External Stimuli-Responsive Characteristics of Poly(N,N'-diethylacrylamide) Hydrogels: Effect of Double Network Structure
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-25159S
Czech Science Foundation
PubMed
36135298
PubMed Central
PMC9498466
DOI
10.3390/gels8090586
PII: gels8090586
Knihovny.cz E-zdroje
- Klíčová slova
- NMR spectroscopy, double network, poly(N,N′-diethylacrylamide), stimuli-responsive hydrogels, swelling, swelling/deswelling kinetics,
- Publikační typ
- časopisecké články MeSH
Swelling experiments and NMR spectroscopy were combined to study effect of various stimuli on the behavior of hydrogels with a single- and double-network (DN) structure composed of poly(N,N'-diethylacrylamide) and polyacrylamide (PAAm). The sensitivity to stimuli in the DN hydrogel was found to be significantly affected by the introduction of the second component and the formation of the double network. The interpenetrating structure in the DN hydrogel causes the units of the component, which is insensitive to the given stimulus in the form of the single network (SN) hydrogel, to be partially formed as globular structures in DN hydrogel. Due to the hydrophilic PAAm groups, temperature- and salt-induced changes in the deswelling of the DN hydrogel are less intensive and gradual compared to those of the SN hydrogel. The swelling ratio of the DN hydrogel shows a significant decrease in the dependence on the acetone content in acetone-water mixtures. A certain portion of the solvent molecules bound in the globular structures was established from the measurements of the 1H NMR spin-spin relaxation times T2 for the studied DN hydrogel. The time-dependent deswelling and reswelling kinetics showed a two-step profile, corresponding to the solvent molecules being released and absorbed during two processes with different characteristic times.
Zobrazit více v PubMed
Asoh T.A., Matsusaki M., Kaneko T., Akashi M. Fabrication of temperature-responsive bending hydrogels with a nanostructured gradient. Adv. Mater. 2008;20:2080–2083. doi: 10.1002/adma.200702727. DOI
Rizwan M., Yahya R., Hassan A., Yar M., Azzahari A.D., Selvanathan V., Sonsudin F., Abouloula C.N. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers. 2017;9:137. doi: 10.3390/polym9040137. PubMed DOI PMC
Ge Y., Wang H., Xue J., Jiang J., Liu Z., Liu Z., Li G., Zhao Y. Programmable humidity-responsive actuation of polymer films enabled by combining shape memory property and surface-tunable hygroscopicity. ACS Appl. Mater. Interfaces. 2021;13:38773–38782. doi: 10.1021/acsami.1c11862. PubMed DOI
Pramanik B., Ahmed S. Peptide-basedlow molecular weight photosensitive supramolecular gelators. Gels. 2022;8:533. doi: 10.3390/gels8090533. PubMed DOI PMC
Ohmine I., Tanaka T. Salt effects on the phase transition of ionic gels. J. Chem. Phys. 1982;77:5725–5729. doi: 10.1063/1.443780. DOI
Wang T., Farajollahi M., Choi Y.S., Lin I.T., Marshall J.E., Thompson N.M., Kar-Narayan S., Madden J.D., Smoukov S.K. Electroactive polymers for sensing. Interface Focus. 2016;6:20160026. doi: 10.1098/rsfs.2016.0026. PubMed DOI PMC
Tanaka T., Fillmore D., Sun S.-T., Nishio I., Swislow G., Shah A. Phase transitions in ionic gels. Phys. Rev. Lett. 1980;45:1636–1639. doi: 10.1103/PhysRevLett.45.1636. DOI
Sheikhi A., Afewerki S., Oklu R., Gaharwar A.K., Khademhosseini A. Effect of ionic strength on shear-thinning nanoclay–polymer composite hydrogels. Biomater. Sci. 2018;6:2073–2083. doi: 10.1039/C8BM00469B. PubMed DOI PMC
Liu L., Wang W., Ju X.J., Xie R., Chu L.Y. Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter. 2010;6:3759–3763. doi: 10.1039/c002231d. DOI
Dong L., Jiang H. Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter. 2007;3:1223–1230. doi: 10.1039/b706563a. PubMed DOI
Takashima Y., Hatanaka S., Otsubo M., Nakahata M., Kakuta T., Hashidzume A., Yamaguchi H., Harada A. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat. Commun. 2012;3:1270. doi: 10.1038/ncomms2280. PubMed DOI PMC
Weber C., Hoogenboom R., Schubert U.S. Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog. Polym. Sci. 2012;37:686–714. doi: 10.1016/j.progpolymsci.2011.10.002. DOI
Jochum F.D., Theato P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013;42:7468–7483. doi: 10.1039/C2CS35191A. PubMed DOI
Seuring J., Agarwal S. Polymers with Upper Critical Solution Temperature in Aqueous Solution. Macromol. Rapid Commun. 2012;33:1898–1920. doi: 10.1002/marc.201200433. PubMed DOI
Roy D., Brooks W.L.A., Sumerlin B.S. New directions in thermoresponsive polymers. Chem. Soc. Rev. 2013;42:7214–7243. doi: 10.1039/c3cs35499g. PubMed DOI
Vancoillie G., Frank D., Hoogenboom R. Thermoresponsive poly(oligo ethylene glycol acrylates) Prog. Polym. Sci. 2014;39:1074–1095. doi: 10.1016/j.progpolymsci.2014.02.005. DOI
Halperin A., Kroger M., Winnik F.M. Poly(N-isopropylacrylamide) phase diagrams: Fifty years of research. Angew. Chem. Int. Ed. 2015;54:15342–15367. doi: 10.1002/anie.201506663. PubMed DOI
Fujishige S., Kubota K., Ando I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) J. Phys. Chem. 1989;93:3311–3313. doi: 10.1021/j100345a085. DOI
Ilavský M., Hrouz J., Havlíček I. Phase transition in swollen gels: 7. Effect of charge concentration on the temperature collapse of poly(N,N-diethylacrylamide) networks in water. Polymer. 1985;26:1514–1518. doi: 10.1016/0032-3861(85)90085-0. DOI
Tirumala R., Ilavský J., Ilavský M. Effect of chemical structure on the volume-phase transition in neutral and weakly charged poly(N,N-alkyl(meth)acrylamide) hydrogels studied by ultrasmall-angle X-ray scattering. J. Chem. Phys. 2006;124:234911. doi: 10.1063/1.2205364. PubMed DOI
Tanaka T. Collapse of Gels and the Critical Endpoint. Phys. Rev. Lett. 1978;40:820–823. doi: 10.1103/PhysRevLett.40.820. DOI
Tanaka T. Phase transitions in gels and a single polymer. Polymer. 1979;20:1404–1412. doi: 10.1016/0032-3861(79)90281-7. DOI
Ilavský M. Phase Transition in Swollen Gels. 2. Effect of charge concentration on the collapse and mechanical behavior of polyacrylamide networks. Macromolecules. 1982;15:782–788. doi: 10.1021/ma00231a019. DOI
Caykara T., Dogmu M. The effect of solvent composition on swelling and shrinking properties of poly(acrylamide-co-itaconic acid) hydrogels. Eur. Polym. J. 2004;40:2605–2609. doi: 10.1016/j.eurpolymj.2004.06.024. DOI
Amiya T., Hirokawa Y., Hirose Y., Li Y., Tanaka T. Reentrant phase transition of N-isopropylacrylamide gels in mixed solvents. J. Chem. Phys. 1987;86:2375–2379. doi: 10.1063/1.452740. DOI
Hirotsu S. Critical points of the volume phase transition in N-isopropylacrylamide gels. J. Chem. Phys. 1988;88:427–431. doi: 10.1063/1.454619. DOI
Fomenko A., Sedláková Z., Ilavský M. Phase transition in swollen gels 30. Temperature-induced phase transition in positively charged poly(N-isopropylacrylamide) hydrogels in water and aqueous NaCl solutions. Polym. Bull. 2001;47:367–374. doi: 10.1007/s289-001-8194-2. DOI
Patra L., Vidyasagar A., Toomey R. The effect of the Hofmeister series on the deswelling isotherms of poly(N-isopropylacrylamide) and poly(N,N-diethylacrylamide) Soft Matter. 2011;7:6061–6067. doi: 10.1039/c1sm05222e. DOI
Gong J.P., Katsuyama Y., Kurokawa T., Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 2003;15:1155–1158. doi: 10.1002/adma.200304907. DOI
Gong J.P. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–2590. doi: 10.1039/b924290b. DOI
Fei R., George J.T., Park J., Grunlan M.A. Thermoresponsive nanocomposite double network hydrogels. Soft Matter. 2012;8:481–487. doi: 10.1039/C1SM06105D. PubMed DOI PMC
Fei R., George J.T., Park J., Means A.K., Grunlan M.A. Ultra-strong thermoresponsive double network hydrogels. Soft Matter. 2013;9:2912–2919. doi: 10.1039/c3sm27226e. PubMed DOI PMC
Shen J., Li N., Ye M. Preparation and characterization of dual-sensitive double network hydrogels with clay as a physical crosslinker. Appl. Clay Sci. 2015;103:40–45. doi: 10.1016/j.clay.2014.11.006. DOI
Li Z., Shen J., Ma H., Lu X., Shi M., Li N., Ye M. Preparation and characterization of pH- and temperature-responsive nanocomposite double network hydrogels. Mater. Sci. Eng. C. 2013;33:1951–1957. doi: 10.1016/j.msec.2013.01.004. PubMed DOI
Dixit A., Bag D.S. Highly stretchable and tough thermo-responsive double network (DN) hydrogels: Composed of PVA-borax and poly (AM-co-NIPAM) polymer networks. Eur. Polym. J. 2022;175:111347. doi: 10.1016/j.eurpolymj.2022.111347. DOI
Krakovský I., Kouřilová H., Hrubovský M., Labuta J., Hanyková L. Thermoresponsive double network hydrogels composed of poly(N-isopropylacrylamide) and polyacrylamide. Eur. Polym. J. 2019;116:415–424. doi: 10.1016/j.eurpolymj.2019.04.032. DOI
Hanyková L., Krakovský I., Šestáková E., Šťastná J., Labuta J. Poly(N,N’-diethylacrylamide)-based thermoresponsive hydrogels with double network structure. Polymers. 2020;12:2502. doi: 10.3390/polym12112502. PubMed DOI PMC
Hanyková L., Spěváček J., Radecki M., Zhigunov A., Št’astná J., Valentová H., Sedláková Z. Structures and interactions in collapsed hydrogels of thermoresponsive interpenetrating polymer networks. Colloid Polym. Sci. 2015;293:709–720. doi: 10.1007/s00396-014-3455-x. DOI
Kouřilová H., Spěváček J., Hanyková L. 1H NMR study of temperature-induced phase transitions in aqueous solutions of poly(N-isopropylmethacrylamide)/poly(N-vinylcaprolactam) mixtures. Polym. Bull. 2013;70:221–235. doi: 10.1007/s00289-012-0831-x. DOI
Hanyková L., Spěváček J., Radecki M., Zhigunov A., Kouřilová H., Sedláková Z. Phase transition in hydrogels of thermoresponsive semi-interpenetrating and interpenetrating networks of poly(N,N-diethylacrylamide) and polyacrylamide. Eur. Polym. J. 2016;85:1–13. doi: 10.1016/j.eurpolymj.2016.10.010. DOI
Costa R.O.R., Freitas R.F.S. Phase behavior of poly(N-isopropylacrylamide) in binary aqueous solutions. Polymer. 2002;43:5879–5885. doi: 10.1016/S0032-3861(02)00507-4. DOI
Chen Y., Liu M., Bian F., Wang B., Chen S., Jin S. The effect of NaCl on the conformational behavior of acenaphthylene labeled poly(N,N-diethylacrylamide) in dilute aqueous solution. Macromol. Chem. Phys. 2006;207:104–110. doi: 10.1002/macp.200500416. DOI
Spěváček J., Hanyková L. 1H NMR study on the hydration during temperature-induced phase separation in concentrated poly(vinyl methyl ether)/D2O solutions. Macromolecules. 2005;38:9187–9191. doi: 10.1021/ma051425e. DOI
Hanyková L., Spěváček J., Ilavský M. 1H NMR study of thermotropic phase transition of linear and crosslinked poly(vinyl methyl ether) in D2O. Polymer. 2001;42:8607–8612. doi: 10.1016/S0032-3861(01)00381-0. DOI
Díez-Peña E., Quijada-Garrido I., Barrales-Rienda J.M., Wilhelm M., Spiess H.W. NMR studies of the structure and dynamics of polymer gels based on N-isopropylacrylamide (N-iPAAm) and methacrylic acid (MAA) Macromol. Chem. Phys. 2002;203:491–502. doi: 10.1002/1521-3935(20020201)203:3<491::AID-MACP491>3.0.CO;2-1. DOI
Wang N., Ru G., Wang L., Feng J. 1H MAS NMR studies of the phase separation of poly(N-isopropylacrylamide) gel in binary solvents. Langmuir. 2009;25:5898–5902. doi: 10.1021/la8038363. PubMed DOI
Alam T.M., Childress K.K., Pastoor K., Rice C.V. Characterization of free, restricted, and entrapped water environments in poly(N-isopropyl acrylamide) hydrogels via 1H HRMAS PFG NMR spectroscopy. J. Polym. Sci. Part B Polym. Phys. 2014;52:1521–1527. doi: 10.1002/polb.23591. DOI
Hanyková L., Labuta J., Spěváček J. NMR study of temperature-induced phase separation and polymer–solvent interactions in poly(vinyl methyl ether)/D2O/ethanol solutions. Polymer. 2006;47:6107–6116. doi: 10.1016/j.polymer.2006.06.061. DOI
Serizawa T., Wakita K., Akashi M. Rapid deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by incorporation of silica particles. Macromolecules. 2002;35:10–12. doi: 10.1021/ma011362+. DOI
Zhao Z.X., Li Z., Xia Q.B., Bajalis E., Xi H.X., Lin Y.S. Swelling/deswelling kinetics of PNIPAAm hydrogels synthesized by microwave irradiation. Chem. Eng. J. 2008;142:263–270. doi: 10.1016/j.cej.2007.12.009. DOI
Pastoriza A., Pacios I.E., Pierola I.F. Kinetics of solvent responsiveness in poly(N,N-dimethylacrylamide) hydrogels of different morphology. Polym. Int. 2005;54:1205–1211. doi: 10.1002/pi.1832. DOI
Franke D., Gerlach G. Swelling studies of porous and nonporous semi-IPN hydrogels for sensor and actuator applications. Micromachines. 2020;11:425. doi: 10.3390/mi11040425. PubMed DOI PMC
Ceylan D., Ozmen M.M., Okay O. Swelling–deswelling kinetics of ionic poly(acrylamide) hydrogels and cryogels. J. Appl. Polym. Sci. 2006;99:319–325. doi: 10.1002/app.22023. DOI
Sivanantham M., Tata B.V.R. Swelling/deswelling of polyacrylamide gels in aqueous NaCl solution: Light scattering and macroscopic swelling study. Pramana. 2012;79:457–469. doi: 10.1007/s12043-012-0325-2. DOI
Labuta J., Hill J.P., Hanyková L., Ishihara S., Ariga K. Probing the micro-phase separation of thermo-responsive amphiphilic polymer in water/ethanol solution. J. Nanosci. Nanotechnol. 2010;10:8408–8416. doi: 10.1166/jnn.2010.3016. PubMed DOI
Farrar T.C., Becker E.D. Pulse and Fourier Transform NMR. Academic Press; New York, NY, USA: 1971.