039/b706563a. PubMed DOI

Asoh T.A., Matsusaki M., Kaneko T., Akashi M. Fabrication of temperature-responsive bending hydrogels with a nanostructured gradient. Adv. Mater. 2008;20:2080–2083. doi: 10.1002/adma.200702727. DOI

Takashima Y., Hatanaka S., Otsubo M., Nakahata M., Kakuta T., Hashidzume A., Yamaguchi H., Harada A. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat. Commun. 2012;3:1270. doi: 10.1038/ncomms2280. PubMed DOI PMC

Weber C., Hoogenboom R., Schubert U.S. Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog. Polym. Sci. 2012;37:686–714. doi: 10.1016/j.progpolymsci.2011.10.002. DOI

Jochum F.D., Theato P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013;42:7468–7483. doi: 10.1039/C2CS35191A. PubMed DOI

Seuring J., Agarwal S. Polymers with Upper Critical Solution Temperature in Aqueous Solution. Macromol. Rapid Commun. 2012;33:1898–1920. doi: 10.1002/marc.201200433. PubMed DOI

Roy D., Brooks W.L.A., Sumerlin B.S. New directions in thermoresponsive polymers. Chem. Soc. Rev. 2013;42:7214–7243. doi: 10.1039/c3cs35499g. PubMed DOI

Vancoillie G., Frank D., Hoogenboom R. Thermoresponsive poly(oligo ethylene glycol acrylates) Prog. Polym. Sci. 2014;39:1074–1095. doi: 10.1016/j.progpolymsci.2014.02.005. DOI

Halperin A., Kroger M., Winnik F.M. Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research. Angew. Chem. Int. Ed. 2015;54:15342–15367. doi: 10.1002/anie.201506663. PubMed DOI

Fujishige S., Kubota K., Ando I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) J. Phys. Chem. 1989;93:3311–3313. doi: 10.1021/j100345a085. DOI

Gong J.P., Kurokawa T., Narita T., Kagata G., Osada Y., Nishimura G., Kinjo M. Synthesis of hydrogels with extremely low surface friction. J. Am. Chem. Soc. 2001;123:5582–5583. doi: 10.1021/ja003794q. PubMed DOI

Gong J.P., Katsuyama Y., Kurokawa T., Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 2003;15:1155–1158. doi: 10.1002/adma.200304907. DOI

Gong J.P. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–2590. doi: 10.1039/b924290b. DOI

Haque M.A., Kurokawa T., Gong J.P. Super tough double network hydrogels and their application as biomaterials. Polymer. 2012;53:1805–1822. doi: 10.1016/j.polymer.2012.03.013. DOI

Yang J., Li Y., Zhu L., Qin G., Chen Q. Double network hydrogels with controlled shape deformation: A mini review. J. Polym. Sci. Part B Polym. Phys. 2018;56:1351–1362. doi: 10.1002/polb.24735. DOI

Song X.F., Chu Y.Y. Preparation and characterization of poly(sodium acrylate/cement clinker) DN hydrogel composites. Polym. Comp. 2019;40:2462–2472. doi: 10.1002/pc.25117. DOI

Xu Y.W., Chen J., Zhang H., Wei H., Zhou L.J., Wang Z.W., Pan Y.X., Su X.Y., Zhang A., Fu J. White-light-emitting flexible display devices based on double network hydrogels crosslinked by YAG:Ce phosphors. J. Mater. Chem. C. 2020;8:247–252. doi: 10.1039/C9TC05311E. DOI

Fei R., George J.T., Park J., Grunlan M.A. Thermoresponsive nanocomposite double network hydrogels. Soft Matter. 2012;8:481–487. doi: 10.1039/C1SM06105D. PubMed DOI PMC

Fei R., George J.T., Park J., Means A.K., Grunlan M.A. Ultra-strong thermoresponsive double network hydrogels. Soft Matter. 2013;9:2912–2919. doi: 10.1039/c3sm27226e. PubMed DOI PMC

Fei R., Hou H., Munoz-Pinto D., Han A., Hahn M.S., Grunlan M.A. Thermoresponsive double network micropillared hydrogels for controlled cell release. Macromol. Biosci. 2014;14:1346–1352. doi: 10.1002/mabi.201400172. PubMed DOI

Fei R., Means A.K., Abraham A.A., Locke A.K., Coté G.L., Grunlan M.A. Self-cleaning, thermoresponsive P(NIPAAm-co-AMPS) double network membranes for implanted glucose biosensors. Macromol. Mater. Eng. 2016;301:935–943. doi: 10.1002/mame.201600044. PubMed DOI PMC

Shen J., Li N., Ye M. Preparation and characterization of dual-sensitive double network hydrogels with clay as a physical crosslinker. Appl. Clay Sci. 2015;103:40–45. doi: 10.1016/j.clay.2014.11.006. DOI

Li Z., Shen J., Ma H., Lu X., Shi M., Li N., Ye M. Preparation and characterization of pH- and temperature-responsive nanocomposite double network hydrogels. Mater. Sci. Eng. C. 2013;33:1951–1957. doi: 10.1016/j.msec.2013.01.004. PubMed DOI

Kostanski L.K., Huang R., Ghosh R., Filipe C.D.M. Biocompatible poly(N-vinyllactam)-based materials with environmentally-responsive permeability. J. Biomater. Sci. Polym. Ed. 2008;19:275–290. doi: 10.1163/156856208783721047. PubMed DOI

Panayiotou M., Pöhner C., Vandevyver C., Wandrey C., Hilbrig F., Freitag R. Synthesis and characterization of thermo-responsive poly(N,N-diethylacrylamide) microgels. React. Funct. Polym. 2007;67:807–819. doi: 10.1016/j.reactfunctpolym.2006.12.008. DOI

Hanyková L., Labuta J., Spěváček J. NMR study of temperature-induced phase separation and polymer–solvent interactions in poly(vinyl methyl ether)/D2O/ethanol solutions. Polymer. 2006;47:6107–6116. doi: 10.1016/j.polymer.2006.06.061. DOI

Velychkivska N., Bogomolova A., Filippov S.K., Starovoytova L., Labuta J. Thermodynamic and kinetic analysis of phase separation of temperature-sensitive poly(vinyl methyl ether) in the presence of hydrophobic tert-butyl alcohol. Colloid Polym. Sci. 2017;295:1419–1428. doi: 10.1007/s00396-017-4100-2. DOI

Velychkivska N., Starovoytova L., Březina V., Hanyková L., Hill J.P., Labuta J. Improving the colloidal stability of temperature-sensitive poly(N-isopropylacrylamide) solutions using low molecular weight hydrophobic additives. ACS Omega. 2018;3:11865–11873. doi: 10.1021/acsomega.8b01811. PubMed DOI PMC

Farrar T.C., Becker E.D. Pulse and Fourier Transform NMR. Academic Press; New York, NY, USA: 1971.

Sturtevant J.M. Some Applications of Calorimetry in Biochemistry and Biology. Annu. Rev. Biophys. Bioeng. 1974;3:35–51. doi: 10.1146/annurev.bb.03.060174.000343. PubMed DOI

Sugar I.P. Cooperativity and classification of phase transitions. Application to one- and two-component phospholipid membranes. J. Phys. Chem. 1987;91:95–101. doi: 10.1021/j100285a023. DOI

Stankowski S., Gruenewald B. Evaluation of cooperativity for phase transitions in two- and three-dimensional systems. Biophys. Chem. 1980;12:167–176. doi: 10.1016/0301-4622(80)80049-4. PubMed DOI

Krakovský I., Kouřilová H., Hrubovský M., Labuta J., Hanyková L. Thermoresponsive double network hydrogels composed of poly(N-isopropylacrylamide) and polyacrylamide. Eur. Polym. J. 2019;116:415–424. doi: 10.1016/j.eurpolymj.2019.04.032. DOI

Gan L.H., Wensheng C., Tam K.C. Studies of phase transition of aqueous solution of poly(N,N-diethylacrylamide-co-acrylic acid) by differential scanning calorimetry and spectrophotometry. Eur. Polym. J. 2001;37:1773–1778. doi: 10.1016/S0014-3057(01)00061-1. DOI

Hanyková L., Spěváček J., Radecki M., Zhigunov A., Kouřilová H., Sedláková Z. Phase transition in hydrogels of thermoresponsive semi-interpenetrating and interpenetrating networks of poly(N,N-diethylacrylamide) and polyacrylamide. Eur. Polym. J. 2016;85:1–13. doi: 10.1016/j.eurpolymj.2016.10.010. DOI

Hanyková L., Spěváček J., Radecki M., Zhigunov A., Šťastná J., Valentová H., Sedláková Z. Structures and interactions in collapsed hydrogels of thermoresponsive interpenetrating polymer networks. Colloid Polym. Sci. 2015;293:709–720. doi: 10.1007/s00396-014-3455-x. DOI

Spěváček J., Hanyková L. 1H NMR study on the hydration during temperature-induced phase separation in concentrated poly(vinyl methyl ether)/D2O solutions. Macromolecules. 2005;38:9187–9191. doi: 10.1021/ma051425e. DOI

Hanyková L., Spěváček J., Ilavský M. 1H NMR study of thermotropic phase transition of linear and crosslinked poly(vinyl methyl ether) in D2O. Polymer. 2001;42:8607–8612. doi: 10.1016/S0032-3861(01)00381-0. DOI

Díez-Peña E., Quijada-Garrido I., Barrales-Rienda J.M., Wilhelm M., Spiess H.W. NMR studies of the structure and dynamics of polymer gels based on N-isopropylacrylamide (N-iPAAm) and methacrylic acid (MAA) Macromol. Chem. Phys. 2002;203:491–502. doi: 10.1002/1521-3935(20020201)203:3<491::AID-MACP491>3.0.CO;2-1. DOI

Wang N., Ru G., Wang L., Feng J. 1H MAS NMR studies of the phase separation of poly(N-isopropylacrylamide) gel in binary solvents. Langmuir. 2009;25:5898–5902. doi: 10.1021/la8038363. PubMed DOI

Alam T.M., Childress K.K., Pastoor K., Rice C.V. Characterization of free, restricted, and entrapped water environments in poly(N-isopropyl acrylamide) hydrogels via 1H HRMAS PFG NMR spectroscopy. J. Polym. Sci. Part B Polym. Phys. 2014;52:1521–1527. doi: 10.1002/polb.23591. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...