-
Je něco špatně v tomto záznamu ?
Unloading of homologous recombination factors is required for restoring double-stranded DNA at damage repair loci
Y. Vasianovich, V. Altmannova, O. Kotenko, MD. Newton, L. Krejci, S. Makovets,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
NLK
BioMedCentral Open Access
od 2012
PubMed Central
od 2010 do Před 1 rokem
ProQuest Central
od 2010-03-01 do 2018-12-31
Open Access Digital Library
od 2010-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2010-03-01 do 2018-12-31
ROAD: Directory of Open Access Scholarly Resources
od 2010
PubMed
27932447
DOI
10.15252/embj.201694628
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- DNA metabolismus MeSH
- enzymy opravy DNA metabolismus MeSH
- homologní rekombinace * MeSH
- poškození DNA * MeSH
- proliferační antigen buněčného jádra metabolismus MeSH
- rekombinační oprava DNA * MeSH
- rekombinasy metabolismus MeSH
- Saccharomyces cerevisiae enzymologie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Cells use homology-dependent DNA repair to mend chromosome breaks and restore broken replication forks, thereby ensuring genome stability and cell survival. DNA break repair via homology-based mechanisms involves nuclease-dependent DNA end resection, which generates long tracts of single-stranded DNA required for checkpoint activation and loading of homologous recombination proteins Rad52/51/55/57. While recruitment of the homologous recombination machinery is well characterized, it is not known how its presence at repair loci is coordinated with downstream re-synthesis of resected DNA We show that Rad51 inhibits recruitment of proliferating cell nuclear antigen (PCNA), the platform for assembly of the DNA replication machinery, and that unloading of Rad51 by Srs2 helicase is required for efficient PCNA loading and restoration of resected DNA As a result, srs2Δ mutants are deficient in DNA repair correlating with extensive DNA processing, but this defect in srs2Δ mutants can be suppressed by inactivation of the resection nuclease Exo1. We propose a model in which during re-synthesis of resected DNA, the replication machinery must catch up with the preceding processing nucleases, in order to close the single-stranded gap and terminate further resection.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031236
- 003
- CZ-PrNML
- 005
- 20171025115439.0
- 007
- ta
- 008
- 171025s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.15252/embj.201694628 $2 doi
- 035 __
- $a (PubMed)27932447
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Vasianovich, Yulia $u Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- 245 10
- $a Unloading of homologous recombination factors is required for restoring double-stranded DNA at damage repair loci / $c Y. Vasianovich, V. Altmannova, O. Kotenko, MD. Newton, L. Krejci, S. Makovets,
- 520 9_
- $a Cells use homology-dependent DNA repair to mend chromosome breaks and restore broken replication forks, thereby ensuring genome stability and cell survival. DNA break repair via homology-based mechanisms involves nuclease-dependent DNA end resection, which generates long tracts of single-stranded DNA required for checkpoint activation and loading of homologous recombination proteins Rad52/51/55/57. While recruitment of the homologous recombination machinery is well characterized, it is not known how its presence at repair loci is coordinated with downstream re-synthesis of resected DNA We show that Rad51 inhibits recruitment of proliferating cell nuclear antigen (PCNA), the platform for assembly of the DNA replication machinery, and that unloading of Rad51 by Srs2 helicase is required for efficient PCNA loading and restoration of resected DNA As a result, srs2Δ mutants are deficient in DNA repair correlating with extensive DNA processing, but this defect in srs2Δ mutants can be suppressed by inactivation of the resection nuclease Exo1. We propose a model in which during re-synthesis of resected DNA, the replication machinery must catch up with the preceding processing nucleases, in order to close the single-stranded gap and terminate further resection.
- 650 _2
- $a DNA $x metabolismus $7 D004247
- 650 12
- $a poškození DNA $7 D004249
- 650 _2
- $a enzymy opravy DNA $x metabolismus $7 D045643
- 650 12
- $a homologní rekombinace $7 D059765
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a proliferační antigen buněčného jádra $x metabolismus $7 D018809
- 650 _2
- $a rekombinasy $x metabolismus $7 D045522
- 650 12
- $a rekombinační oprava DNA $7 D059767
- 650 _2
- $a Saccharomyces cerevisiae $x enzymologie $x genetika $x metabolismus $7 D012441
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Altmannová, Veronika $u Department of Biology, Masaryk University, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic. $7 mub2011626283
- 700 1_
- $a Kotenko, Oleksii $u Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- 700 1_
- $a Newton, Matthew D $u Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- 700 1_
- $a Krejci, Lumir $u Department of Biology, Masaryk University, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic. National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Makovets, Svetlana $u Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK smakovet@staffmail.ed.ac.uk.
- 773 0_
- $w MED00181668 $t The EMBO journal $x 1460-2075 $g Roč. 36, č. 2 (2017), s. 213-231
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27932447 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171025115521 $b ABA008
- 999 __
- $a ok $b bmc $g 1254829 $s 992263
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 36 $c 2 $d 213-231 $e 20161208 $i 1460-2075 $m The EPMA journal $n EPMA J $x MED00181668
- LZP __
- $a Pubmed-20171025