Responsive Acrylamide-Based Hydrogels: Advances in Interpenetrating Polymer Structures

. 2024 Jun 21 ; 10 (7) : . [epub] 20240621

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39057438

Grantová podpora
21-25159S Czech Science Foundation

Hydrogels, composed of hydrophilic homopolymer or copolymer networks, have structures similar to natural living tissues, making them ideal for applications in drug delivery, tissue engineering, and biosensors. Since Wichterle and Lim first synthesized hydrogels in 1960, extensive research has led to various types with unique features. Responsive hydrogels, which undergo reversible structural changes when exposed to stimuli like temperature, pH, or specific molecules, are particularly promising. Temperature-sensitive hydrogels, which mimic biological processes, are the most studied, with poly(N-isopropylacrylamide) (PNIPAm) being prominent due to its lower critical solution temperature of around 32 °C. Additionally, pH-responsive hydrogels, composed of polyelectrolytes, change their structure in response to pH variations. Despite their potential, conventional hydrogels often lack mechanical strength. The double-network (DN) hydrogel approach, introduced by Gong in 2003, significantly enhanced mechanical properties, leading to innovations like shape-deformable DN hydrogels, organic/inorganic composites, and flexible display devices. These advancements highlight the potential of hydrogels in diverse fields requiring precise and adaptable material performance. In this review, we focus on advancements in the field of responsive acrylamide-based hydrogels with IPN structures, emphasizing the recent research on DN hydrogels.

Zobrazit více v PubMed

Kwon H.J., Osada Y., Gong J.P. Polyelectrolyte gels-fundamentals and applications. Polym. J. 2006;38:1211–1219. doi: 10.1295/polymj.PJ2006125. DOI

Correa S., Grosskopf A.K., Lopez Hernandez H., Chan D., Yu A.C., Stapleton L.M., Appel E.A. Translational applications of hydrogels. Chem. Rev. 2021;121:11385–11457. doi: 10.1021/acs.chemrev.0c01177. PubMed DOI PMC

Herrmann A., Haag R., Schedler U. Hydrogels and their role in biosensing applications. Adv. Healthc. Mater. 2021;8:626–633. doi: 10.1002/adhm.202100062. PubMed DOI PMC

Zhang Y.S., Khademhosseini A. Advances in engineering hydrogels. Science. 2017;356:eaaf3627. doi: 10.1126/science.aaf3627. PubMed DOI PMC

Wichterle O., Lim D. Hydrophilic gels for biological use. Nature. 1960;185:117–118. doi: 10.1038/185117a0. DOI

Han Z., Wang P., Mao G., Yin T., Zhong D., Yiming B., Hu X., Jia Z., Nian G., Qu S., et al. Dual pH-responsive hydrogel actuator for lipophilic drug delivery. ACS Appl. Mater. Interfaces. 2020;12:12010–12017. doi: 10.1021/acsami.9b21713. PubMed DOI

Liu L., Wang W., Ju X.J., Xie R., Chu L.Y. Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter. 2010;6:3759–3763. doi: 10.1039/c002231d. DOI

Harada A. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat. Commun. 2012;3:1270. PubMed PMC

Schild H.G. Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992;17:163–249. doi: 10.1016/0079-6700(92)90023-R. DOI

Aseyev V.O., Tenhu H., Winnik F.M. Temperature dependence of the colloidal stability of neutral amphiphilic polymers in water. Adv. Polym. Sci. 2006;196:1–85.

Aseyev V.O., Tenhu H., Winnik F.M. Non-ionic thermoresponsive polymers in water. Adv. Polym. Sci. 2011;242:29–89.

Tanaka T. Collapse of gels and the critical endpoint. Phys. Rev. Lett. 1978;40:820–823. doi: 10.1103/PhysRevLett.40.820. DOI

Fujishige S., Kubota K., Ando I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) J. Phys. Chem. 1989;93:3311–3313. doi: 10.1021/j100345a085. DOI

Netopilik M., Bohdanecký M., Chytrý V., Ulbrich K. Cloud point of poly(N-isopropylmethacrylamide) solutions in water: Is it really a point? Macromol. Rapid Commun. 1997;18:107–111. doi: 10.1002/marc.1997.030180206. DOI

Kubota K., Hamano K., Kuwahara N., Fujishige S., Ando I. Characterization of poly(N-isopropylmethacrylamide) in water. Polym. J. 1990;22:1051–1057. doi: 10.1295/polymj.22.1051. DOI

Tiktopulo E.I., Uversky V.N., Lushchik V.B., Klenin S.I., Bychkova V.E., Ptitsyn O.B. ‘‘Domain” coil-globule transition in homopolymers. Macromolecules. 1995;28:7519–7624. doi: 10.1021/ma00126a032. DOI

Panayiotou M., Pöhner C., Vandevyver C., Wandrey C., Hilbrig F., Freitag R. Synthesis and characterisation of thermo-responsive poly(N,N-diethylacrylamide) microgels. React. Funct. Polym. 2007;67:807–819. doi: 10.1016/j.reactfunctpolym.2006.12.008. DOI

Baltes T., Garret-Flaudy F., Freitag R. Investigation of the LCST of polyacrylamides as a function of molecular parameters and the solvent composition. J. Polym. Sci. Part A Polym. Chem. 1999;37:2977–2989. doi: 10.1002/(SICI)1099-0518(19990801)37:15<2977::AID-POLA31>3.0.CO;2-I. DOI

Idziak I., Avoce D., Lessard D., Gravel D., Zhu X.X. Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide) Macromolecules. 1999;32:1260–1263. doi: 10.1021/ma981171f. DOI

Liu H.Y., Zhu X.X. Lower critical solution temperatures of N-substituted acrylamide copolymers in aqueous solutions. Polymer. 1999;40:6985–6990. doi: 10.1016/S0032-3861(98)00858-1. DOI

Kocak G., Tuncer C., Bütün V. pH-responsive polymers. Polym. Chem. 2016;8:144–176. doi: 10.1039/C6PY01872F. DOI

Cordes D.B., Gamsey S., Singaram B. Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution. Angew. Chem.-Int. Ed. 2006;45:3829–3832. doi: 10.1002/anie.200504390. PubMed DOI

Gong J.P., Katsuyama Y., Kurokawa T., Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 2003;15:1155–1158. doi: 10.1002/adma.200304907. DOI

Yang J., Li Y., Zhu L., Qin G., Chen Q. Double network hydrogels with controlled shape deformation: A mini review. J. Polym. Sci. Part B Polym. Phys. 2018;56:1351–1362. doi: 10.1002/polb.24735. DOI

Song X.F., Chu Y.Y. Preparation and characterization of poly(sodium acrylate/cement clinker) DN hydrogel composites. Polym. Comp. 2019;40:2462–2472. doi: 10.1002/pc.25117. DOI

Xu Y.W., Chen J., Zhang H., Wei H., Zhou L.J., Wang Z.W., Pan Y.X., Su X.Y., Zhang A., Fu J. White-light-emitting flexible display devices based on double network hydrogels crosslinked by YAG:Ce phosphors. J. Mater. Chem. C. 2020;8:247–252. doi: 10.1039/C9TC05311E. DOI

Ilavský M. Phase transition in swollen gels. 2. Effect of charge concentration on the collapse and mechanical behavior of polyacrylamide networks. Macromolecules. 1982;15:782–788. doi: 10.1021/ma00231a019. DOI

Roy D., Brooks W.L.A., Sumerlin B.S. New directions in thermoresponsive polymers. Chem. Soc. Rev. 2013;42:7214–7243. doi: 10.1039/c3cs35499g. PubMed DOI

Heskins M., Guillet J.E. Solution properties of poly(N-isopropylacrylamide) J. Macromol. Sci. Chem. 1969;2:1441–1455. doi: 10.1080/10601326808051910. DOI

Lanzalaco S., Mingot J., Torras J., Alemán C., Armelin E. Recent advances in poly(N-isopropylacrylamide) hydrogels and derivatives as promising materials for biomedical and engineering emerging applications. Adv. Eng. Mater. 2023;25:2201303. doi: 10.1002/adem.202201303. DOI

Gao G., Wang Z., Xu D., Wang L., Xu T., Zhang H., Chen J., Fu J. Snap-buckling motivated controllable jumping of thermo-responsive hydrogel bilayers. ACS Appl. Mater. Interfaces. 2018;10:41724–41731. doi: 10.1021/acsami.8b16402. PubMed DOI

Keerl M., Richtering W. Synergistic depression of volume phase transition temperature in copolymer microgels. Colloid. Polym. Sci. 2006;285:471–474. doi: 10.1007/s00396-006-1605-5. DOI

Zhao Y., Xuan C., Qian X., Alsaid Y., Hua M., Jin L., He X. Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci. Robot. 2019;4:eaax7112. doi: 10.1126/scirobotics.aax7112. PubMed DOI

Zhao Z., Wang H., Shang L., Yu Y., Fu F., Zhao Y., Gu Z. Bioinspired heterogeneous structural color stripes from capillaries. Adv. Mater. 2017;29:1704569. doi: 10.1002/adma.201704569. PubMed DOI

Mamada A., Tanaka T., Kungwatchakun D., Irie M. Photoinduced phase transition of gels. Macromolecules. 1990;23:1517–1519. doi: 10.1021/ma00207a046. DOI

Satoh T., Sumaru K., Takagi T., Kanamori T. Fast-reversible light-driven hydrogels consisting of spirobenzopyran-functionalized poly(N-isopropylacrylamide) Soft Matter. 2011;7:8030–8034. doi: 10.1039/c1sm05797a. DOI

Gupta M.K., Martin J.R., Werfel T.A., Shen T., Page J.M., Duvall C.L. Cell protective, ABC triblock polymer-based thermoresponsive hydrogels with ROS-triggered degradation and drug release. J. Am. Chem. Soc. 2014;136:14896–14902. doi: 10.1021/ja507626y. PubMed DOI

Zhan Y., Gonçalves M., Yi P., Capelo D., Zhang Y., Rodrigues J., Liu C., Tomás H., Li Y., He P. Thermo/redox/pH-triple sensitive poly(N-isopropylacrylamide-co-acrylic acid) nanogels for anticancer drug delivery. J. Mater. Chem. B. 2015;3:4221–4230. doi: 10.1039/C5TB00468C. PubMed DOI

Tan H., Ramirez C.M., Miljkovic N., Li H., Rubin J.P., Marra K.G. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials. 2009;30:6844–6853. doi: 10.1016/j.biomaterials.2009.08.058. PubMed DOI PMC

Takahashi H., Nakayama M., Yamato M., Okano T. Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest. Biomacromolecules. 2010;11:1991–1999. doi: 10.1021/bm100342e. PubMed DOI

Gao J., Hu Z. Optical properties of N-isopropylacrylamide microgel spheres in water. Langmuir. 2002;18:1360–1367. doi: 10.1021/la011405f. DOI

Li X.H., Liu C., Feng S.P., Fang N.X. Broadband light management with thermochromic hydrogel microparticles for smart windows. Joule. 2019;3:290–302. doi: 10.1016/j.joule.2018.10.019. DOI

Kim D., Lee H.S., Yoon J. Highly bendable bilayer-type photo-actuators comprising of reduced graphene oxide dispersed in hydrogels. Sci. Rep. 2016;6:20921. doi: 10.1038/srep20921. PubMed DOI PMC

Wu B.Y., Le X.X., Jian Y.K., Lu W., Yang Z.Y., Zheng Z.K., Théato P., Zhang J.W., Zhang A., Chen T. pH and thermo dual-responsive fluorescent hydrogel actuator. Macromol. Rapid Commun. 2019;40:1800648. doi: 10.1002/marc.201800648. PubMed DOI

Halperin A., Kröger M., Winnik F.M. Poly(N-isopropylacrylamide) phase diagrams: Fifty years of research. Angew. Chem., Int. Ed. 2015;54:15342–15367. doi: 10.1002/anie.201506663. PubMed DOI

Kano M., Kokufuta E. On the temperature-responsive polymers and gels based on N-propylacrylamides and N-propylmethacrylamides. Langmuir. 2009;25:8649–8655. doi: 10.1021/la804286j. PubMed DOI

Maeda Y., Nakamura T., Ikeda I. Changes in the hydration states of poly(N-n-propylmethacrylamide) and poly(N-isopropylmethacrylamide) during their phase transitions in water observed by FTIR spectroscopy. Macromolecules. 2001;34:8246–8251. doi: 10.1021/ma010222x. DOI

Tang Y.C., Ding Y.W., Zhang G.Z. Role of methyl in the phase transition of poly(N-isopropylmethacrylamide) J. Phys. Chem. B. 2008;112:8447–8451. doi: 10.1021/jp711581h. PubMed DOI

Cimas A.J., Pardini F.M., Amalvy J.I. Synthesis of novel stimuli-responsive hydrogels based on polyurethane. Int. J. Polym. Anal. Charact. 2024;29:213–225. doi: 10.1080/1023666X.2024.2346432. DOI

Šťastná J., Hanyková L., Sedláková Z., Valentová H., Spěváček J. Temperature-induced phase transition in hydrogels of interpenetrating networks poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide) Colloid Polym. Sci. 2013;291:2409–2417. doi: 10.1007/s00396-013-2992-z. DOI

Ortega-García A., Martínez-Bernal B.G., Ceja I., Mendizábal E., Puig-Arévalo J.E., Pérez-Carrillo L.A. Drug delivery from stimuli-responsive poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide)/chitosan core/shell nanohydrogels. Polymers. 2022;14:522. doi: 10.3390/polym14030522. PubMed DOI PMC

Hengsbach R., Fink G., Simon U. 1H-NMR studies on the volume phase transition of DNA-modified pNipmam microgels. Soft Matter. 2024;20:330–337. doi: 10.1039/D3SM01124K. PubMed DOI

Panayiotou M., Freitag R. Influence of the synthesis conditions and ionic additives on the swelling behaviour of thermo-responsive polyalkylacrylamide hydrogels. Polymer. 2005;46:6777–6785. doi: 10.1016/j.polymer.2005.06.060. DOI

Maeda Y., Yamabe M. A unique phase behavior of random copolymer of N-isopropylacrylamide and N,N-diethylacrylamide in water. Polymer. 2009;50:519–523. doi: 10.1016/j.polymer.2008.11.032. DOI

Hashimoto C., Nagamoto A., Maruyama T., Kariyama N., Irisa Y., Ikehata A., Ozaki Y. Hydration states of poly(N-isopropylacrylamide) and poly(N,N-diethylacrylamide) and their monomer units in aqueous solutions with lower critical solution temperatures studied by infrared spectroscopy. Macromolecules. 2013;46:1041–1053. doi: 10.1021/ma302317m. DOI

Chen J., Liu M., Liu H., Ma L., Gao C., Zhu S., Zhang S. Synthesis and properties of thermo- and pH-sensitive poly(diallyldimethylammonium chloride)/poly(N,N-diethylacrylamide) semi-IPN hydrogel. Chem. Eng. J. 2010;159:247–256. doi: 10.1016/j.cej.2010.02.034. DOI

Zhang N., Liu M., Shen Y., Chen J., Dai L., Gao C. Preparation, properties, and drug release of thermo- and pH-sensitive poly((2-dimethylamino)ethyl methacrylate)/poly(N,N-diethylacrylamide) semi-IPN hydrogels. J. Mater. Sci. 2011;46:1523–1534. doi: 10.1007/s10853-010-4957-7. DOI

Ngadaonye J.I., Geever L.M., Cloonan M.O., Higginbotham C.L. Photopolymerised thermo-responsive poly(N,N-diethylacrylamide)-based copolymer hydrogels for potential drug delivery applications. J. Polym. Res. 2012;19:9822. doi: 10.1007/s10965-012-9822-8. DOI

Wei W., Qi X., Li J., Zuo G., Sheng W., Zhang J., Dong W. Smart macroporous salecan/poly(N,N-diethylacrylamide) semi-IPN hydrogel for anti-inflammatory drug delivery. ACS Biomater. Sci. Eng. 2016;2:1386–1394. doi: 10.1021/acsbiomaterials.6b00318. PubMed DOI

Ida S., Harada H., Sakai K., Atsumi K., Tani Y., Tanimoto S., Hirokawa Y. Shape and size regulation of gold nanoparticles by poly(N,N-diethylacrylamide) microgels. Chem. Lett. 2017;46:760–763. doi: 10.1246/cl.170115. DOI

Işıklan N., Kazan H. Thermoresponsive and biocompatible poly(vinyl alcohol)-graft-poly(N,N-diethylacrylamide) copolymer: Microwave-assisted synthesis, characterization, and swelling behavior. J. Appl. Polym. Sci. 2017;135:45969. doi: 10.1002/app.45969. DOI

Sperling L.H. Interpenetrating polymer networks: An overview in interpenetrating polymer networks. In: Klempner D., Sperling L.H., Utrack L.A., editors. Advances in Chemistry. American Chemical Society; Washington, DC, USA: 1994. pp. 3–38.

Wu J., Xue W., Yun Z., Liu Q., Sun X. Biomedical applications of stimuli-responsive “smart” interpenetrating polymer network hydrogels. Mater. Today Bio. 2024;25:100998. doi: 10.1016/j.mtbio.2024.100998. PubMed DOI PMC

Maity S., Chatterjee A., Ganguly J. Green Approaches in Medicinal Chemistry for Sustainable Drug Design. Elsevier; Amsterdam, The Netherlands: 2020. Stimuli-responsive sugar-derived hydrogels: A modern approach in cancer biology; pp. 617–649.

Zhao D., Feng M., Zhang L., He B., Chen X., Sun J. Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond. Carbohydr. Polym. 2021;256:117580. doi: 10.1016/j.carbpol.2020.117580. PubMed DOI

Matsuo E.S., Tanaka T. Kinetics of discontinuous volume–phase transition of gels. J. Chem. Phys. 1988;89:1695–1703. doi: 10.1063/1.455115. DOI

Shibayama M., Nagai K. Shrinking kinetics of poly (N-isopropylacrylamide) gels T-jumped across their volume phase transition temperatures. Macromolecules. 1999;32:7461–7468. doi: 10.1021/ma990719v. DOI

Friedrich T., Tieke B., Stadler F.J., Bailly C., Eckert T., Richtering W. Thermoresponsive copolymer hydrogels on the basis of N-isopropylacrylamide and a non-ionic surfactant monomer: Swelling behavior, transparency and rheological properties. Macromolecules. 2010;43:9964–9971. doi: 10.1021/ma1022764. DOI

Haq M.A., Su Y., Wang D. Mechanical properties of PNIPAM based hydrogels: A review. Mater. Sci. Eng. C. 2017;70:842–855. doi: 10.1016/j.msec.2016.09.081. PubMed DOI

Zhang J.T., Bhat R., Jandt K.D. Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater. 2009;5:488–497. doi: 10.1016/j.actbio.2008.06.012. PubMed DOI

Gilbert T., Smeets N.M.B., Hoare T. Injectable interpenetrating network hydrogels via kinetically orthogonal reactive mixing of functionalized polymeric precursors. ACS Macro. Lett. 2015;4:1104–1109. doi: 10.1021/acsmacrolett.5b00362. PubMed DOI

de Moura M.R., Aouada F.A., Favaro S.L., Radovanovic E., Rubira A.F., Muniz E.C. Release of BSA from porous matrices constituted of alginate–Ca2+ and PNIPAAm-interpenetrated networks. Mater. Sci. Eng. C. 2009;29:2319–2325. doi: 10.1016/j.msec.2009.05.022. DOI

Ge S., Li J., Geng J., Liu S., Xu H., Gu Z. Adjustable dual temperature-sensitive hydrogel based on a self-assembly cross-linking strategy with highly stretchable and healable properties. Mater. Horiz. 2021;8:1189–1198. doi: 10.1039/D0MH01762K. PubMed DOI

Liu C.-Y., Chang C.-H., Tran Thi T., Wu G.-Y., Tu C.-M., Chen H.-Y. Thermal-/ light-tunable hydrogels showing reversible widening and closing actuations based on predesigned interpenetrated networks. ACS Appl. Polym. Mater. 2022;4:1931–1939. doi: 10.1021/acsapm.1c01776. DOI

Hoffman A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012;64:18–23. doi: 10.1016/j.addr.2012.09.010. PubMed DOI

Brahima S., Boztepe C., Kunkul A., Yuceer M. Modeling of drug release behavior of pH and temperature sensitive poly(NIPAAm-co-AAc) IPN hydrogels using response surface methodology and artificial neural networks. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;75:425–432. doi: 10.1016/j.msec.2017.02.081. PubMed DOI

Liu M., Su H., Tan T. Synthesis and properties of thermo- and pH-sensitive poly (N-isopropylacrylamide)/polyaspartic acid IPN hydrogels. Carbohydr. Polym. 2012;87:2425–2431. doi: 10.1016/j.carbpol.2011.11.010. DOI

Kamoun E.A., Fahmy A., Taha T.H., El-Fakharany E.M., Makram M., Soliman H.M.A., Shehata H. Thermo-and pH-sensitive hydrogel membranes composed of poly(N-isopropylacrylamide)-hyaluronan for biomedical applications: Influence of hyaluronan incorporation on the membrane properties. Int. J. Biol. Macromol. 2018;106:158–167. doi: 10.1016/j.ijbiomac.2017.08.011. PubMed DOI

Ye T., Yan S., Hu Y., Ding L., Wu W. Synthesis and volume phase transition of concanavalin A-based glucose-responsive nanogels. Polym. Chem. 2014;5:186–194. doi: 10.1039/C3PY00778B. DOI

Gutowska A., Bae H.J., Feijen J., Kim S.W. Thermosensitive interpenetrating polymer networks: Synthesis, characterization, and macromolecular release. Macromolecules. 1994;27:4167–4175. doi: 10.1021/ma00093a018. DOI

Shin B.C., Jhon M.S., Lee H.B., Yuk S.H. Temperature induced phase transition of semiinterpenetrating polymer networks composed of poly(N-isopropyl acrylamide) and hydrophilic polymers. Eur. Polym. J. 1998;23:171–174.

Park T.G., Choi H.K. Thermally induced core-shell type hydrogel beads having interpenetrating polymer network (IPN) structure. Macromol. Rapid Commun. 1998;19:167–172. doi: 10.1002/(SICI)1521-3927(19980401)19:4<167::AID-MARC167>3.0.CO;2-G. DOI

Zhang J., Peppas N.A. Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules. 2000;33:102–107. doi: 10.1021/ma991398q. DOI

Ilavský M., Mamytbekov G., Hanyková L., Dušek K. Phase transition in swollen gels. 31. Swelling and mechanical behaviour of interpenetrating networks com po sed of poly(1-vinyl-2-pyrrolidone) and polyacrylamide in water/acetone mixtures. Eur. Polym. J. 2002;38:875–883. doi: 10.1016/S0014-3057(01)00254-3. DOI

Muniz E.C., Geuskens G. Compressive elastic modulus of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide) Macromolecules. 2001;34:4480–4484. doi: 10.1021/ma001192l. PubMed DOI

Guilherme M.R., Silva R., Girotto E.M., Rubira A.F., Muniz E.C. Hydrogels based on PAAm network with PNIPAAm included: Hydrophilic–hydrophobic transition measured by the partition of Orange II and Methylene Blue in water. Polymer. 2003;44:4213–4219. doi: 10.1016/S0032-3861(03)00370-7. DOI

Djonlagic J., Petrovic Z.S. Semi-interpenetrating polymer networks composed of poly(N-isopropyl acrylamide) and polyacrylamide hydrogels. Polym. Sci. Part B Polym. Phys. 2004;42:3987–3999. doi: 10.1002/polb.20247. DOI

Zhang X.Z., Wu D.Q., Chu C.C. Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials. 2004;25:3793–3805. doi: 10.1016/j.biomaterials.2003.10.065. PubMed DOI

Szilágyi A., Zrínyi M. Temperature induced phase transition of interpenetrating polymer networks composed of poly(vinyl alcohol) and copolymers of N-isopropylacrylamide with acrylamide or 2-acrylamido-2-methylpropyl-sulfonic acid. Polymer. 2005;46:10011–10016. doi: 10.1016/j.polymer.2005.07.072. DOI

Mohan Y.M., Murthy P.S.K., Sreeramulu J., Raju K.M. Swelling behavior of semi-interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(acrylamide-co-sodium methacrylate) J. Appl. Polym. Sci. 2005;98:302. doi: 10.1002/app.21849. DOI

Liu Y.Y., Lu J., Shao Y.H. Preparation and characterization of poly(N-isopropylacrylamide)-modified poly(2-hydroxyethyl acrylate) hydrogels by interpenetrating polymer networks for sustained drug release. Macromol. Biosci. 2006;6:452. doi: 10.1002/mabi.200600007. PubMed DOI

Jin S., Bian F., Liu M., Chen S., Liu H. Swelling mechanism of porous P(VP-co-MAA)/PNIPAM semi-IPN hydrogels with various pore sizes prepared by a freeze treatment. Polym. Int. 2009;58:142–148. doi: 10.1002/pi.2504. DOI

Reddy T.T., Takahara A. Simultaneous and sequential micro-porous semi-interpenetrating polymer network hydrogel films for drug delivery and wound dressing applications. Polymer. 2009;50:3537–3546. doi: 10.1016/j.polymer.2009.05.062. DOI

Wenceslau A.C., dos Santos F.G., Ramos É.R.F., Nakamura C.V., Rubira A.F., Muniz E.C. Thermo- and pH-sensitive IPN hydrogels based on PNIPAAm and PVA-Ma networks with LCST tailored close to human body temperature. Mater. Sci. Eng. C. 2012;32:1259–1265. doi: 10.1016/j.msec.2012.04.001. DOI

Wei W., Hu X., Qi X., Yu H., Liu Y., Li J., Zhang J., Dong W. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): Synthesis and characterization. Colloid Polym. Sci. B. 2015;125:1–11. doi: 10.1016/j.colsurfb.2014.10.057. PubMed DOI

Sievers J., Zschoche S., Dockhorn R., Friedrichs J., Werner C., Freudenberg U. Temperature-induced mechanomodulation of interpenetrating networks of star poly(ethylene glycol)–heparin and poly(N-isopropylacrylamide) ACS Appl. Mater. Interfaces. 2019;11:41862–41874. doi: 10.1021/acsami.9b11719. PubMed DOI

Ye T., Bai X., Jiang X., Wu Q., Chen S., Qu A., Huang J., Shen J., Wu W. Glucose-responsive microgels based on apo-enzyme recognition. Polym. Chem. 2016;7:2847–2857. doi: 10.1039/C6PY00179C. DOI

Gong J.P. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–2590. doi: 10.1039/b924290b. DOI

Haque M.A., Kurokawa T., Gong J.P. Super tough double network hydrogels and their application as biomaterials. Polymer. 2012;53:1805–1822. doi: 10.1016/j.polymer.2012.03.013. DOI

Nakajima T., Fukuda Y., Kurokawa T., Sakai T., Chung U., Gong J.P. Synthesis and fracture process analysis of double network hydrogels with a well-defined first network. ACS Macro Lett. 2013;2:518–521. doi: 10.1021/mz4002047. PubMed DOI

Ahmed S., Nakajima T., Kurokawa T., Anamul Haque M., Gong J.P. Brittle–ductile transition of double network hydrogels: Mechanical balance of two networks as the key factor. Polymer. 2014;55:914–923. doi: 10.1016/j.polymer.2013.12.066. DOI

Matsuda T., Nakajima T., Fukuda Y., Hong W., Sakai T., Kurokawa T., Chung U.-I., Gong J.P. Yielding criteria of double network hydrogels. Macromolecules. 2016;49:1865–1872. doi: 10.1021/acs.macromol.5b02592. DOI

Xin H., Saricilar S.Z., Brown H.R., Whitten P.G., Spinks G.M. Effect of first network topology on the toughness of double network hydrogels. Macromolecules. 2013;46:6613–6620. doi: 10.1021/ma400892g. DOI

Xin H., Brown H.R., Spinks G.M. Molecular weight distribution of network strands in double network hydrogels estimated by mechanical testing. Polymer. 2014;55:3037–3044. doi: 10.1016/j.polymer.2014.05.005. DOI

Xin H. Double-Network Tough Hydrogels: A brief review on achievements and challenges. Gels. 2022;8:247. doi: 10.3390/gels8040247. PubMed DOI PMC

Fei R., George J.T., Park J., Grunlan M.A. Thermoresponsive nanocomposite double network hydrogels. Soft Matter. 2012;8:481–487. doi: 10.1039/C1SM06105D. PubMed DOI PMC

Fei R., Hou H., Munoz-Pinto D., Han A., Hahn M.S., Grunlan M.A. Thermoresponsive double network micropillared hydrogels for controlled cell release. Macromol. Biosci. 2014;14:1346–1352. doi: 10.1002/mabi.201400172. PubMed DOI

Fei R., Means A.K., Abraham A.A., Locke A.K., Coté G.L., Grunlan M.A. Self-cleaning, thermoresponsive P(NIPAAm-co-AMPS) double network membranes for implanted glucose biosensors. Macromol. Mater. Eng. 2016;301:935–943. doi: 10.1002/mame.201600044. PubMed DOI PMC

Means A.K., Ehrhardt D.A., Whitney L.M., Grunlan A. Thermoresponsive double network hydrogels with exceptional compressive mechanical properties. Macromol. Rapid Commun. 2017;38:1700351. doi: 10.1002/marc.201700351. PubMed DOI PMC

Boon-in S., Theerasilp M., Crespy D. Temperature-responsive double-network cooling hydrogels. ACS Appl. Polym. Mater. 2023;5:2562–2574. doi: 10.1021/acsapm.2c02189. DOI

Krakovský I., Kouřilová H., Hrubovský M., Labuta J., Hanyková L. Thermoresponsive double network hydrogels composed of poly(N-isopropylacrylamide) and polyacrylamide. Eur. Polym. J. 2019;116:415–424. doi: 10.1016/j.eurpolymj.2019.04.032. DOI

Li X., Wang Y., Li D., Shu M., Shang L., Xia M., Huang Y. High-strength, thermosensitive double network hydrogels with antibacterial functionality. Soft Matter. 2021;17:6688–6696. doi: 10.1039/D1SM00689D. PubMed DOI

Luo Y., Pauer W., Luinstra G.A. Fabrication of Thermo-Responsive Controllable Shape-Changing Hydrogel. Gels. 2022;8:531. doi: 10.3390/gels8090531. PubMed DOI PMC

Dixit A., Bag D.S. Highly stretchable and tough thermo-responsive double network (DN) hydrogels: Composed of PVA-borax and poly (AM-co-NIPAM) polymer networks. Eur. Polym. J. 2022;175:111347. doi: 10.1016/j.eurpolymj.2022.111347. DOI

Hanyková L., Krakovský I., Šestáková E., Šťastná J., Labuta J. Poly(N,N′-diethylacrylamide)-based thermoresponsive hydrogels with double network structure. Polymers. 2020;12:2502. doi: 10.3390/polym12112502. PubMed DOI PMC

Hanyková L., Krakovský I., Šťastná J., Ivaniuzhenkov V., Labuta J. Thermal response of double network hydrogels with varied composition. e-Polymers. 2023;23:20230044. doi: 10.1515/epoly-2023-0044. DOI

Šťastná J., Ivaniuzhenkov V., Hanyková L. External stimuli-responsive characteristics of poly(N,N′-diethylacrylamide) hydrogels: Effect of double network structure. Gels. 2022;8:586. doi: 10.3390/gels8090586. PubMed DOI PMC

Argun A., Can V., Altun U., Okay O. Nonionic double and triple network hydrogels of high mechanical strength. Macromolecules. 2014;47:6430–6440. doi: 10.1021/ma5014176. DOI

Warren H., in het Panhuis M., Spinks G.M., Officer D.L. Thermal actuation of hydrogels from PNIPAm, alginate, and carbon nanofibres. J. Polym. Sci. Part B Polym. Phys. 2018;56:46–52. doi: 10.1002/polb.24430. DOI

Luo Y., Pauer W., Luinstra G.A. Tough, stretchable, and thermoresponsive smart hydrogels. Gels. 2023;28:695. doi: 10.3390/gels9090695. PubMed DOI PMC

Li Z., Shen J., Ma H., Lu X., Shi M., Li N., Ye M. Preparation and characterization of pH- and temperature-responsive nanocomposite double network hydrogels. Mater. Sci. Eng. C. 2013;33:1951–1957. doi: 10.1016/j.msec.2013.01.004. PubMed DOI

Shen J., Li N., Ye M. Preparation and characterization of dual-sensitive double network hydrogels with clay as a physical crosslinker. Appl. Clay Sci. 2015;103:40–45. doi: 10.1016/j.clay.2014.11.006. DOI

Chen Y., Song G., Yu J., Wang Y., Zhu J., Hu Z. Mechanically strong dual responsive nanocomposite double network hydrogel for controlled drug release of asprin. J. Mech. Behav. Biomed. Mater. 2018;82:61–69. doi: 10.1016/j.jmbbm.2018.03.002. PubMed DOI

Dixit A., Bag D.S., Sharma D.K., Eswara Prasad N. Synthesis of multifunctional high strength, highly swellable, stretchable and self-healable pH-responsive ionic double network hydrogels. Polym. Int. 2019;68:503–515. doi: 10.1002/pi.5741. DOI

Bombonnel C., Vancaeyzeele C., Guérin G., Vidal F. Fabrication of bicontinuous double networks as thermal and pH stimuli responsive drug carriers for on-demand release. Mater. Sci. Eng. C. 2020;109:110495. doi: 10.1016/j.msec.2019.110495. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...