Responsive Acrylamide-Based Hydrogels: Advances in Interpenetrating Polymer Structures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
21-25159S
Czech Science Foundation
PubMed
39057438
PubMed Central
PMC11276577
DOI
10.3390/gels10070414
PII: gels10070414
Knihovny.cz E-zdroje
- Klíčová slova
- acrylamide-based polymers, biomedical applications, double network, drug delivery, hydrophilic polymer, interpenetrating polymer network, lower critical solution temperature, mechanical properties, pH responsiveness, poly(N,N-diethylacrylamide), poly(N-isopropylacrylamide), polymer hydrogel, stimuli-responsive polymers, temperature responsiveness,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Hydrogels, composed of hydrophilic homopolymer or copolymer networks, have structures similar to natural living tissues, making them ideal for applications in drug delivery, tissue engineering, and biosensors. Since Wichterle and Lim first synthesized hydrogels in 1960, extensive research has led to various types with unique features. Responsive hydrogels, which undergo reversible structural changes when exposed to stimuli like temperature, pH, or specific molecules, are particularly promising. Temperature-sensitive hydrogels, which mimic biological processes, are the most studied, with poly(N-isopropylacrylamide) (PNIPAm) being prominent due to its lower critical solution temperature of around 32 °C. Additionally, pH-responsive hydrogels, composed of polyelectrolytes, change their structure in response to pH variations. Despite their potential, conventional hydrogels often lack mechanical strength. The double-network (DN) hydrogel approach, introduced by Gong in 2003, significantly enhanced mechanical properties, leading to innovations like shape-deformable DN hydrogels, organic/inorganic composites, and flexible display devices. These advancements highlight the potential of hydrogels in diverse fields requiring precise and adaptable material performance. In this review, we focus on advancements in the field of responsive acrylamide-based hydrogels with IPN structures, emphasizing the recent research on DN hydrogels.
Zobrazit více v PubMed
Kwon H.J., Osada Y., Gong J.P. Polyelectrolyte gels-fundamentals and applications. Polym. J. 2006;38:1211–1219. doi: 10.1295/polymj.PJ2006125. DOI
Correa S., Grosskopf A.K., Lopez Hernandez H., Chan D., Yu A.C., Stapleton L.M., Appel E.A. Translational applications of hydrogels. Chem. Rev. 2021;121:11385–11457. doi: 10.1021/acs.chemrev.0c01177. PubMed DOI PMC
Herrmann A., Haag R., Schedler U. Hydrogels and their role in biosensing applications. Adv. Healthc. Mater. 2021;8:626–633. doi: 10.1002/adhm.202100062. PubMed DOI PMC
Zhang Y.S., Khademhosseini A. Advances in engineering hydrogels. Science. 2017;356:eaaf3627. doi: 10.1126/science.aaf3627. PubMed DOI PMC
Wichterle O., Lim D. Hydrophilic gels for biological use. Nature. 1960;185:117–118. doi: 10.1038/185117a0. DOI
Han Z., Wang P., Mao G., Yin T., Zhong D., Yiming B., Hu X., Jia Z., Nian G., Qu S., et al. Dual pH-responsive hydrogel actuator for lipophilic drug delivery. ACS Appl. Mater. Interfaces. 2020;12:12010–12017. doi: 10.1021/acsami.9b21713. PubMed DOI
Liu L., Wang W., Ju X.J., Xie R., Chu L.Y. Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter. 2010;6:3759–3763. doi: 10.1039/c002231d. DOI
Harada A. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat. Commun. 2012;3:1270. PubMed PMC
Schild H.G. Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992;17:163–249. doi: 10.1016/0079-6700(92)90023-R. DOI
Aseyev V.O., Tenhu H., Winnik F.M. Temperature dependence of the colloidal stability of neutral amphiphilic polymers in water. Adv. Polym. Sci. 2006;196:1–85.
Aseyev V.O., Tenhu H., Winnik F.M. Non-ionic thermoresponsive polymers in water. Adv. Polym. Sci. 2011;242:29–89.
Tanaka T. Collapse of gels and the critical endpoint. Phys. Rev. Lett. 1978;40:820–823. doi: 10.1103/PhysRevLett.40.820. DOI
Fujishige S., Kubota K., Ando I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) J. Phys. Chem. 1989;93:3311–3313. doi: 10.1021/j100345a085. DOI
Netopilik M., Bohdanecký M., Chytrý V., Ulbrich K. Cloud point of poly(N-isopropylmethacrylamide) solutions in water: Is it really a point? Macromol. Rapid Commun. 1997;18:107–111. doi: 10.1002/marc.1997.030180206. DOI
Kubota K., Hamano K., Kuwahara N., Fujishige S., Ando I. Characterization of poly(N-isopropylmethacrylamide) in water. Polym. J. 1990;22:1051–1057. doi: 10.1295/polymj.22.1051. DOI
Tiktopulo E.I., Uversky V.N., Lushchik V.B., Klenin S.I., Bychkova V.E., Ptitsyn O.B. ‘‘Domain” coil-globule transition in homopolymers. Macromolecules. 1995;28:7519–7624. doi: 10.1021/ma00126a032. DOI
Panayiotou M., Pöhner C., Vandevyver C., Wandrey C., Hilbrig F., Freitag R. Synthesis and characterisation of thermo-responsive poly(N,N-diethylacrylamide) microgels. React. Funct. Polym. 2007;67:807–819. doi: 10.1016/j.reactfunctpolym.2006.12.008. DOI
Baltes T., Garret-Flaudy F., Freitag R. Investigation of the LCST of polyacrylamides as a function of molecular parameters and the solvent composition. J. Polym. Sci. Part A Polym. Chem. 1999;37:2977–2989. doi: 10.1002/(SICI)1099-0518(19990801)37:15<2977::AID-POLA31>3.0.CO;2-I. DOI
Idziak I., Avoce D., Lessard D., Gravel D., Zhu X.X. Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide) Macromolecules. 1999;32:1260–1263. doi: 10.1021/ma981171f. DOI
Liu H.Y., Zhu X.X. Lower critical solution temperatures of N-substituted acrylamide copolymers in aqueous solutions. Polymer. 1999;40:6985–6990. doi: 10.1016/S0032-3861(98)00858-1. DOI
Kocak G., Tuncer C., Bütün V. pH-responsive polymers. Polym. Chem. 2016;8:144–176. doi: 10.1039/C6PY01872F. DOI
Cordes D.B., Gamsey S., Singaram B. Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution. Angew. Chem.-Int. Ed. 2006;45:3829–3832. doi: 10.1002/anie.200504390. PubMed DOI
Gong J.P., Katsuyama Y., Kurokawa T., Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 2003;15:1155–1158. doi: 10.1002/adma.200304907. DOI
Yang J., Li Y., Zhu L., Qin G., Chen Q. Double network hydrogels with controlled shape deformation: A mini review. J. Polym. Sci. Part B Polym. Phys. 2018;56:1351–1362. doi: 10.1002/polb.24735. DOI
Song X.F., Chu Y.Y. Preparation and characterization of poly(sodium acrylate/cement clinker) DN hydrogel composites. Polym. Comp. 2019;40:2462–2472. doi: 10.1002/pc.25117. DOI
Xu Y.W., Chen J., Zhang H., Wei H., Zhou L.J., Wang Z.W., Pan Y.X., Su X.Y., Zhang A., Fu J. White-light-emitting flexible display devices based on double network hydrogels crosslinked by YAG:Ce phosphors. J. Mater. Chem. C. 2020;8:247–252. doi: 10.1039/C9TC05311E. DOI
Ilavský M. Phase transition in swollen gels. 2. Effect of charge concentration on the collapse and mechanical behavior of polyacrylamide networks. Macromolecules. 1982;15:782–788. doi: 10.1021/ma00231a019. DOI
Roy D., Brooks W.L.A., Sumerlin B.S. New directions in thermoresponsive polymers. Chem. Soc. Rev. 2013;42:7214–7243. doi: 10.1039/c3cs35499g. PubMed DOI
Heskins M., Guillet J.E. Solution properties of poly(N-isopropylacrylamide) J. Macromol. Sci. Chem. 1969;2:1441–1455. doi: 10.1080/10601326808051910. DOI
Lanzalaco S., Mingot J., Torras J., Alemán C., Armelin E. Recent advances in poly(N-isopropylacrylamide) hydrogels and derivatives as promising materials for biomedical and engineering emerging applications. Adv. Eng. Mater. 2023;25:2201303. doi: 10.1002/adem.202201303. DOI
Gao G., Wang Z., Xu D., Wang L., Xu T., Zhang H., Chen J., Fu J. Snap-buckling motivated controllable jumping of thermo-responsive hydrogel bilayers. ACS Appl. Mater. Interfaces. 2018;10:41724–41731. doi: 10.1021/acsami.8b16402. PubMed DOI
Keerl M., Richtering W. Synergistic depression of volume phase transition temperature in copolymer microgels. Colloid. Polym. Sci. 2006;285:471–474. doi: 10.1007/s00396-006-1605-5. DOI
Zhao Y., Xuan C., Qian X., Alsaid Y., Hua M., Jin L., He X. Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci. Robot. 2019;4:eaax7112. doi: 10.1126/scirobotics.aax7112. PubMed DOI
Zhao Z., Wang H., Shang L., Yu Y., Fu F., Zhao Y., Gu Z. Bioinspired heterogeneous structural color stripes from capillaries. Adv. Mater. 2017;29:1704569. doi: 10.1002/adma.201704569. PubMed DOI
Mamada A., Tanaka T., Kungwatchakun D., Irie M. Photoinduced phase transition of gels. Macromolecules. 1990;23:1517–1519. doi: 10.1021/ma00207a046. DOI
Satoh T., Sumaru K., Takagi T., Kanamori T. Fast-reversible light-driven hydrogels consisting of spirobenzopyran-functionalized poly(N-isopropylacrylamide) Soft Matter. 2011;7:8030–8034. doi: 10.1039/c1sm05797a. DOI
Gupta M.K., Martin J.R., Werfel T.A., Shen T., Page J.M., Duvall C.L. Cell protective, ABC triblock polymer-based thermoresponsive hydrogels with ROS-triggered degradation and drug release. J. Am. Chem. Soc. 2014;136:14896–14902. doi: 10.1021/ja507626y. PubMed DOI
Zhan Y., Gonçalves M., Yi P., Capelo D., Zhang Y., Rodrigues J., Liu C., Tomás H., Li Y., He P. Thermo/redox/pH-triple sensitive poly(N-isopropylacrylamide-co-acrylic acid) nanogels for anticancer drug delivery. J. Mater. Chem. B. 2015;3:4221–4230. doi: 10.1039/C5TB00468C. PubMed DOI
Tan H., Ramirez C.M., Miljkovic N., Li H., Rubin J.P., Marra K.G. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials. 2009;30:6844–6853. doi: 10.1016/j.biomaterials.2009.08.058. PubMed DOI PMC
Takahashi H., Nakayama M., Yamato M., Okano T. Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest. Biomacromolecules. 2010;11:1991–1999. doi: 10.1021/bm100342e. PubMed DOI
Gao J., Hu Z. Optical properties of N-isopropylacrylamide microgel spheres in water. Langmuir. 2002;18:1360–1367. doi: 10.1021/la011405f. DOI
Li X.H., Liu C., Feng S.P., Fang N.X. Broadband light management with thermochromic hydrogel microparticles for smart windows. Joule. 2019;3:290–302. doi: 10.1016/j.joule.2018.10.019. DOI
Kim D., Lee H.S., Yoon J. Highly bendable bilayer-type photo-actuators comprising of reduced graphene oxide dispersed in hydrogels. Sci. Rep. 2016;6:20921. doi: 10.1038/srep20921. PubMed DOI PMC
Wu B.Y., Le X.X., Jian Y.K., Lu W., Yang Z.Y., Zheng Z.K., Théato P., Zhang J.W., Zhang A., Chen T. pH and thermo dual-responsive fluorescent hydrogel actuator. Macromol. Rapid Commun. 2019;40:1800648. doi: 10.1002/marc.201800648. PubMed DOI
Halperin A., Kröger M., Winnik F.M. Poly(N-isopropylacrylamide) phase diagrams: Fifty years of research. Angew. Chem., Int. Ed. 2015;54:15342–15367. doi: 10.1002/anie.201506663. PubMed DOI
Kano M., Kokufuta E. On the temperature-responsive polymers and gels based on N-propylacrylamides and N-propylmethacrylamides. Langmuir. 2009;25:8649–8655. doi: 10.1021/la804286j. PubMed DOI
Maeda Y., Nakamura T., Ikeda I. Changes in the hydration states of poly(N-n-propylmethacrylamide) and poly(N-isopropylmethacrylamide) during their phase transitions in water observed by FTIR spectroscopy. Macromolecules. 2001;34:8246–8251. doi: 10.1021/ma010222x. DOI
Tang Y.C., Ding Y.W., Zhang G.Z. Role of methyl in the phase transition of poly(N-isopropylmethacrylamide) J. Phys. Chem. B. 2008;112:8447–8451. doi: 10.1021/jp711581h. PubMed DOI
Cimas A.J., Pardini F.M., Amalvy J.I. Synthesis of novel stimuli-responsive hydrogels based on polyurethane. Int. J. Polym. Anal. Charact. 2024;29:213–225. doi: 10.1080/1023666X.2024.2346432. DOI
Šťastná J., Hanyková L., Sedláková Z., Valentová H., Spěváček J. Temperature-induced phase transition in hydrogels of interpenetrating networks poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide) Colloid Polym. Sci. 2013;291:2409–2417. doi: 10.1007/s00396-013-2992-z. DOI
Ortega-García A., Martínez-Bernal B.G., Ceja I., Mendizábal E., Puig-Arévalo J.E., Pérez-Carrillo L.A. Drug delivery from stimuli-responsive poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide)/chitosan core/shell nanohydrogels. Polymers. 2022;14:522. doi: 10.3390/polym14030522. PubMed DOI PMC
Hengsbach R., Fink G., Simon U. 1H-NMR studies on the volume phase transition of DNA-modified pNipmam microgels. Soft Matter. 2024;20:330–337. doi: 10.1039/D3SM01124K. PubMed DOI
Panayiotou M., Freitag R. Influence of the synthesis conditions and ionic additives on the swelling behaviour of thermo-responsive polyalkylacrylamide hydrogels. Polymer. 2005;46:6777–6785. doi: 10.1016/j.polymer.2005.06.060. DOI
Maeda Y., Yamabe M. A unique phase behavior of random copolymer of N-isopropylacrylamide and N,N-diethylacrylamide in water. Polymer. 2009;50:519–523. doi: 10.1016/j.polymer.2008.11.032. DOI
Hashimoto C., Nagamoto A., Maruyama T., Kariyama N., Irisa Y., Ikehata A., Ozaki Y. Hydration states of poly(N-isopropylacrylamide) and poly(N,N-diethylacrylamide) and their monomer units in aqueous solutions with lower critical solution temperatures studied by infrared spectroscopy. Macromolecules. 2013;46:1041–1053. doi: 10.1021/ma302317m. DOI
Chen J., Liu M., Liu H., Ma L., Gao C., Zhu S., Zhang S. Synthesis and properties of thermo- and pH-sensitive poly(diallyldimethylammonium chloride)/poly(N,N-diethylacrylamide) semi-IPN hydrogel. Chem. Eng. J. 2010;159:247–256. doi: 10.1016/j.cej.2010.02.034. DOI
Zhang N., Liu M., Shen Y., Chen J., Dai L., Gao C. Preparation, properties, and drug release of thermo- and pH-sensitive poly((2-dimethylamino)ethyl methacrylate)/poly(N,N-diethylacrylamide) semi-IPN hydrogels. J. Mater. Sci. 2011;46:1523–1534. doi: 10.1007/s10853-010-4957-7. DOI
Ngadaonye J.I., Geever L.M., Cloonan M.O., Higginbotham C.L. Photopolymerised thermo-responsive poly(N,N-diethylacrylamide)-based copolymer hydrogels for potential drug delivery applications. J. Polym. Res. 2012;19:9822. doi: 10.1007/s10965-012-9822-8. DOI
Wei W., Qi X., Li J., Zuo G., Sheng W., Zhang J., Dong W. Smart macroporous salecan/poly(N,N-diethylacrylamide) semi-IPN hydrogel for anti-inflammatory drug delivery. ACS Biomater. Sci. Eng. 2016;2:1386–1394. doi: 10.1021/acsbiomaterials.6b00318. PubMed DOI
Ida S., Harada H., Sakai K., Atsumi K., Tani Y., Tanimoto S., Hirokawa Y. Shape and size regulation of gold nanoparticles by poly(N,N-diethylacrylamide) microgels. Chem. Lett. 2017;46:760–763. doi: 10.1246/cl.170115. DOI
Işıklan N., Kazan H. Thermoresponsive and biocompatible poly(vinyl alcohol)-graft-poly(N,N-diethylacrylamide) copolymer: Microwave-assisted synthesis, characterization, and swelling behavior. J. Appl. Polym. Sci. 2017;135:45969. doi: 10.1002/app.45969. DOI
Sperling L.H. Interpenetrating polymer networks: An overview in interpenetrating polymer networks. In: Klempner D., Sperling L.H., Utrack L.A., editors. Advances in Chemistry. American Chemical Society; Washington, DC, USA: 1994. pp. 3–38.
Wu J., Xue W., Yun Z., Liu Q., Sun X. Biomedical applications of stimuli-responsive “smart” interpenetrating polymer network hydrogels. Mater. Today Bio. 2024;25:100998. doi: 10.1016/j.mtbio.2024.100998. PubMed DOI PMC
Maity S., Chatterjee A., Ganguly J. Green Approaches in Medicinal Chemistry for Sustainable Drug Design. Elsevier; Amsterdam, The Netherlands: 2020. Stimuli-responsive sugar-derived hydrogels: A modern approach in cancer biology; pp. 617–649.
Zhao D., Feng M., Zhang L., He B., Chen X., Sun J. Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond. Carbohydr. Polym. 2021;256:117580. doi: 10.1016/j.carbpol.2020.117580. PubMed DOI
Matsuo E.S., Tanaka T. Kinetics of discontinuous volume–phase transition of gels. J. Chem. Phys. 1988;89:1695–1703. doi: 10.1063/1.455115. DOI
Shibayama M., Nagai K. Shrinking kinetics of poly (N-isopropylacrylamide) gels T-jumped across their volume phase transition temperatures. Macromolecules. 1999;32:7461–7468. doi: 10.1021/ma990719v. DOI
Friedrich T., Tieke B., Stadler F.J., Bailly C., Eckert T., Richtering W. Thermoresponsive copolymer hydrogels on the basis of N-isopropylacrylamide and a non-ionic surfactant monomer: Swelling behavior, transparency and rheological properties. Macromolecules. 2010;43:9964–9971. doi: 10.1021/ma1022764. DOI
Haq M.A., Su Y., Wang D. Mechanical properties of PNIPAM based hydrogels: A review. Mater. Sci. Eng. C. 2017;70:842–855. doi: 10.1016/j.msec.2016.09.081. PubMed DOI
Zhang J.T., Bhat R., Jandt K.D. Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater. 2009;5:488–497. doi: 10.1016/j.actbio.2008.06.012. PubMed DOI
Gilbert T., Smeets N.M.B., Hoare T. Injectable interpenetrating network hydrogels via kinetically orthogonal reactive mixing of functionalized polymeric precursors. ACS Macro. Lett. 2015;4:1104–1109. doi: 10.1021/acsmacrolett.5b00362. PubMed DOI
de Moura M.R., Aouada F.A., Favaro S.L., Radovanovic E., Rubira A.F., Muniz E.C. Release of BSA from porous matrices constituted of alginate–Ca2+ and PNIPAAm-interpenetrated networks. Mater. Sci. Eng. C. 2009;29:2319–2325. doi: 10.1016/j.msec.2009.05.022. DOI
Ge S., Li J., Geng J., Liu S., Xu H., Gu Z. Adjustable dual temperature-sensitive hydrogel based on a self-assembly cross-linking strategy with highly stretchable and healable properties. Mater. Horiz. 2021;8:1189–1198. doi: 10.1039/D0MH01762K. PubMed DOI
Liu C.-Y., Chang C.-H., Tran Thi T., Wu G.-Y., Tu C.-M., Chen H.-Y. Thermal-/ light-tunable hydrogels showing reversible widening and closing actuations based on predesigned interpenetrated networks. ACS Appl. Polym. Mater. 2022;4:1931–1939. doi: 10.1021/acsapm.1c01776. DOI
Hoffman A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012;64:18–23. doi: 10.1016/j.addr.2012.09.010. PubMed DOI
Brahima S., Boztepe C., Kunkul A., Yuceer M. Modeling of drug release behavior of pH and temperature sensitive poly(NIPAAm-co-AAc) IPN hydrogels using response surface methodology and artificial neural networks. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;75:425–432. doi: 10.1016/j.msec.2017.02.081. PubMed DOI
Liu M., Su H., Tan T. Synthesis and properties of thermo- and pH-sensitive poly (N-isopropylacrylamide)/polyaspartic acid IPN hydrogels. Carbohydr. Polym. 2012;87:2425–2431. doi: 10.1016/j.carbpol.2011.11.010. DOI
Kamoun E.A., Fahmy A., Taha T.H., El-Fakharany E.M., Makram M., Soliman H.M.A., Shehata H. Thermo-and pH-sensitive hydrogel membranes composed of poly(N-isopropylacrylamide)-hyaluronan for biomedical applications: Influence of hyaluronan incorporation on the membrane properties. Int. J. Biol. Macromol. 2018;106:158–167. doi: 10.1016/j.ijbiomac.2017.08.011. PubMed DOI
Ye T., Yan S., Hu Y., Ding L., Wu W. Synthesis and volume phase transition of concanavalin A-based glucose-responsive nanogels. Polym. Chem. 2014;5:186–194. doi: 10.1039/C3PY00778B. DOI
Gutowska A., Bae H.J., Feijen J., Kim S.W. Thermosensitive interpenetrating polymer networks: Synthesis, characterization, and macromolecular release. Macromolecules. 1994;27:4167–4175. doi: 10.1021/ma00093a018. DOI
Shin B.C., Jhon M.S., Lee H.B., Yuk S.H. Temperature induced phase transition of semiinterpenetrating polymer networks composed of poly(N-isopropyl acrylamide) and hydrophilic polymers. Eur. Polym. J. 1998;23:171–174.
Park T.G., Choi H.K. Thermally induced core-shell type hydrogel beads having interpenetrating polymer network (IPN) structure. Macromol. Rapid Commun. 1998;19:167–172. doi: 10.1002/(SICI)1521-3927(19980401)19:4<167::AID-MARC167>3.0.CO;2-G. DOI
Zhang J., Peppas N.A. Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules. 2000;33:102–107. doi: 10.1021/ma991398q. DOI
Ilavský M., Mamytbekov G., Hanyková L., Dušek K. Phase transition in swollen gels. 31. Swelling and mechanical behaviour of interpenetrating networks com po sed of poly(1-vinyl-2-pyrrolidone) and polyacrylamide in water/acetone mixtures. Eur. Polym. J. 2002;38:875–883. doi: 10.1016/S0014-3057(01)00254-3. DOI
Muniz E.C., Geuskens G. Compressive elastic modulus of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide) Macromolecules. 2001;34:4480–4484. doi: 10.1021/ma001192l. PubMed DOI
Guilherme M.R., Silva R., Girotto E.M., Rubira A.F., Muniz E.C. Hydrogels based on PAAm network with PNIPAAm included: Hydrophilic–hydrophobic transition measured by the partition of Orange II and Methylene Blue in water. Polymer. 2003;44:4213–4219. doi: 10.1016/S0032-3861(03)00370-7. DOI
Djonlagic J., Petrovic Z.S. Semi-interpenetrating polymer networks composed of poly(N-isopropyl acrylamide) and polyacrylamide hydrogels. Polym. Sci. Part B Polym. Phys. 2004;42:3987–3999. doi: 10.1002/polb.20247. DOI
Zhang X.Z., Wu D.Q., Chu C.C. Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials. 2004;25:3793–3805. doi: 10.1016/j.biomaterials.2003.10.065. PubMed DOI
Szilágyi A., Zrínyi M. Temperature induced phase transition of interpenetrating polymer networks composed of poly(vinyl alcohol) and copolymers of N-isopropylacrylamide with acrylamide or 2-acrylamido-2-methylpropyl-sulfonic acid. Polymer. 2005;46:10011–10016. doi: 10.1016/j.polymer.2005.07.072. DOI
Mohan Y.M., Murthy P.S.K., Sreeramulu J., Raju K.M. Swelling behavior of semi-interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(acrylamide-co-sodium methacrylate) J. Appl. Polym. Sci. 2005;98:302. doi: 10.1002/app.21849. DOI
Liu Y.Y., Lu J., Shao Y.H. Preparation and characterization of poly(N-isopropylacrylamide)-modified poly(2-hydroxyethyl acrylate) hydrogels by interpenetrating polymer networks for sustained drug release. Macromol. Biosci. 2006;6:452. doi: 10.1002/mabi.200600007. PubMed DOI
Jin S., Bian F., Liu M., Chen S., Liu H. Swelling mechanism of porous P(VP-co-MAA)/PNIPAM semi-IPN hydrogels with various pore sizes prepared by a freeze treatment. Polym. Int. 2009;58:142–148. doi: 10.1002/pi.2504. DOI
Reddy T.T., Takahara A. Simultaneous and sequential micro-porous semi-interpenetrating polymer network hydrogel films for drug delivery and wound dressing applications. Polymer. 2009;50:3537–3546. doi: 10.1016/j.polymer.2009.05.062. DOI
Wenceslau A.C., dos Santos F.G., Ramos É.R.F., Nakamura C.V., Rubira A.F., Muniz E.C. Thermo- and pH-sensitive IPN hydrogels based on PNIPAAm and PVA-Ma networks with LCST tailored close to human body temperature. Mater. Sci. Eng. C. 2012;32:1259–1265. doi: 10.1016/j.msec.2012.04.001. DOI
Wei W., Hu X., Qi X., Yu H., Liu Y., Li J., Zhang J., Dong W. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): Synthesis and characterization. Colloid Polym. Sci. B. 2015;125:1–11. doi: 10.1016/j.colsurfb.2014.10.057. PubMed DOI
Sievers J., Zschoche S., Dockhorn R., Friedrichs J., Werner C., Freudenberg U. Temperature-induced mechanomodulation of interpenetrating networks of star poly(ethylene glycol)–heparin and poly(N-isopropylacrylamide) ACS Appl. Mater. Interfaces. 2019;11:41862–41874. doi: 10.1021/acsami.9b11719. PubMed DOI
Ye T., Bai X., Jiang X., Wu Q., Chen S., Qu A., Huang J., Shen J., Wu W. Glucose-responsive microgels based on apo-enzyme recognition. Polym. Chem. 2016;7:2847–2857. doi: 10.1039/C6PY00179C. DOI
Gong J.P. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–2590. doi: 10.1039/b924290b. DOI
Haque M.A., Kurokawa T., Gong J.P. Super tough double network hydrogels and their application as biomaterials. Polymer. 2012;53:1805–1822. doi: 10.1016/j.polymer.2012.03.013. DOI
Nakajima T., Fukuda Y., Kurokawa T., Sakai T., Chung U., Gong J.P. Synthesis and fracture process analysis of double network hydrogels with a well-defined first network. ACS Macro Lett. 2013;2:518–521. doi: 10.1021/mz4002047. PubMed DOI
Ahmed S., Nakajima T., Kurokawa T., Anamul Haque M., Gong J.P. Brittle–ductile transition of double network hydrogels: Mechanical balance of two networks as the key factor. Polymer. 2014;55:914–923. doi: 10.1016/j.polymer.2013.12.066. DOI
Matsuda T., Nakajima T., Fukuda Y., Hong W., Sakai T., Kurokawa T., Chung U.-I., Gong J.P. Yielding criteria of double network hydrogels. Macromolecules. 2016;49:1865–1872. doi: 10.1021/acs.macromol.5b02592. DOI
Xin H., Saricilar S.Z., Brown H.R., Whitten P.G., Spinks G.M. Effect of first network topology on the toughness of double network hydrogels. Macromolecules. 2013;46:6613–6620. doi: 10.1021/ma400892g. DOI
Xin H., Brown H.R., Spinks G.M. Molecular weight distribution of network strands in double network hydrogels estimated by mechanical testing. Polymer. 2014;55:3037–3044. doi: 10.1016/j.polymer.2014.05.005. DOI
Xin H. Double-Network Tough Hydrogels: A brief review on achievements and challenges. Gels. 2022;8:247. doi: 10.3390/gels8040247. PubMed DOI PMC
Fei R., George J.T., Park J., Grunlan M.A. Thermoresponsive nanocomposite double network hydrogels. Soft Matter. 2012;8:481–487. doi: 10.1039/C1SM06105D. PubMed DOI PMC
Fei R., Hou H., Munoz-Pinto D., Han A., Hahn M.S., Grunlan M.A. Thermoresponsive double network micropillared hydrogels for controlled cell release. Macromol. Biosci. 2014;14:1346–1352. doi: 10.1002/mabi.201400172. PubMed DOI
Fei R., Means A.K., Abraham A.A., Locke A.K., Coté G.L., Grunlan M.A. Self-cleaning, thermoresponsive P(NIPAAm-co-AMPS) double network membranes for implanted glucose biosensors. Macromol. Mater. Eng. 2016;301:935–943. doi: 10.1002/mame.201600044. PubMed DOI PMC
Means A.K., Ehrhardt D.A., Whitney L.M., Grunlan A. Thermoresponsive double network hydrogels with exceptional compressive mechanical properties. Macromol. Rapid Commun. 2017;38:1700351. doi: 10.1002/marc.201700351. PubMed DOI PMC
Boon-in S., Theerasilp M., Crespy D. Temperature-responsive double-network cooling hydrogels. ACS Appl. Polym. Mater. 2023;5:2562–2574. doi: 10.1021/acsapm.2c02189. DOI
Krakovský I., Kouřilová H., Hrubovský M., Labuta J., Hanyková L. Thermoresponsive double network hydrogels composed of poly(N-isopropylacrylamide) and polyacrylamide. Eur. Polym. J. 2019;116:415–424. doi: 10.1016/j.eurpolymj.2019.04.032. DOI
Li X., Wang Y., Li D., Shu M., Shang L., Xia M., Huang Y. High-strength, thermosensitive double network hydrogels with antibacterial functionality. Soft Matter. 2021;17:6688–6696. doi: 10.1039/D1SM00689D. PubMed DOI
Luo Y., Pauer W., Luinstra G.A. Fabrication of Thermo-Responsive Controllable Shape-Changing Hydrogel. Gels. 2022;8:531. doi: 10.3390/gels8090531. PubMed DOI PMC
Dixit A., Bag D.S. Highly stretchable and tough thermo-responsive double network (DN) hydrogels: Composed of PVA-borax and poly (AM-co-NIPAM) polymer networks. Eur. Polym. J. 2022;175:111347. doi: 10.1016/j.eurpolymj.2022.111347. DOI
Hanyková L., Krakovský I., Šestáková E., Šťastná J., Labuta J. Poly(N,N′-diethylacrylamide)-based thermoresponsive hydrogels with double network structure. Polymers. 2020;12:2502. doi: 10.3390/polym12112502. PubMed DOI PMC
Hanyková L., Krakovský I., Šťastná J., Ivaniuzhenkov V., Labuta J. Thermal response of double network hydrogels with varied composition. e-Polymers. 2023;23:20230044. doi: 10.1515/epoly-2023-0044. DOI
Šťastná J., Ivaniuzhenkov V., Hanyková L. External stimuli-responsive characteristics of poly(N,N′-diethylacrylamide) hydrogels: Effect of double network structure. Gels. 2022;8:586. doi: 10.3390/gels8090586. PubMed DOI PMC
Argun A., Can V., Altun U., Okay O. Nonionic double and triple network hydrogels of high mechanical strength. Macromolecules. 2014;47:6430–6440. doi: 10.1021/ma5014176. DOI
Warren H., in het Panhuis M., Spinks G.M., Officer D.L. Thermal actuation of hydrogels from PNIPAm, alginate, and carbon nanofibres. J. Polym. Sci. Part B Polym. Phys. 2018;56:46–52. doi: 10.1002/polb.24430. DOI
Luo Y., Pauer W., Luinstra G.A. Tough, stretchable, and thermoresponsive smart hydrogels. Gels. 2023;28:695. doi: 10.3390/gels9090695. PubMed DOI PMC
Li Z., Shen J., Ma H., Lu X., Shi M., Li N., Ye M. Preparation and characterization of pH- and temperature-responsive nanocomposite double network hydrogels. Mater. Sci. Eng. C. 2013;33:1951–1957. doi: 10.1016/j.msec.2013.01.004. PubMed DOI
Shen J., Li N., Ye M. Preparation and characterization of dual-sensitive double network hydrogels with clay as a physical crosslinker. Appl. Clay Sci. 2015;103:40–45. doi: 10.1016/j.clay.2014.11.006. DOI
Chen Y., Song G., Yu J., Wang Y., Zhu J., Hu Z. Mechanically strong dual responsive nanocomposite double network hydrogel for controlled drug release of asprin. J. Mech. Behav. Biomed. Mater. 2018;82:61–69. doi: 10.1016/j.jmbbm.2018.03.002. PubMed DOI
Dixit A., Bag D.S., Sharma D.K., Eswara Prasad N. Synthesis of multifunctional high strength, highly swellable, stretchable and self-healable pH-responsive ionic double network hydrogels. Polym. Int. 2019;68:503–515. doi: 10.1002/pi.5741. DOI
Bombonnel C., Vancaeyzeele C., Guérin G., Vidal F. Fabrication of bicontinuous double networks as thermal and pH stimuli responsive drug carriers for on-demand release. Mater. Sci. Eng. C. 2020;109:110495. doi: 10.1016/j.msec.2019.110495. PubMed DOI