External Stimuli-Responsive Characteristics of Poly(N,N'-diethylacrylamide) Hydrogels: Effect of Double Network Structure

. 2022 Sep 15 ; 8 (9) : . [epub] 20220915

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36135298

Grantová podpora
21-25159S Czech Science Foundation

Swelling experiments and NMR spectroscopy were combined to study effect of various stimuli on the behavior of hydrogels with a single- and double-network (DN) structure composed of poly(N,N'-diethylacrylamide) and polyacrylamide (PAAm). The sensitivity to stimuli in the DN hydrogel was found to be significantly affected by the introduction of the second component and the formation of the double network. The interpenetrating structure in the DN hydrogel causes the units of the component, which is insensitive to the given stimulus in the form of the single network (SN) hydrogel, to be partially formed as globular structures in DN hydrogel. Due to the hydrophilic PAAm groups, temperature- and salt-induced changes in the deswelling of the DN hydrogel are less intensive and gradual compared to those of the SN hydrogel. The swelling ratio of the DN hydrogel shows a significant decrease in the dependence on the acetone content in acetone-water mixtures. A certain portion of the solvent molecules bound in the globular structures was established from the measurements of the 1H NMR spin-spin relaxation times T2 for the studied DN hydrogel. The time-dependent deswelling and reswelling kinetics showed a two-step profile, corresponding to the solvent molecules being released and absorbed during two processes with different characteristic times.

Zobrazit více v PubMed

Asoh T.A., Matsusaki M., Kaneko T., Akashi M. Fabrication of temperature-responsive bending hydrogels with a nanostructured gradient. Adv. Mater. 2008;20:2080–2083. doi: 10.1002/adma.200702727. DOI

Rizwan M., Yahya R., Hassan A., Yar M., Azzahari A.D., Selvanathan V., Sonsudin F., Abouloula C.N. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers. 2017;9:137. doi: 10.3390/polym9040137. PubMed DOI PMC

Ge Y., Wang H., Xue J., Jiang J., Liu Z., Liu Z., Li G., Zhao Y. Programmable humidity-responsive actuation of polymer films enabled by combining shape memory property and surface-tunable hygroscopicity. ACS Appl. Mater. Interfaces. 2021;13:38773–38782. doi: 10.1021/acsami.1c11862. PubMed DOI

Pramanik B., Ahmed S. Peptide-basedlow molecular weight photosensitive supramolecular gelators. Gels. 2022;8:533. doi: 10.3390/gels8090533. PubMed DOI PMC

Ohmine I., Tanaka T. Salt effects on the phase transition of ionic gels. J. Chem. Phys. 1982;77:5725–5729. doi: 10.1063/1.443780. DOI

Wang T., Farajollahi M., Choi Y.S., Lin I.T., Marshall J.E., Thompson N.M., Kar-Narayan S., Madden J.D., Smoukov S.K. Electroactive polymers for sensing. Interface Focus. 2016;6:20160026. doi: 10.1098/rsfs.2016.0026. PubMed DOI PMC

Tanaka T., Fillmore D., Sun S.-T., Nishio I., Swislow G., Shah A. Phase transitions in ionic gels. Phys. Rev. Lett. 1980;45:1636–1639. doi: 10.1103/PhysRevLett.45.1636. DOI

Sheikhi A., Afewerki S., Oklu R., Gaharwar A.K., Khademhosseini A. Effect of ionic strength on shear-thinning nanoclay–polymer composite hydrogels. Biomater. Sci. 2018;6:2073–2083. doi: 10.1039/C8BM00469B. PubMed DOI PMC

Liu L., Wang W., Ju X.J., Xie R., Chu L.Y. Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter. 2010;6:3759–3763. doi: 10.1039/c002231d. DOI

Dong L., Jiang H. Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter. 2007;3:1223–1230. doi: 10.1039/b706563a. PubMed DOI

Takashima Y., Hatanaka S., Otsubo M., Nakahata M., Kakuta T., Hashidzume A., Yamaguchi H., Harada A. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat. Commun. 2012;3:1270. doi: 10.1038/ncomms2280. PubMed DOI PMC

Weber C., Hoogenboom R., Schubert U.S. Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog. Polym. Sci. 2012;37:686–714. doi: 10.1016/j.progpolymsci.2011.10.002. DOI

Jochum F.D., Theato P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013;42:7468–7483. doi: 10.1039/C2CS35191A. PubMed DOI

Seuring J., Agarwal S. Polymers with Upper Critical Solution Temperature in Aqueous Solution. Macromol. Rapid Commun. 2012;33:1898–1920. doi: 10.1002/marc.201200433. PubMed DOI

Roy D., Brooks W.L.A., Sumerlin B.S. New directions in thermoresponsive polymers. Chem. Soc. Rev. 2013;42:7214–7243. doi: 10.1039/c3cs35499g. PubMed DOI

Vancoillie G., Frank D., Hoogenboom R. Thermoresponsive poly(oligo ethylene glycol acrylates) Prog. Polym. Sci. 2014;39:1074–1095. doi: 10.1016/j.progpolymsci.2014.02.005. DOI

Halperin A., Kroger M., Winnik F.M. Poly(N-isopropylacrylamide) phase diagrams: Fifty years of research. Angew. Chem. Int. Ed. 2015;54:15342–15367. doi: 10.1002/anie.201506663. PubMed DOI

Fujishige S., Kubota K., Ando I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) J. Phys. Chem. 1989;93:3311–3313. doi: 10.1021/j100345a085. DOI

Ilavský M., Hrouz J., Havlíček I. Phase transition in swollen gels: 7. Effect of charge concentration on the temperature collapse of poly(N,N-diethylacrylamide) networks in water. Polymer. 1985;26:1514–1518. doi: 10.1016/0032-3861(85)90085-0. DOI

Tirumala R., Ilavský J., Ilavský M. Effect of chemical structure on the volume-phase transition in neutral and weakly charged poly(N,N-alkyl(meth)acrylamide) hydrogels studied by ultrasmall-angle X-ray scattering. J. Chem. Phys. 2006;124:234911. doi: 10.1063/1.2205364. PubMed DOI

Tanaka T. Collapse of Gels and the Critical Endpoint. Phys. Rev. Lett. 1978;40:820–823. doi: 10.1103/PhysRevLett.40.820. DOI

Tanaka T. Phase transitions in gels and a single polymer. Polymer. 1979;20:1404–1412. doi: 10.1016/0032-3861(79)90281-7. DOI

Ilavský M. Phase Transition in Swollen Gels. 2. Effect of charge concentration on the collapse and mechanical behavior of polyacrylamide networks. Macromolecules. 1982;15:782–788. doi: 10.1021/ma00231a019. DOI

Caykara T., Dogmu M. The effect of solvent composition on swelling and shrinking properties of poly(acrylamide-co-itaconic acid) hydrogels. Eur. Polym. J. 2004;40:2605–2609. doi: 10.1016/j.eurpolymj.2004.06.024. DOI

Amiya T., Hirokawa Y., Hirose Y., Li Y., Tanaka T. Reentrant phase transition of N-isopropylacrylamide gels in mixed solvents. J. Chem. Phys. 1987;86:2375–2379. doi: 10.1063/1.452740. DOI

Hirotsu S. Critical points of the volume phase transition in N-isopropylacrylamide gels. J. Chem. Phys. 1988;88:427–431. doi: 10.1063/1.454619. DOI

Fomenko A., Sedláková Z., Ilavský M. Phase transition in swollen gels 30. Temperature-induced phase transition in positively charged poly(N-isopropylacrylamide) hydrogels in water and aqueous NaCl solutions. Polym. Bull. 2001;47:367–374. doi: 10.1007/s289-001-8194-2. DOI

Patra L., Vidyasagar A., Toomey R. The effect of the Hofmeister series on the deswelling isotherms of poly(N-isopropylacrylamide) and poly(N,N-diethylacrylamide) Soft Matter. 2011;7:6061–6067. doi: 10.1039/c1sm05222e. DOI

Gong J.P., Katsuyama Y., Kurokawa T., Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 2003;15:1155–1158. doi: 10.1002/adma.200304907. DOI

Gong J.P. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–2590. doi: 10.1039/b924290b. DOI

Fei R., George J.T., Park J., Grunlan M.A. Thermoresponsive nanocomposite double network hydrogels. Soft Matter. 2012;8:481–487. doi: 10.1039/C1SM06105D. PubMed DOI PMC

Fei R., George J.T., Park J., Means A.K., Grunlan M.A. Ultra-strong thermoresponsive double network hydrogels. Soft Matter. 2013;9:2912–2919. doi: 10.1039/c3sm27226e. PubMed DOI PMC

Shen J., Li N., Ye M. Preparation and characterization of dual-sensitive double network hydrogels with clay as a physical crosslinker. Appl. Clay Sci. 2015;103:40–45. doi: 10.1016/j.clay.2014.11.006. DOI

Li Z., Shen J., Ma H., Lu X., Shi M., Li N., Ye M. Preparation and characterization of pH- and temperature-responsive nanocomposite double network hydrogels. Mater. Sci. Eng. C. 2013;33:1951–1957. doi: 10.1016/j.msec.2013.01.004. PubMed DOI

Dixit A., Bag D.S. Highly stretchable and tough thermo-responsive double network (DN) hydrogels: Composed of PVA-borax and poly (AM-co-NIPAM) polymer networks. Eur. Polym. J. 2022;175:111347. doi: 10.1016/j.eurpolymj.2022.111347. DOI

Krakovský I., Kouřilová H., Hrubovský M., Labuta J., Hanyková L. Thermoresponsive double network hydrogels composed of poly(N-isopropylacrylamide) and polyacrylamide. Eur. Polym. J. 2019;116:415–424. doi: 10.1016/j.eurpolymj.2019.04.032. DOI

Hanyková L., Krakovský I., Šestáková E., Šťastná J., Labuta J. Poly(N,N’-diethylacrylamide)-based thermoresponsive hydrogels with double network structure. Polymers. 2020;12:2502. doi: 10.3390/polym12112502. PubMed DOI PMC

Hanyková L., Spěváček J., Radecki M., Zhigunov A., Št’astná J., Valentová H., Sedláková Z. Structures and interactions in collapsed hydrogels of thermoresponsive interpenetrating polymer networks. Colloid Polym. Sci. 2015;293:709–720. doi: 10.1007/s00396-014-3455-x. DOI

Kouřilová H., Spěváček J., Hanyková L. 1H NMR study of temperature-induced phase transitions in aqueous solutions of poly(N-isopropylmethacrylamide)/poly(N-vinylcaprolactam) mixtures. Polym. Bull. 2013;70:221–235. doi: 10.1007/s00289-012-0831-x. DOI

Hanyková L., Spěváček J., Radecki M., Zhigunov A., Kouřilová H., Sedláková Z. Phase transition in hydrogels of thermoresponsive semi-interpenetrating and interpenetrating networks of poly(N,N-diethylacrylamide) and polyacrylamide. Eur. Polym. J. 2016;85:1–13. doi: 10.1016/j.eurpolymj.2016.10.010. DOI

Costa R.O.R., Freitas R.F.S. Phase behavior of poly(N-isopropylacrylamide) in binary aqueous solutions. Polymer. 2002;43:5879–5885. doi: 10.1016/S0032-3861(02)00507-4. DOI

Chen Y., Liu M., Bian F., Wang B., Chen S., Jin S. The effect of NaCl on the conformational behavior of acenaphthylene labeled poly(N,N-diethylacrylamide) in dilute aqueous solution. Macromol. Chem. Phys. 2006;207:104–110. doi: 10.1002/macp.200500416. DOI

Spěváček J., Hanyková L. 1H NMR study on the hydration during temperature-induced phase separation in concentrated poly(vinyl methyl ether)/D2O solutions. Macromolecules. 2005;38:9187–9191. doi: 10.1021/ma051425e. DOI

Hanyková L., Spěváček J., Ilavský M. 1H NMR study of thermotropic phase transition of linear and crosslinked poly(vinyl methyl ether) in D2O. Polymer. 2001;42:8607–8612. doi: 10.1016/S0032-3861(01)00381-0. DOI

Díez-Peña E., Quijada-Garrido I., Barrales-Rienda J.M., Wilhelm M., Spiess H.W. NMR studies of the structure and dynamics of polymer gels based on N-isopropylacrylamide (N-iPAAm) and methacrylic acid (MAA) Macromol. Chem. Phys. 2002;203:491–502. doi: 10.1002/1521-3935(20020201)203:3<491::AID-MACP491>3.0.CO;2-1. DOI

Wang N., Ru G., Wang L., Feng J. 1H MAS NMR studies of the phase separation of poly(N-isopropylacrylamide) gel in binary solvents. Langmuir. 2009;25:5898–5902. doi: 10.1021/la8038363. PubMed DOI

Alam T.M., Childress K.K., Pastoor K., Rice C.V. Characterization of free, restricted, and entrapped water environments in poly(N-isopropyl acrylamide) hydrogels via 1H HRMAS PFG NMR spectroscopy. J. Polym. Sci. Part B Polym. Phys. 2014;52:1521–1527. doi: 10.1002/polb.23591. DOI

Hanyková L., Labuta J., Spěváček J. NMR study of temperature-induced phase separation and polymer–solvent interactions in poly(vinyl methyl ether)/D2O/ethanol solutions. Polymer. 2006;47:6107–6116. doi: 10.1016/j.polymer.2006.06.061. DOI

Serizawa T., Wakita K., Akashi M. Rapid deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by incorporation of silica particles. Macromolecules. 2002;35:10–12. doi: 10.1021/ma011362+. DOI

Zhao Z.X., Li Z., Xia Q.B., Bajalis E., Xi H.X., Lin Y.S. Swelling/deswelling kinetics of PNIPAAm hydrogels synthesized by microwave irradiation. Chem. Eng. J. 2008;142:263–270. doi: 10.1016/j.cej.2007.12.009. DOI

Pastoriza A., Pacios I.E., Pierola I.F. Kinetics of solvent responsiveness in poly(N,N-dimethylacrylamide) hydrogels of different morphology. Polym. Int. 2005;54:1205–1211. doi: 10.1002/pi.1832. DOI

Franke D., Gerlach G. Swelling studies of porous and nonporous semi-IPN hydrogels for sensor and actuator applications. Micromachines. 2020;11:425. doi: 10.3390/mi11040425. PubMed DOI PMC

Ceylan D., Ozmen M.M., Okay O. Swelling–deswelling kinetics of ionic poly(acrylamide) hydrogels and cryogels. J. Appl. Polym. Sci. 2006;99:319–325. doi: 10.1002/app.22023. DOI

Sivanantham M., Tata B.V.R. Swelling/deswelling of polyacrylamide gels in aqueous NaCl solution: Light scattering and macroscopic swelling study. Pramana. 2012;79:457–469. doi: 10.1007/s12043-012-0325-2. DOI

Labuta J., Hill J.P., Hanyková L., Ishihara S., Ariga K. Probing the micro-phase separation of thermo-responsive amphiphilic polymer in water/ethanol solution. J. Nanosci. Nanotechnol. 2010;10:8408–8416. doi: 10.1166/jnn.2010.3016. PubMed DOI

Farrar T.C., Becker E.D. Pulse and Fourier Transform NMR. Academic Press; New York, NY, USA: 1971.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...